Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Int J Mol Sci ; 21(24)2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33316932

RESUMEN

Mitochondrial metabolism is an attractive target for cancer therapy. Reprogramming metabolic pathways can potentially sensitize tumors with limited treatment options, such as triple-negative breast cancer (TNBC), to chemo- and/or radiotherapy. Dichloroacetate (DCA) is a specific inhibitor of the pyruvate dehydrogenase kinase (PDK), which leads to enhanced reactive oxygen species (ROS) production. ROS are the primary effector molecules of radiation and an increase hereof will enhance the radioresponse. In this study, we evaluated the effects of DCA and radiotherapy on two TNBC cell lines, namely EMT6 and 4T1, under aerobic and hypoxic conditions. As expected, DCA treatment decreased phosphorylated pyruvate dehydrogenase (PDH) and lowered both extracellular acidification rate (ECAR) and lactate production. Remarkably, DCA treatment led to a significant increase in ROS production (up to 15-fold) in hypoxic cancer cells but not in aerobic cells. Consistently, DCA radiosensitized hypoxic tumor cells and 3D spheroids while leaving the intrinsic radiosensitivity of the tumor cells unchanged. Our results suggest that although described as an oxidative phosphorylation (OXPHOS)-promoting drug, DCA can also increase hypoxic radioresponses. This study therefore paves the way for the targeting of mitochondrial metabolism of hypoxic cancer cells, in particular to combat radioresistance.


Asunto(s)
Neoplasias de la Mama/metabolismo , Ácido Dicloroacético/farmacología , Inhibidores Enzimáticos/farmacología , Tolerancia a Radiación/efectos de los fármacos , Hipoxia Tumoral , Línea Celular , Femenino , Humanos , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/antagonistas & inhibidores , Especies Reactivas de Oxígeno/metabolismo
2.
Cancers (Basel) ; 14(20)2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36291844

RESUMEN

Augmented de novo serine synthesis activity is increasingly apparent in distinct types of cancers and has mainly sparked interest by investigation of phosphoglycerate dehydrogenase (PHGDH). Overexpression of PHGDH has been associated with higher tumor grade, shorter relapse time and decreased overall survival. It is well known that therapeutic outcomes in cancer patients can be improved by reprogramming metabolic pathways in combination with standard treatment options, for example, radiotherapy. In this study, possible metabolic changes related to radioresponse were explored upon PHGDH inhibition. Additionally, we evaluated whether PHGDH inhibition could improve radioresponse in human colorectal cancer cell lines in both aerobic and radiobiological relevant hypoxic conditions. Dysregulation of reactive oxygen species (ROS) homeostasis and dysfunction in mitochondrial energy metabolism and oxygen consumption rate were indicative of potential radiomodulatory effects. We demonstrated that PHGDH inhibition radiosensitized hypoxic human colorectal cancer cells while leaving intrinsic radiosensitivity unaffected. In a xenograft model, the first hints of additive effects between PHGDH inhibition and radiotherapy were demonstrated. In conclusion, this study is the first to show that modulation of de novo serine biosynthesis enhances radioresponse in hypoxic colorectal cancer cells, mainly mediated by increased levels of intracellular ROS.

3.
Front Oncol ; 11: 761901, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34778082

RESUMEN

Although radiotherapy is given to more than 50% of cancer patients, little progress has been made in identifying optimal radiotherapy - drug combinations to improve treatment efficacy. Using molecular data from The Cancer Genome Atlas (TCGA), we extracted a total of 1016 cancer patients that received radiotherapy. The patients were diagnosed with head-and-neck (HNSC - 294 patients), cervical (CESC - 166 patients) and breast (BRCA - 549 patients) cancer. We analyzed mRNA expression patterns of 50 hallmark gene sets of the MSigDB collection, which we divided in eight categories based on a shared biological or functional process. Tumor samples were split into upregulated, neutral or downregulated mRNA expression for all gene sets using a gene set analysis (GSEA) pre-ranked analysis and assessed for their clinical relevance. We found a prognostic association between three of the eight gene set categories (Radiobiological, Metabolism and Proliferation) and overall survival in all three cancer types. Furthermore, multiple single associations were revealed in the other categories considered. To the best of our knowledge, our study is the first report suggesting clinical relevance of molecular characterization based on hallmark gene sets to refine radiation strategies.

4.
Int J Radiat Oncol Biol Phys ; 111(1): 272-283, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-33865948

RESUMEN

PURPOSE: The combination of standard-of-care radiation therapy (RT) with immunotherapy is moving to the mainstream of non-small cell lung cancer treatment. Multiple preclinical studies reported on the CD8+ T cell stimulating properties of RT, resulting in abscopal therapeutic effects. A literature search demonstrates that most preclinical lung cancer studies applied subcutaneous lung tumor models. Hence, in-depth immunologic evaluation of clinically relevant RT in orthotopic lung cancer models is lacking. METHODS AND MATERIALS: We studied the therapeutic and immunologic effects of low-dose fractionated RT on lungs from C57BL/6 mice, challenged 2 weeks before with firefly luciferase expressing Lewis lung carcinoma cells via the tail vein. Low-dose fractionation was represented by 4 consecutive daily fractions of image guided RT at 3.2 Gy. RESULTS: We showed reduced lung tumor growth upon irradiation using in vivo bioluminescence imaging and immunohistochemistry. Moreover, significant immunologic RT-induced changes were observed in irradiated lungs and in the periphery (spleen and blood). First, a significant decrease in the number of CD8+ T cells and trends toward more CD4+ and regulatory T cells were seen after RT in all evaluated tissues. Notably, only in the periphery did the remaining CD8+ T cells show a more activated phenotype. In addition, a significant expansion of neutrophils and monocytes was observed upon RT locally and systemically. Locally, RT increased the influx of tumor-associated macrophages and conventional type 2 dendritic cells, whereas the alveolar macrophages and conventional type 1 DCs dramatically decreased. Functionally, these antigen-presenting cells severely reduced their CD86 expression, suggesting a reduced capacity to induce potent immunity. CONCLUSIONS: Our results imply that low-dose fractionated RT of tumor-bearing lung tissue shifts the immune cell balance toward an immature myeloid cell dominating profile. These data argue for myeloid cell repolarizing strategies to enhance the abscopal effects in patients with non-small cell lung cancer treated with fractionated RT.


Asunto(s)
Células Presentadoras de Antígenos/efectos de la radiación , Linfocitos T CD8-positivos/efectos de la radiación , Fraccionamiento de la Dosis de Radiación , Neoplasias Pulmonares/radioterapia , Animales , Femenino , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Ratones , Ratones Endogámicos C57BL
5.
Front Immunol ; 12: 772555, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34925341

RESUMEN

The combination of radiotherapy (RT) with immunotherapy represents a promising treatment modality for non-small cell lung cancer (NSCLC) patients. As only a minority of patients shows a persistent response today, a spacious optimization window remains to be explored. Previously we showed that fractionated RT can induce a local immunosuppressive profile. Based on the evolving concept of an immunomodulatory role for vagal nerve stimulation (VNS), we tested its therapeutic and immunological effects alone and in combination with fractionated RT in a preclinical-translational study. Lewis lung carcinoma-bearing C57Bl/6 mice were treated with VNS, fractionated RT or the combination while a patient cohort with locally advanced NSCLC receiving concurrent radiochemotherapy (ccRTCT) was enrolled in a clinical trial to receive either sham or effective VNS daily during their 6 weeks of ccRTCT treatment. Preclinically, VNS alone or with RT showed no therapeutic effect yet VNS alone significantly enhanced the activation profile of intratumoral CD8+ T cells by upregulating their IFN-γ and CD137 expression. In the periphery, VNS reduced the RT-mediated rise of splenic, but not blood-derived, regulatory T cells (Treg) and monocytes. In accordance, the serological levels of protumoral CXCL5 next to two Treg-attracting chemokines CCL1 and CCL22 were reduced upon VNS monotherapy. In line with our preclinical findings on the lack of immunological changes in blood circulating immune cells upon VNS, immune monitoring of the peripheral blood of VNS treated NSCLC patients (n=7) did not show any significant changes compared to ccRTCT alone. As our preclinical data do suggest that VNS intensifies the stimulatory profile of the tumor infiltrated CD8+ T cells, this favors further research into non-invasive VNS to optimize current response rates to RT-immunotherapy in lung cancer patients.


Asunto(s)
Carcinoma Pulmonar de Lewis/radioterapia , Carcinoma Pulmonar de Lewis/terapia , Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Carcinoma de Pulmón de Células no Pequeñas/terapia , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/terapia , Estimulación del Nervio Vago , Anciano , Animales , Carcinoma Pulmonar de Lewis/inmunología , Carcinoma Pulmonar de Lewis/patología , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/patología , Terapia Combinada , Femenino , Humanos , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Linfocitos Infiltrantes de Tumor/inmunología , Masculino , Ratones Endogámicos C57BL , Persona de Mediana Edad , Carga Tumoral
6.
Cancer Lett ; 450: 42-52, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-30790679

RESUMEN

Piperlongumine (PL), naturally synthesized in long pepper, is known to selectively kill tumor cells via perturbation of reactive oxygen species (ROS) homeostasis. ROS are the primary effector molecules of radiation, and increase of ROS production by pharmacological modulation is known to enhance radioresponse. We therefore investigated the radiosensitizing effect of PL in colorectal cancer cells (CT26 and DLD-1) and CT26 tumor-bearing mice. Firstly, we found that PL induced excessive production of ROS due to depletion of glutathione and inhibition of thioredoxin reductase. Secondly, PL enhanced both the intrinsic and hypoxic radiosensitivity of tumor cells, linked to ROS-mediated increase of DNA damage, G2/M cell cycle arrest, and inhibition of cellular respiration. Finally, the radiosensitizing effect of PL was verified in vivo. PL improved the tumor response to both single and fractionated radiation, resulting in a significant increase of survival rate of tumor-bearing mice, while it was ineffective on its own. In line with in vitro findings, enhanced radioresponse is associated with inhibition of antioxidant systems. In conclusion, our results suggest that PL could be a potential radiosensitizer in colorectal cancer.


Asunto(s)
Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/radioterapia , Dioxolanos/farmacología , Glutatión/antagonistas & inhibidores , Fármacos Sensibilizantes a Radiaciones/farmacología , Especies Reactivas de Oxígeno/metabolismo , Tiorredoxinas/antagonistas & inhibidores , Animales , Puntos de Control del Ciclo Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de la radiación , Hipoxia de la Célula/efectos de los fármacos , Hipoxia de la Célula/efectos de la radiación , Línea Celular Tumoral , Neoplasias Colorrectales/metabolismo , Daño del ADN , Glutatión/metabolismo , Humanos , Ratones , Consumo de Oxígeno/efectos de los fármacos , Consumo de Oxígeno/efectos de la radiación , Transducción de Señal/efectos de los fármacos , Transducción de Señal/efectos de la radiación , Tiorredoxinas/metabolismo
7.
Front Immunol ; 9: 2909, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30619273

RESUMEN

Immunotherapy, where the patient's own immune system is exploited to eliminate tumor cells, has become one of the most prominent new cancer treatment options in the last decade. The main hurdle for classical cancer vaccines is the need to identify tumor- and patient specific antigens to include in the vaccine. Therefore, in situ vaccination represents an alternative and promising approach. This type of immunotherapy involves the direct intratumoral administration of different immunomodulatory agents and uses the tumor itself as the source of antigen. The ultimate aim is to convert an immunodormant tumor microenvironment into an immunostimulatory one, enabling the immune system to eradicate all tumor lesions in the body. In this review we will give an overview of different strategies, which can be exploited for the immunomodulation of the tumor microenvironment and their emerging role in the treatment of cancer patients.


Asunto(s)
Inmunomodulación/inmunología , Inmunoterapia/métodos , Neoplasias/terapia , Microambiente Tumoral/inmunología , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/uso terapéutico , Humanos , Factores Inmunológicos/inmunología , Factores Inmunológicos/uso terapéutico , Neoplasias/inmunología , Fotoquimioterapia/métodos , Reproducibilidad de los Resultados , Microambiente Tumoral/efectos de los fármacos , Vacunación/métodos
8.
Front Pharmacol ; 9: 1073, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30337872

RESUMEN

Background and Purpose: The anti-diabetic biguanide drugs metformin and phenformin exhibit antitumor activity in various models. However, their radiomodulatory effect under hypoxic conditions, particularly for phenformin, is largely unknown. This study therefore examines whether metformin and phenformin as mitochondrial complex I blockades could overcome hypoxic radioresistance through inhibition of oxygen consumption. Materials and Methods: A panel of colorectal cancer cells (HCT116, DLD-1, HT29, SW480, and CT26) was exposed to metformin or phenformin for 16 h at indicated concentrations. Afterward, cell viability was measured by MTT and colony formation assays. Apoptosis and reactive oxygen species (ROS) were detected by flow cytometry. Phosphorylation of AMP-activated protein kinase (AMPK) was examined by western blot. Mitochondria complexes activity and oxygen consumption rate (OCR) were measured by seahorse analyzer. The radiosensitivity of tumor cells was assessed by colony formation assay under aerobic and hypoxic conditions. The in vitro findings were further validated in colorectal CT26 tumor model. Results: Metformin and phenformin inhibited mitochondrial complex I activity and subsequently reduced OCR in a dose-dependent manner starting at 3 mM and 30 µM, respectively. As a result, the hypoxic radioresistance of tumor cells was counteracted by metformin and phenformin with an enhancement ratio about 2 at 9 mM and 100 µM, respectively. Regarding intrinsic radioresistance, both of them did not exhibit any effect although there was an increase of phosphorylation of AMPK and ROS production. In tumor-bearing mice, metformin or phenformin alone did not show any anti-tumor effect. While in combination with radiation, both of them substantially delayed tumor growth and enhanced radioresponse, respectively, by 1.3 and 1.5-fold. Conclusion: Our results demonstrate that metformin and phenformin overcome hypoxic radioresistance through inhibition of mitochondrial respiration, and provide a rationale to explore metformin and phenformin as hypoxic radiosensitizers.

9.
Radiother Oncol ; 127(3): 361-369, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29871814

RESUMEN

The management of locally advanced rectal cancer has passed a long way of developments, where total mesorectal excision and preoperative radiotherapy are crucial to secure clinical outcome. These and other aspects of multidisciplinary strategies are in-depth summarized in the literature, while our mini-review pursues a different goal. From an ethical and medical standpoint, we witness a delayed implementation of novel therapies given the cost/time consuming process of organizing randomized trials that would bridge an already excellent local control in cT3-4 node-positive disease with long-term survival. This unfortunate separation of clinical research and medical care provides a strong motivation to repurpose known pharmaceuticals that suit for treatment intensification with a focus on distant control. In the framework of on-going phase II-III IG/IMRT-SIB trials, we came across an intriguing translational observation that the ratio of circulating (protumor) myeloid-derived suppressor cells to (antitumor) central memory CD8+ T cells is drastically increased, a possible mechanism of tumor immuno-escape and spread. This finding prompts that restoring the CD45RO memory T-cell pool could be a part of integrated adjuvant interventions. Therefore, the immunocorrective potentials of modified IL-2 and the anti-diabetic drug metformin are thoroughly discussed in the context of tumor immunobiology, mTOR pathways and revised Warburg effect.


Asunto(s)
Antineoplásicos/uso terapéutico , Linfocitos T CD8-positivos/inmunología , Metformina/uso terapéutico , Neoplasias del Recto/terapia , Quimioradioterapia/métodos , Neoplasias del Colon/inmunología , Neoplasias del Colon/cirugía , Neoplasias del Colon/terapia , Humanos , Inmunoterapia/métodos , Terapia Neoadyuvante , Estadificación de Neoplasias , Uso Fuera de lo Indicado , Cuidados Preoperatorios , Radioterapia de Intensidad Modulada/métodos , Neoplasias del Recto/inmunología , Neoplasias del Recto/cirugía , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Resultado del Tratamiento , Escape del Tumor/efectos de los fármacos
10.
Oncotarget ; 8(22): 35728-35742, 2017 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-28415723

RESUMEN

Auranofin (AF) is an anti-arthritic drug considered for combined chemotherapy due to its ability to impair the redox homeostasis in tumor cells. In this study, we asked whether AF may in addition radiosensitize tumor cells by targeting thioredoxin reductase (TrxR), a critical enzyme in the antioxidant defense system operating through the reductive protein thioredoxin. Our principal findings in murine 4T1 and EMT6 tumor cells are that AF at 3-10 µM is a potent radiosensitizer in vitro, and that at least two mechanisms are involved in TrxR-mediated radiosensitization. The first one is linked to an oxidative stress, as scavenging of reactive oxygen species (ROS) by N-acetyl cysteine counteracted radiosensitization. We also observed a decrease in mitochondrial oxygen consumption with spared oxygen acting as a radiosensitizer under hypoxic conditions. Overall, radiosensitization was accompanied by ROS overproduction, mitochondrial dysfunction, DNA damage and apoptosis, a common mechanism underlying both cytotoxic and antitumor effects of AF. In tumor-bearing mice, a simultaneous disruption of the thioredoxin and glutathione systems by the combination of AF and buthionine sulfoximine was shown to significantly improve tumor radioresponse. In conclusion, our findings illuminate TrxR in cancer cells as an exploitable radiobiological target and warrant further validation of AF in combination with radiotherapy.


Asunto(s)
Auranofina/farmacología , Tolerancia a Radiación/efectos de los fármacos , Fármacos Sensibilizantes a Radiaciones/farmacología , Especies Reactivas de Oxígeno/metabolismo , Reductasa de Tiorredoxina-Disulfuro/antagonistas & inhibidores , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Daño del ADN/efectos de los fármacos , Modelos Animales de Enfermedad , Glutatión/metabolismo , Hipoxia/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Oxidación-Reducción/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos , Reductasa de Tiorredoxina-Disulfuro/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA