Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Basic Microbiol ; 63(1): 64-74, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36336636

RESUMEN

To find effective silver nanoparticles (AgNPs) for control of phytopathogens, in this study, two strains of actinomycetes isolated from the soil of the Brazilian biome Caatinga (Caat5-35) and from mangrove sediment (Canv1-58) were utilized. The strains were identified by using the 16S rRNA gene sequencing as Streptomyces sp., related to Streptomyces mimosus species. The obtained AgNPs were coded as AgNPs 35 and AgNPs58 and characterized by size and morphology using dynamic light scattering, zeta potential, transmission electron microscopy, and Fourier transformed infrared (FTIR). The antifungal activity of the AgNPs35 and AgNPs58 was evaluated in vitro by the minimal inhibitory concentration (MIC) assay on the phytopathogens, Alternaria solani, Alternaria alternata, and Colletotrichum gloeosporioides. The phytotoxic effect was evaluated by the germination rate and seedling growth of rice (Oryza sativa). AgNPs35 and AgNPs58 showed surface plasmon resonance and average sizes of 30 and 60 nm, respectively. Both AgNPs presented spherical shape and the FTIR analysis confirmed the presence of functional groups such as free amines and hydroxyls of biomolecules bounded to the external layer of the nanoparticles. Both AgNPs inhibited the growth of the three phytopathogens tested, and A. alternate was the most sensible (MIC ≤ 4 µM). Moreover, the AgNPs35 and AgNPs58 did not induce phytotoxic effects on the germination and development of rice seedlings. In conclusion, these AgNPs are promising candidates to biocontrol of these phytopathogens without endangering rice plants.


Asunto(s)
Actinobacteria , Nanopartículas del Metal , Oryza , Nanopartículas del Metal/toxicidad , Plata/toxicidad , Actinomyces , ARN Ribosómico 16S/genética , Semillas , Plantones , Antibacterianos/farmacología
2.
Nat Prod Res ; 33(12): 1713-1720, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29451013

RESUMEN

A new polycyclic antibiotic, pradimicin-IRD, was isolated from actinobacteria Amycolatopsis sp. IRD-009 recovered from soil of Brazilian rainforest undergoing restoration area. This molecule is the major compound produced in solid culture media. The new compound was detected by a focused method of precursor ion (high-performance liquid chromatography coupled to tandem mass spectrometer) developed previously to identify unusual aminoglycosyl sugar moieties. The compound was isolated and its structure was, therefore, elucidated by high-resolution mass spectrometry, and 1D and 2D nuclear magnetic resonance experiments. Pradimicin-IRD displayed potential antimicrobial activity against Streptococcus agalactiae (MIC 3.1 µg/mL), Pseudomonas aeruginosa (MIC 3.1 µg/mL) and Staphylococcus aureus (MIC 3.1 µg/mL), and also cytotoxicity against tumour and non-tumour cell lines with IC50 values ranging from 0.8 µM in HCT-116 colon carcinoma cells to 2.7 µM in MM 200 melanoma cells. Particularly, these biological properties are described for the first time for this chemical class.


Asunto(s)
Actinobacteria/química , Antraciclinas/aislamiento & purificación , Antibacterianos/aislamiento & purificación , Antraciclinas/química , Antibacterianos/química , Brasil , Línea Celular , Línea Celular Tumoral , Cromatografía Líquida de Alta Presión , Humanos , Concentración 50 Inhibidora , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa/efectos de los fármacos , Microbiología del Suelo , Staphylococcus aureus/efectos de los fármacos , Espectrometría de Masas en Tándem
3.
FEMS Microbiol Ecol ; 93(2)2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27986827

RESUMEN

The litterfall is the major organic material deposited in soil of Brazilian Caatinga biome, thus providing the ideal conditions for plant biomass-degrading microorganisms to thrive. Herein, the phylogenetic composition and lignocellulose-degrading capacity have been explored for the first time from a fosmid library dataset of Caatinga soil by sequence-based screening. A complex bacterial community dominated by Proteobacteria and Actinobacteria was unraveled. SEED subsystems-based annotations revealed a broad range of genes assigned to carbohydrate and aromatic compounds metabolism, indicating microbial ability to utilize plant-derived material. CAZy-based annotation identified 7275 genes encoding 37 glycoside hydrolases (GHs) families related to hydrolysis of cellulose, hemicellulose, oligosaccharides and other lignin-modifying enzymes. Taxonomic affiliation of genes showed high genetic potential of the phylum Acidobacteria for hemicellulose degradation, whereas Actinobacteria members appear to play an important role in celullose hydrolysis. Additionally, comparative analyses revealed greater GHs profile similarity among soils as compared to the digestive tract of animals capable of digesting plant biomass, particularly in the hemicellulases content. Combined results suggest a complex synergistic interaction of community members required for biomass degradation into fermentable sugars. This large repertoire of lignocellulolytic enzymes opens perspectives for mining potential candidates of biochemical catalysts for biofuels production from renewable resources and other environmental applications.


Asunto(s)
Lignina/metabolismo , Microbiota , Microbiología del Suelo , Suelo/química , Actinobacteria/metabolismo , Animales , Biocombustibles , Biomasa , Brasil , Celulosa/metabolismo , Glicósido Hidrolasas , Hidrólisis , Filogenia , Proteobacteria/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA