Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 124(19): 196601, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32469540

RESUMEN

The transport properties of MAPbI3 are analyzed within a tight-binding model. We find a strong Fröhlich interaction of electron and holes with the electrostatic potential induced by the longitudinal optical phonon modes. This potential induces a strong scattering and limits the electronic mobilities at room temperature to about 200 cm^{2}/V s. With additional extrinsic disorder, a large fraction of the electrons and holes are localized, but they can diffuse by following nearly adiabatically the evolution of the electrostatic potential. This process of diffusion, at a rate which is given by the lattice dynamics, contributes to the unique electronic properties of this material.

2.
Phys Rev Lett ; 120(15): 156405, 2018 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-29756887

RESUMEN

We demonstrate that stacking layered materials allows a strain engineering where each layer is strained independently, which we call heterostrain. We combine detailed structural and spectroscopic measurements with tight-binding calculations to show that small uniaxial heterostrain suppresses Dirac cones and leads to the emergence of flat bands in twisted graphene layers (TGLs). Moreover, we demonstrate that heterostrain reconstructs, much more severely, the energy spectrum of TGLs than homostrain for which both layers are strained identically, a result which should apply to virtually all van der Waals structures opening exciting possibilities for straintronics with 2D materials.

3.
J Phys Condens Matter ; 32(11): 115301, 2020 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-31751962

RESUMEN

Carbon nanotubes are of central importance for applications in nano-electronics thanks to their exceptional transport properties. They can be used as sensors, for example in biological applications, provided that they are functionalized to detect specific molecules. Due to their one-dimensional geometry the carbon nanotubes are very sensitive to the phenomenon of Anderson localization and it is therefore essential to know how the functionalization modifies their conduction properties and if they remain good conductors. Here we present a study of the quantum localization induced by functionalization in metallic single walled carbon nanotubes (SWCNT) with circumferences up to 15 nm. We consider resonant and non-resonant adsorbates that represent two types of covalently functionalized groups with strong and moderate scattering properties. The present study provides a detailed analysis of the localization behaviour and shows that the localization length can decrease down to 20-50 nm at concentrations of about 1 percent of adsorbates. On this basis we discuss the possible electronic transport mechanisms which can be either metallic like or insulating like with variable range hopping.

4.
Cell Signal ; 28(1): 120-9, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26515128

RESUMEN

Chemokine receptors are members of the G-protein-coupled receptor (GPCR) family coupled to members of the Gi class, whose primary function is to inhibit the cellular adenylate cyclase. We used a cAMP-related and PKA-based luminescent biosensor (GloSensor™ F-22) to monitor the real-time downstream response of chemokine receptors, especially CX3CR1 and CXCR4, after activation with their cognate ligands CX3CL1 and CXCL12. We found that the amplitudes and kinetic profiles of the chemokine responses were conserved in various cell types and were independent of the nature and concentration of the molecules used for cAMP prestimulation, including either the adenylate cyclase activator forskolin or ligands mediating Gs-mediated responses like prostaglandin E2 or beta-adrenergic agonist. We conclude that the cAMP chemokine response is robustly conserved in various inflammatory conditions. Moreover, the cAMP-related luminescent biosensor appears as a valuable tool to analyze the details of Gi-mediated cAMP-inhibitory cellular responses, even in native conditions and could help to decipher their precise role in cell function.


Asunto(s)
Adenilil Ciclasas/metabolismo , Técnicas Biosensibles , Quimiocinas/metabolismo , Colforsina/farmacología , AMP Cíclico/metabolismo , Células Cultivadas , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Humanos , Isoproterenol/farmacología , Cinética , Receptores CXCR4/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA