Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chem Commun (Camb) ; (8): 877-9, 2006 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-16479297

RESUMEN

Transient absorption spectroscopy is employed to study electron transfer dynamics in dye sensitised solar cells employing a series of polymer electrolytes, and correlated with device current-voltage characteristics.

2.
ACS Appl Mater Interfaces ; 1(12): 2870-7, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20356169

RESUMEN

Polymer electrolytes based on mixtures of poly(ethylene oxide-co-propylene oxide) and 1-methyl-3-propyl-imidazolium iodide (MPII) were investigated, aiming at their application in dye-sensitized solar cells (DSSC). The interactions between the copolymer and the ionic liquid were analyzed by infrared spectroscopy and (1)H NMR. The results show interactions between the ether oxygen in the polymer and the hydrogen in the imidazolium cations. The ionic conductivities, electrochemical behaviors, and thermal properties of the electrolytes containing different concentrations of MPII were investigated. The electrolyte containing 70 wt % MPII presented the highest ionic conductivity (2.4 x 10(-3) S cm(-1)) and a diffusion coefficient of 1.9 x 10(-7) cm(2) s(-1). The influence of LiI addition to the electrolytes containing different concentrations of MPII was also investigated. The DSSC assembled with the electrolyte containing 70 wt % MPII showed an efficiency of 3.84% at 100 mW cm(-2). The stability of the devices for a period of 30 days was also evaluated using sealed cells. The devices assembled with the electrolyte containing less ionic liquid showed to be more stable.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA