Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Heliyon ; 5(8): e02351, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31485533

RESUMEN

aiming at expanding the possibilities for broiler slaughter wastes valorization, composting piles were submitted, at different time points (T0, T10, T20, T30 and Control) representing the treatments, to a solid-liquid fraction separation (FS), after being submerged in water (2:1, water:compost, in the fresh weight). After FS, solid material separated with a strain was again placed in piles for the final stage of composting, being evaluated the organic composts obtained after the stabilization phase (65 days) and maturation (95 days), in the different treatments. Reductions in mass (60-62%) and volume (56-64%) were greater in piles submitted to FS in comparison to control piles (52% and 54%). On the other hand, the FS induced greater losses of C (70.3-71.3%), N (55-62%), P (41.7-54.4%) and K (62.3-72.1%) in comparison to the control (65.2%, 48.0%, 28.1%, and 37.6%, respectively). We conclude that, as a way of integrating bioprocesses, FS does not have negative effects on the composting process. Moreover, compost mixtures from FS-treated piles, when used as substrate, yield better seedlings in comparison to mixtures from control.

2.
Sci Total Environ ; 683: 773-781, 2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-31150897

RESUMEN

Energy production based on the proper allocation of environmental liabilities is in line with the concept of sustainability. Flotation sludge (S) is a type of waste derived from the physical treatment of the wastewater generated in significant quantities during chicken slaughter in Brazil. If not treated, this wastewater may contribute to pollution, but further treatment provides clean energy and nutrient recycling. The present study aimed at evaluating the reduction of (S) organic load by means of mono and co-digestion with sweet potatoes (P) while promoting its conversion into energy (methane) and nutrients (digestate). Semi-continuous reactors (60 L capacity) were used with a hydraulic retention time of 25 days. The reactors were fed daily with 2.4 L consisting of 60% digestate recirculation, 40% non-chlorinated water and 4.5% total solids (TS). Using nine reactors and six progressive periods, eleven conditions were evaluated with three replicates each. The percentages of (P) and (S) varied from 0 to 100. The best observed condition in terms of energy recovery and TS removal was 60% of P + 40% of S (p ≤ 0.05), as it presented values of at least an increase of 92% in total biogas volume, an increase of 123% in specific methane production, an increase of 98% in specific methane yield and an increase of 44% in TS removal efficiency compared to mono-digestions. The fertilizer potential of the digestate generated in the different conditions was calculated and evaluated according to the area of (P) production. The results varied from 3.6 to 10.8 ha of (P) using 100 m3 of digestate. A multivariate analysis showed that higher amounts of (P) in substrate composition favor energy recycling while higher concentrations of (S) enhance the production of a digestate with valuable agronomic characteristics.


Asunto(s)
Crianza de Animales Domésticos , Ipomoea batatas , Eliminación de Residuos Líquidos/métodos , Anaerobiosis , Animales , Pollos , Aguas del Alcantarillado , Aguas Residuales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA