Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Opt Express ; 30(11): 19343-19359, 2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-36221715

RESUMEN

We theoretically investigate the noise properties of harmonic cavity nanolasers by introducing a model of coupled equations of evolution of the modes, taking spontaneous emission into account. This model is used to predict the noise among the nanolaser Hermite-Gaussian modes, both in continuous wave and mode-locked regimes. In the first case, the laser noise is described in terms of noise modes, thus illustrating the role of the laser dynamics. In the latter case, this leads to the calculation of the fluctuations of the pulse train parameters. The influence of the different laser parameters, including the amount of saturated absorption and the Henry factors, on the noise of the mode-locked regime is discussed in details.

2.
Opt Express ; 29(4): 5782-5794, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33726110

RESUMEN

We theoretically analyze the robustness to potential distortion of mode-locking in a harmonic cavity nanolaser sustaining oscillation of Hermite-Gaussian modes. Different types of imperfections of the harmonic potential that create the Hermite-Gaussian modes are considered: the non-parabolicity of the potential and the possible random errors in the shape of the potential. The influence of the different laser parameters, including the Henry factors of the gain medium and the saturable absorber, on the robustness of the mode-locked regime is discussed in detail.

3.
Opt Lett ; 46(7): 1490-1493, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33793472

RESUMEN

We theoretically and experimentally investigate type II second harmonic generation in III-V-on-insulator wire waveguides. We show that the propagation direction plays a crucial role and that longitudinal field components can be leveraged for robust and efficient conversion. We predict that the maximum theoretical conversion is larger than that of type I second harmonic generation for similar waveguide dimensions and reach an experimental conversion efficiency of 12%/W, limited by the propagation loss.

4.
Phys Rev Lett ; 123(23): 233901, 2019 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-31868482

RESUMEN

Mode locking is predicted in a nanolaser cavity forming an effective photonic harmonic potential. The cavity is substantially more compact than a Fabry-Perot resonator with a comparable pulsing period, which is here controlled by the potential. In the limit of instantaneous gain and absorption saturation, mode locking corresponds to a stable dissipative soliton, which is very well approximated by the coherent state of a quantum mechanical harmonic oscillator. This property is robust against noninstantaneous material response and nonzero phase-intensity coupling.

5.
Nano Lett ; 18(10): 6515-6520, 2018 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-30252485

RESUMEN

Generating and amplifying light in silicon (Si) continues to attract significant attention due to the possibility of integrating optical and electronic components in a single material platform. Unfortunately, silicon is an indirect band gap material and therefore an inefficient emitter of light. With the rise of integrated photonics, the search for silicon-based light sources has evolved from a scientific quest to a major technological bottleneck for scalable, CMOS-compatible, light sources. Recently, emerging two-dimensional materials have opened the prospect of tailoring material properties based on atomic layers. Few-layer phosphorene, which is isolated through exfoliation from black phosphorus (BP), is a great candidate to partner with silicon due to its layer-tunable direct band gap in the near-infrared where silicon is transparent. Here we demonstrate a hybrid silicon optical emitter composed of few-layer phosphorene nanomaterial flakes coupled to silicon photonic crystal resonators. We show single-mode emission in the telecommunications band of 1.55 µm ( Eg = 0.8 eV) under continuous wave optical excitation at room temperature. The solution-processed few-layer BP flakes enable tunable emission across a broad range of wavelengths and the simultaneous creation of multiple devices. Our work highlights the versatility of the Si-BP material platform for creating optically active devices in integrated silicon chips.

6.
Opt Express ; 26(16): 20868-20877, 2018 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-30119393

RESUMEN

A two dimensional photonic crystal (PhC) resonator, based on a recent design concept, entirely embedded in Silica, is fabricated in a CMOS full-process multiproject wafer, including additional steps such as implantation, metalization, Germanium deposition and planarization. A large loaded Q-factor (5.9 × 105) is achieved without removal of the silica cladding. A statistical analysis over 56 devices leads to an average value for the loaded Q of 4 × 105, in close agreement with calculations. An upper boundary for the fabrication disorder is estimated to 1.2 nm.

7.
Opt Express ; 26(5): 6400-6406, 2018 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-29529832

RESUMEN

We demonstrate that conformal encapsulation using atomic layer deposition of GaAs nano-cavity resonator made of photonic crystal cavity prevents photo-induced oxidation. This improvement allows injecting a large quantity of energy in the resonator without any degradation of the material, thus enabling spectral stability of the resonance. We prove second harmonic and third harmonic generation over more than one decade of pump power variation, thanks to this encapsulation, with a total efficiency (ηSHG = 8.3 × 10-5 W-1 and ηTHG = 1.2 × 10-3 W-2 ) and a large net output energy for both operations (PSHGout=0.2nW and PTHGout=8pW).

8.
Opt Express ; 25(5): 4598-4606, 2017 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-28380731

RESUMEN

Weakly coupled high-Q nanophotonic cavities are building blocks of slow-light waveguides and other nanophotonic devices. Their functionality critically depends on tuning as resonance frequencies should stay within the bandwidth of the device. Unavoidable disorder leads to random frequency shifts which cause localization of the light in single cavities. We present a new method to finely tune individual resonances of light in a system of coupled nanocavities. We use holographic laser-induced heating and address thermal crosstalk between nanocavities using a response matrix approach. As a main result we observe a simultaneous anticrossing of 3 nanophotonic resonances, which were initially split by disorder.

9.
Opt Lett ; 42(3): 599-602, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-28146537

RESUMEN

Heat dissipation is improved in nonlinear III-V photonic crystal waveguides owing to the hybrid III-V/Silicon integration platform, allowing efficient four-wave mixing in the continuous-wave regime. A conversion efficiency of -17.6 dB is demonstrated with a pump power level below 100 mW in a dispersion-engineered waveguide with a flat group index of 28 over a 10 nm bandwidth.

10.
Opt Lett ; 42(4): 795-798, 2017 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-28198867

RESUMEN

We demonstrated a twofold acceleration of the fast time constant characterizing the recovery of a p-doped indium-phosphide photonic crystal all-optical gate. Time-resolved spectral analysis is compared to a three-dimensional drift-diffusion model for the carrier dynamics, demonstrating the transition from the ambipolar to the faster minority carrier dominated diffusion regime. This opens the perspective for faster yet efficient nanophotonic all-optical gates.

11.
Appl Opt ; 56(11): 3219-3222, 2017 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-28414384

RESUMEN

Ga0.51In0.49P is a promising candidate for thermally tunable nanophotonic devices due to its low thermal conductivity. In this work we study its thermo-optical response. We obtain the linear thermo-optical coefficient dn/dT=2.0±0.3·10-4 K-1 by investigating the transmission properties of a single mode-gap photonic crystal nanocavity.

12.
Opt Express ; 24(19): 21939-47, 2016 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-27661928

RESUMEN

Near the band edge of photonic crystal waveguides, localized modes appear due to disorder. We demonstrate a new method to elucidate spatial profile of the localized modes in such systems using precise local tuning. Using deconvolution with the known thermal profile, the spatial profile of a localized mode with quality factor (Q) > 105 is successfully reconstructed with a resolution of 2.5 µm.

13.
Opt Express ; 23(19): 24163-70, 2015 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-26406622

RESUMEN

A compact (15µm × 15µm) and highly-optimized 2×2 optical switch is demonstrated on a CMOS-compatible photonic crystal technology. On-chip insertion loss are below 1 dB, static and dynamic contrast are 40 dB and >20 dB respectively. Owing to efficient thermo-optic design, the power consumption is below 3 mW while the switching time is 1 µs.

14.
Opt Express ; 23(4): 4650-7, 2015 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-25836502

RESUMEN

We propose high index contrast InGaP photonic wires as a platform for the integration of nonlinear optical functions in the telecom wavelength window. We characterize the linear and nonlinear properties of these waveguide structures. Waveguides with a linear loss of 12 dB/cm and which are coupled to a single mode fiber through gratings with a -7.5 dB coupling loss are realized. From four wave mixing experiments, we extract the real part of the nonlinear parameter γ to be 475 ± 50 W(-1)m(-1) and from nonlinear transmission measurements we infer the absence of two-photon absorption and measure a three-photon absorption coefficient of (2.5 ± 0.5) x 10(-2) cm(3)GW(-2).

15.
Opt Lett ; 40(19): 4488-91, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26421563

RESUMEN

The dispersion of a coupled resonator optical waveguide made of photonic crystal mode-gap cavities is pronouncedly asymmetric. This asymmetry cannot be explained by the standard tight binding model. We show that the fundamental cause of the asymmetric dispersion is the inherent dispersive cavity mode profile; i.e., the mode wave function depends on the driving frequency, not the eigenfrequency. This occurs because the photonic crystal cavity resonances do not form a complete set. We formulate a dispersive mode coupling model that accurately describes the asymmetric dispersion without introducing any new free parameters.

16.
Opt Lett ; 40(15): 3584-7, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26258363

RESUMEN

We demonstrate the generation of an octave-spanning supercontinuum in InGaP membrane waveguides on a silicon substrate pumped by a 1550-nm femtosecond source. The broadband nature of the supercontinuum in these dispersion-engineered high-index-contrast waveguides is enabled by dispersive wave generation on both sides of the pump as well as by the low nonlinear losses inherent to the material. We also measure the coherence properties of the output spectra close to the pump wavelength and find that the supercontinuum is highly coherent at least in this wavelength range.

17.
Opt Express ; 21(8): 10324-34, 2013 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-23609742

RESUMEN

Collection of free carriers is a key issue in silicon photonics devices. We show that a lateral metal-semiconductor-metal Schottky junction is an efficient and simple way of dealing with that issue in a photonic crystal microcavity. Using a simple electrode design, and taking into account the optical mode profile, the resulting carrier distribution in the structure is calculated. We show that the corresponding effective free carrier lifetime can be reduced by 50 times when the bias is tuned. This allows one to maintain a high cavity quality factor under strong optical injection. In the fabricated structures, carrier depletion is correlated with transmission spectra and directly visualized by Electron Beam Induced Current pictures. These measurements demonstrate the validity of this carrier extraction principle. The design can still be optimized in order to obtain full carrier depletion at a smaller energy cost.


Asunto(s)
Semiconductores , Silicio/química , Resonancia por Plasmón de Superficie/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Miniaturización , Fotones
18.
Opt Express ; 21(25): 31047-61, 2013 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-24514679

RESUMEN

The dynamical properties of an InP photonic crystal nanocavity are experimentally investigated using pump-probe techniques and compared to simulations based on coupled-mode theory. Excellent agreement between experimental results and simulations is obtained when employing a rate equation model containing three time constants, that we interpret as the effects of fast carrier diffusion from an initially localized carrier distribution and the slower effects of surface recombination and bulk recombination. The variation of the time constants with parameters characterizing the nanocavity structure is investigated. The model is further extended to evaluate the importance of the fast and slow carrier relaxation processes in relation to patterning effects in the device, as exemplified by the case of all-optical wavelength conversion.

19.
Opt Lett ; 38(20): 4244-7, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24321970

RESUMEN

We present theory and measurements of disorder-induced losses for low loss 1.5 mm long slow light photonic crystal waveguides. A recent class of dispersion engineered waveguides increases the bandwidth of slow light and shows lower propagation losses for the same group index. Our theory and experiments explain how Bloch mode engineering can substantially reduce scattering losses for the same slow light group velocity regime.

20.
Opt Lett ; 38(5): 649-51, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23455253

RESUMEN

In this Letter we demonstrate heralded single-photon generation in a III-V semiconductor photonic crystal platform through spontaneous four-wave mixing. We achieve a high brightness of 3.4×10(7) pairs·s(-1) nm(-1) W(-1) facilitated through dispersion engineering and the suppression of two-photon absorption in the gallium indium phosphide material. Photon pairs are generated with a coincidence-to-accidental ratio over 60 and a low g(2) (0) of 0.06 proving nonclassical operation in the single photon regime.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA