Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Anal Chem ; 96(16): 6398-6407, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38593450

RESUMEN

Method development in online comprehensive two-dimensional liquid chromatography (LC × LC) requires the selection of a large number of experimental parameters. The complexity of this process has led to several computer-based LC × LC optimization algorithms being developed to facilitate LC × LC method development. One particularly relevant challenge for predictive optimization software is to accurately model the effect of second dimension (2D) injection band broadening under sample solvent mismatch and/or sample volume overload conditions. We report a novel methodology that combines a chromatographic numerical simulation model capable of predicting elution profiles of analytes under conditions where peak distortion occurs with a predictive multiparameter Pareto optimization approach for online LC × LC. Preliminary method optimization is performed using a theoretical model to predict 2D injection profiles, and optimal experimental configurations obtained from the Pareto fronts are then subjected to further optimization using the simulation model. This approach drastically reduces the number of simulations and therefore the computational demand. We show that the optimal experimental conditions obtained in this manner are similar to those obtained using a complete optimization using only the simulation model. Online HILIC × RP-LC separation of phenolic compounds was used to compare experimental data to simulated two- and three-dimensional contour plots. The main advantage of the proposed approach is the ability to predict the formation of split or deformed peaks in the 2D, a significant benefit in online LC × LC method optimization, especially for separation combinations with mismatched mobile phases. A further benefit is that simulated elution profiles can be used for the visualization of predicted two-dimensional chromatograms for method selection.

2.
J Sci Food Agric ; 103(12): 5697-5708, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37078979

RESUMEN

BACKGROUND: The shelf-life of a functional herbal tea-based beverage is important not only for consumer acceptability, but also for the retention of bioactive compounds. The present study aimed to clarify the role of common iced tea beverage ingredients (citric and ascorbic acids) on the shelf-life stability of an herbal tea-based beverage. A hot water extract of green Cyclopia subternata, also used as honeybush tea, was selected as the main ingredient because it provides different types of phenolic compounds associated with bioactive properties (i.e. xanthones, benzophenones, flavanones, flavones and dihydrochalcones). RESULTS: The model solutions were stored for 180 and 90 days at 25 and 40 °C, respectively. Changes in their volatile profiles and color were also quantified as they contribute to product quality. 3',5'-Di-ß-d-glucopyranosyl-3-hydroxyphloretin (HPDG; dihydrochalcone) and, to a lesser extent, mangiferin (xanthone), were the most labile compounds. Both compounds were thus identified as critical quality indicators to determine shelf-life. The stability-enhancing activity of the acids depended on the compound; ascorbic acid and citric acid enhanced the stability of HPDG and mangiferin, respectively. However, when considering all the major phenolic compounds, the base solution without acids was the most stable. This was also observed for the color and major volatile aroma-active compounds [α-terpineol, (E)-ß-damascenone, 1-p-menthen-9-al and trans-ocimenol]. CONCLUSION: The addition of acids, added for stability and taste in ready-to-drink iced tea beverages, could thus have unwanted consequences in that they could accelerate compositional changes and shorten the shelf-life of polyphenol-rich herbal tea beverages. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Fabaceae , Tés de Hierbas , Xantonas , Tés de Hierbas/análisis , Fabaceae/química , Bebidas/análisis , Fenoles/química , Ácido Ascórbico/química , , Extractos Vegetales/química
3.
Anal Chem ; 94(48): 16728-16737, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36440685

RESUMEN

In comprehensive two-dimensional liquid chromatography (LC × LC), solvents of high eluotropic strength are frequently used in the first dimension (1D), which lead to peak broadening in the second dimension (2D). In the majority of the current LC × LC column combinations, analytes are less than optimally refocused upon transfer to the second column, which negatively affects sensitivity. Furthermore, the typical combination of 1 or 2.1 mm columns in the 1D paired with a 3 mm (or broader) column in the 2D leads to at least a 9- or 4-fold dilution and a corresponding loss of sensitivity when using concentration-sensitive detectors. This occurs due to the enhanced radial dilution of the analytes in a broader column, while the sensitivity problem is further exacerbated in LC × LC due to the high flow operated 2D. In this paper, we introduce a solution to neutralize and inverse this dilution problem through a reconcentrating solution using temperature-responsive liquid chromatography (TRLC) in the 1D, which is a purely aqueous separation mode. Full solute refocusing at the 2D column head is thereby obtained when TRLC is combined with reversed-phase liquid chromatography (RPLC). This is shown for the combination of a 2.1 mm I.D. TRLC column with decreasing RPLC column diameters (3-2.1-1 mm) operated at the same linear velocities, hence a resulting decrease in dilution, respectively. Ultraviolet (UV) and electrospray ionization time-of-flight mass spectrometry (ESI-TOF-MS) detection were used to determine the experimental detection limits. Sensitivity improvements with UV detection were somewhat lower than expected, but represent ∼1.5- and 3-fold sensitivity enhancement when using a 1 mm I.D. column compared to 2.1 or 3 mm I.D. columns in the 2D, respectively. This is attributed to extra-column dispersion and the poorer performance of 1 mm I.D. columns. A major benefit of the use of 1 mm I.D. columns in the 2D is that it allows split-free coupling of 2D effluent with ESI-MS (at 450 µL/min), making the coupling robust and simple. When using ESI-MS even better, albeit more variable, sensitivity enhancements were obtained on the narrower columns. The benefits of the methodology are demonstrated for paraben test solutes and for phenolic compounds in a blueberry extract by TRLC × RPLC-UV-ESI-TOF-MS.


Asunto(s)
Cromatografía de Fase Inversa , Espectrometría de Masa por Ionización de Electrospray , Temperatura , Cromatografía Liquida/métodos , Cromatografía de Fase Inversa/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos , Solventes/química
4.
Electrophoresis ; 42(4): 473-481, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33188545

RESUMEN

Rugged analytical methods for the screening and identity confirmation of anthocyanins require a dedicated sample preparation, chromatographic setup, and the reliable generation of multiple identification points to confirm identity against the wide range of phenolic compounds typically present in food, beverage, and plant material samples. To this end, combinations of spectroscopic and mass spectrometric detection are frequently employed for this application to provide higher confidence in the absence of authentic standards. In the present work, low-field drift tube ion mobility (DTIM) separation is evaluated for this task using a LC-DAD-DTIM-QTOFMS method. DTIM-MS allows accurate determination of collision cross sections (DT CCS) for all analysed compounds as well as a precise alignment tool for reconciling fragment and precursor ions in data independent acquisition mode. The presented approach thereby allows for an anthocyanin screening method taking true advantage of all dimensions of the analytical platform: relative retention (RPLC), UV/VIS absorption spectrum, accurate mass, DT CCSN2 , and confirmed high-resolution fragment ions. From the analysis of authentic standards and several berry samples primarily from the Vaccinium genus, Level 1 confirmation data for six anthocyanins from the cyanidin family, and Level 2 confirmation for a further 29 anthocyanins confirmed in berry samples is provided. The method and accompanying dataset provided as part of this work provides a means to develop anthocyanin screening methods using the ion mobility dimension as an additional alignment and filtering parameter in data independent analysis acquisition across any LC-IM-MS platform.


Asunto(s)
Antocianinas/análisis , Frutas/química , Vaccinium/química , Cromatografía Liquida , Espectrometría de Masas/métodos , Ribes/química , Rubus/química
5.
Phytochem Anal ; 32(3): 347-361, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-32803806

RESUMEN

INTRODUCTION: The minor phenolic constituents of Cyclopia pubescens Eckl. & Zeyh. are unknown and one dimensional (1D) liquid chromatography (LC) is unable to provide sufficient separation. METHODOLOGY: A two-dimensional (2D) LC method incorporating normal-phasehigh performance countercurrent chromatography (NP-HPCCC) in the first dimension (1 D) and reversed-phase ultra-high-performance liquid chromatography (RP-UHPLC) as the second dimension (2 D) was developed. The analytical HPCCC method was subsequently scaled up to semi-preparative mode and fractions pooled based on phenolic sub-groups. The phenolic compounds in selected fractions were subsequently isolated using RP-HPLC on a C18 column. Isolated compounds were identified by nuclear magnetic resonance (NMR) spectroscopy. The absolute configurations of compounds were determined by optical rotation and electronic circular dichroism spectra. Sugars were identified by gas chromatography-mass spectrometry (GC-MS) analysis. RESULTS: The comprehensive off-line 2D CCC × LC method gave a good spread of the phenolic compounds. Orthogonality calculated using both the convex hull and conditional entropy methods were 81%. High-resolution mass spectrometric fragmentation spectra obtained from a quadrupole-time-of-flight instrument and ultraviolet-visible (UV-vis) spectral data were used to (tentatively) identify 32 phenolic compounds from the analytical CCC fractions. Of the seven isolated compounds, (2S)-5-O-[α-l-rhamnopyranosyl-(1 → 2)-ß-d-glucopyranosyl]eriodictyol (3) and (2S)-5-O-[α-l-rhamnopyranosyl-(1 → 2)-ß-d-glucopyranosyl]-5,7,3',4'-tetrahydroxyflavan (4) were newly identified in all plants. The other isolated compounds were identified as (2S)-5-O-[α-l-rhamnopyranosyl-(1 → 2)-ß-d-glucopyranosyl]naringenin (1), R-neo-eriocitrin (2), 3-O-α-l-arabinopyranosyl-3,4-dihydroxybenzoic acid (5), 4-O-ß-d-glucopyranosyl-Z-4-hydroxycinnamic acid (6) and 4-(4'-O-ß-d-glucopyranosyl-4'-hydroxy-3'-methoxyphenyl)-2-butanone (7). CONCLUSIONS: Among the 32 compounds (tentatively) identified, only six were previously identified in Cyclopia pubescens using 1D LC. Most of the isolated compounds were also identified for the first time in Cyclopia spp., improving the knowledge of the minor phenolic compounds of this genus.


Asunto(s)
Cromatografía de Fase Inversa , Distribución en Contracorriente , Cromatografía Liquida , Cromatografía de Gases y Espectrometría de Masas , Holoprosencefalia
6.
Molecules ; 26(17)2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34500693

RESUMEN

Green rooibos extract (GRE), shown to improve hyperglycemia and HDL/LDL blood cholesterol, has potential as a nutraceutical beverage ingredient. The main bioactive compound of the extract is aspalathin, a C-glucosyl dihydrochalcone. The study aimed to determine the effect of common iced tea ingredients (citric acid, ascorbic acid, and xylitol) on the stability of GRE, microencapsulated with inulin for production of a powdered beverage. The stability of the powder mixtures stored in semi-permeable (5 months) and impermeable (12 months) single-serve packaging at 30 °C and 40 °C/65% relative humidity was assessed. More pronounced clumping and darkening of the powders, in combination with higher first order reaction rate constants for dihydrochalcone degradation, indicated the negative effect of higher storage temperature and an increase in moisture content when stored in the semi-permeable packaging. These changes were further increased by the addition of crystalline ingredients, especially citric acid monohydrate. The sensory profile of the powders (reconstituted to beverage strength iced tea solutions) changed with storage from a predominant green-vegetal aroma to a fruity-sweet aroma, especially when stored at 40 °C/65% RH in the semi-permeable packaging. The change in the sensory profile of the powder mixtures could be attributed to a decrease in volatile compounds such as 2-hexenal, (Z)-2-heptenal, (E)-2-octenal, (E)-2-nonenal, (E,Z)-2,6-nonadienal and (E)-2-decenal associated with "green-like" aromas, rather than an increase in fruity and sweet aroma-impact compounds. Green rooibos extract powders would require storage at temperatures ≤ 30 °C and protection against moisture uptake to be chemically and physically shelf-stable and maintain their sensory profiles.


Asunto(s)
Aspalathus/química , Bebidas/análisis , Té/química , Compuestos Orgánicos Volátiles/química
7.
Org Biomol Chem ; 18(40): 8147-8160, 2020 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-33016969

RESUMEN

The fungal metabolite sphaeropsidin A (SphA) has been recognised for its promising cytotoxicity, particularly towards apoptosis- and multidrug-resistant cancers. Owing to its intriguing activity, the development of SphA as a potential anticancer agent has been pursued. However, this endeavour is compromised since SphA exhibits poor physicochemical stability under physiological conditions. Herein, SphA's instability in biological media was explored utilizing LC-MS. Notably, the degradation tendency was found to be markedly enhanced in the presence of amino acids in the cell medium utilized. Furthermore, the study investigated the presence of degradation adducts, including the identification, isolation and structural elucidation of a major degradation metabolite, (4R)-4,4',4'-trimethyl-3'-oxo-4-vinyl-4',5',6',7'-tetrahydro-3'H-spiro[cyclohexane-1,1'-isobenzofuran]-2-ene-2-carboxylic acid. Considering the reduced cytotoxic potency of aged SphA solutions, as well as that of the isolated degradation metabolite, the reported antiproliferative activity has been attributed primarily to the parent compound (SphA) and not its degradation species. The fact that SphA continues to exhibit remarkable bioactivity, despite being susceptible to degradation, motivates future research efforts to address the challenges associated with this instability impediment.


Asunto(s)
Diterpenos
8.
Anal Bioanal Chem ; 411(24): 6329-6341, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31222409

RESUMEN

Reversed-phase liquid chromatography (RP-LC) and hydrophilic interaction chromatography (HILIC) methods hyphenated to diode array detection and ion mobility (IM) high-resolution mass spectrometry (HR-MS) were used for the analysis of gallic acid derivatives and gallotannins in a commercial tara extract. UV spectra combined with low and high-collision energy mass spectral data and known RP-LC elution orders allowed the identification of 45 isomeric gallic acid derivatives and gallotannins. The synergy between IM and UV data was found to provide a simple means to determine the number of depsidic bonds and thus to distinguish between positional isomers. IM also facilitated the assignment of individual isomeric species between HILIC and RP-LC separations. For the hydrolysable tannins present in tara, RP-LC provided superior resolution and specificity compared to HILIC. The results reported in this paper highlight the utility of IM in combination with optimised complementary chromatographic separations and HR-MS for the detailed qualitative analysis of hydrolysable tannins in complex mixtures of these compounds. Graphical abstract.


Asunto(s)
Cromatografía de Fase Inversa/métodos , Taninos Hidrolizables/análisis , Espectrometría de Movilidad Iónica/métodos , Espectrometría de Masas/métodos , Gomas de Plantas/química , Taninos Hidrolizables/química , Interacciones Hidrofóbicas e Hidrofílicas
9.
Anal Chem ; 90(8): 4961-4967, 2018 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-29551061

RESUMEN

Comprehensive two-dimensional liquid chromatography (LC × LC) allows for substantial gains in theoretical peak capacity in the field of liquid chromatography. However, in practice, theoretical performance is rarely achieved due to a combination of undersampling, orthogonality, and refocusing issues prevalent in many LC × LC applications. This is intricately linked to the column dimensions, flow rates, and mobile-phase compositions used, where, in many cases, incompatible or strong solvents are introduced in the second-dimension (2D) column, leading to peak broadening and the need for more complex interfacing approaches. In this contribution, the combination of temperature-responsive (TR) and reversed-phase (RP) LC is demonstrated, which, due to the purely aqueous mobile phase used in TRLC, allows for complete and more generic refocusing of organic solutes prior to the second-dimension RP separation using a conventional 10-port valve interface. Thus far, this was only possible when combining other purely aqueous modes such as ion exchange or gel filtration chromatography with RPLC, techniques which are limited to the analysis of charged or high MW solutes, respectively. This novel TRLC × RPLC combination relaxes undersampling constraints and complete refocusing and therefore offers novel possibilities in the field of LC × LC including temperature modulation. The concept is illustrated through the TRLC × RPLC analysis of mixtures of neutral organic solutes.

10.
Anal Chem ; 90(19): 11643-11650, 2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30193064

RESUMEN

Comprehensive two-dimensional liquid chromatography (LC × LC) and ion mobility spectrometry-mass spectrometry (IMS-MS) are increasingly being used to address challenges associated with the analysis of highly complex samples. In this work, we evaluate the potential of the combination of these techniques in the form of a comprehensive three-dimensional LC × LC × IMS separation system. As application, hydrophilic interaction chromatography (HILIC) × reversed phase LC (RP-LC) × IMS-high-resolution MS (HR-MS) was used to analyze a range of phenolic compounds, including hydrolyzable and condensed tannins, flavonoids, and phenolic acids in several natural products. A protocol for the extraction and visualization of the four-dimensional data obtained using this approach was developed. We show that the combination of HILIC, RP-LC, and IMS offers excellent separation of complex phenolic samples in three dimensions. Benefits associated with the incorporation of IMS include improved MS sensitivity and mass-spectral data quality. IMS also provided separation of trimeric procyanidin isomeric species that could not be differentiated by HILIC × RP-LC or HR-MS. On the traveling wave IMS (TWIMS) system used here, both IMS separation performance and the extent of second dimension (2D) undersampling depend on the upper mass scan limit, which might present a limitation for the analysis of larger molecular ions. The performance of the LC × LC × IMS system was characterized in terms of practical peak capacity and separation power, using established theory and taking undersampling and orthogonality into account. An average increase in separation performance by a factor of 13 was found for the samples analyzed here when IMS was incorporated into the HILIC × RP-LC-MS workflow.

11.
Electrophoresis ; 38(6): 897-905, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27921291

RESUMEN

Rooibos and honeybush are popular herbal teas produced from the shrubs of Aspalathus linearis and Cyclopia spp., respectively, which are indigenous to South Africa. Both herbal teas are rich in polyphenols and their consumption is associated with several health benefits, partly ascribed to their phenolic constituents. Quantification of phenolics in extracts and teas for quality control and research purposes is generally performed using HPLC, although dedicated and often species-specific methods are required. CE offers an attractive alternative to HPLC for the analysis of phenolics, with potential benefits in terms of efficiency, speed and operating costs. In this contribution, we report quantitative CZE methods for the analysis of the principal honeybush and rooibos phenolics. Optimal separation for honeybush and rooibos phenolics was achieved in 21 and 32 min, respectively, with good linearity and repeatability. Quantitative data for extracts of "unfermented" and "fermented" rooibos and two honeybush species were statistically comparable with those obtained by HPLC for the majority of compounds. The developed methods demonstrated their utility for the comparison of phenolic contents between different species and as a function of manufacturing processes, thus offering cost effective, although less sensitive and robust, alternatives to HPLC analysis.


Asunto(s)
Aspalathus/química , Electroforesis Capilar/métodos , Fabaceae/química , Fenoles/análisis , Tés de Hierbas/análisis , Cromatografía Líquida de Alta Presión/métodos , Fermentación , Calidad de los Alimentos , Humanos , Extractos Vegetales/análisis , Sudáfrica
12.
Anal Bioanal Chem ; 409(17): 4127-4138, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28417179

RESUMEN

The applicability of comprehensive two-dimensional gas chromatography (GC×GC) using a single-stage thermal modulator was explored for the analysis of honeybush tea (Cyclopia spp.) volatile compounds. Headspace solid phase micro-extraction (HS-SPME) was used in combination with GC×GC separation on a non-polar × polar column set with flame ionisation (FID) detection for the analysis of fermented Cyclopia maculata, Cyclopia subternata and Cyclopia genistoides tea infusions of a single harvest season. Method optimisation entailed evaluation of the effects of several experimental parameters on the performance of the modulator, the choice of columns in both dimensions, as well as the HS-SPME extraction fibre. Eighty-four volatile compounds were identified by co-injection of reference standards. Principal component analysis (PCA) showed clear differentiation between the species based on their volatile profiles. Due to the highly reproducible separations obtained using the single-stage thermal modulator, multivariate data analysis was simplified. The results demonstrate both the complexity of honeybush volatile profiles and the potential of GC×GC separation in combination with suitable data analysis techniques for the investigation of the relationship between sensory properties and volatile composition of these products. The developed method therefore offers a fast and inexpensive methodology for the profiling of honeybush tea volatiles. Graphical abstract Surface plot obtained for the GC×GC-FID analysis of honeybush tea volatiles.


Asunto(s)
Fabaceae/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Tés de Hierbas/análisis , Compuestos Orgánicos Volátiles/análisis , Cromatografía de Gases y Espectrometría de Masas/instrumentación , Análisis Multivariante , Análisis de Componente Principal , Microextracción en Fase Sólida/métodos , Temperatura
13.
Anal Chem ; 87(24): 12006-15, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26554292

RESUMEN

Changes in anthocyanin chemistry represent some of the most important transformations involved in red wine aging. However, accurate analysis of the derived pigments, as required to study the evolution of anthocyanins and tannins during aging, is hampered by their extreme structural diversity, low levels, and the fact that many of these compounds have identical mass spectral characteristics. In this context, chromatographic separation is critical. In this contribution, the application of online hydrophilic interaction chromatography (HILIC) × reversed-phase liquid chromatography (RP-LC) separation coupled to high-resolution mass spectrometry (MS) is described for the detailed characterization of anthocyanins and their derived pigments in aged red wine. A systematic approach was followed for the optimization of HILIC × RP-LC separation parameters using a capillary liquid chromatography (LC) system in the first dimension and an ultrahigh-pressure LC system in the second dimension to ensure maximum sensitivity and performance. Ninety four (94) anthocyanin-derived pigments were tentatively identified in one- and six-year-old Pinotage wines using accurate mass and fragmentation information obtained using quadrupole-time-of-flight mass spectrometry (Q-TOF-MS). Online HILIC × RP-LC-MS was found to offer high-resolution separation, because of the combination of two different separation modes, while the structured elution order observed improved the certainty in compound identification. Therefore, this approach shows promise for the detailed elucidation of the chemical alteration of anthocyanins during wine aging.


Asunto(s)
Antocianinas/análisis , Cromatografía Liquida , Cromatografía de Fase Inversa , Análisis de los Alimentos/métodos , Espectrometría de Masas , Pigmentos Biológicos/análisis , Vino/análisis , Interacciones Hidrofóbicas e Hidrofílicas
14.
J Sep Sci ; 38(5): 724-31, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25546718

RESUMEN

This paper reports the optimization of the on-line coupling of 2,2'-azinobis(3-ethylbenzothiazoline)-6-sulfonic acid based radical scavenging assays with reversed-phase high-performance liquid chromatography. The residence time in the reactor was reduced to 6.4 s to ensure minimal peak broadening and loss of separation. Peak capacity losses between compound detection and measurement of the radical scavenging potential were reduced to 10% and lower on coupled column systems. The methodology was successfully applied for the detection of the scavenging activity of molecules encompassing a broad hydrophobicity range. The method shows promise for the assessment of low-molecular-weight polyphenols in red wine by coupled-column high-resolution high-performance liquid chromatography with mass spectrometry analysis.

15.
Rapid Commun Mass Spectrom ; 28(5): 505-19, 2014 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-24497289

RESUMEN

RATIONALE: The speciation of the purely inorganic [PtCl6-n Brn](2-) (n = 0-6) anions and their corresponding mono-aquated [PtCl5-n Brn (H2O)](-) (n = 0-5) anions is of considerable importance to the precious metal refining and recycling industry, to ensure optimum recovery and separation efficiencies. Speciation of platinum complexes present in precursor solutions used for the preparation of precious metal nano-crystals of defined size and morphology appears also to be important. The various possible Pt(IV) complex anions in dilute aqueous can be characterized using ion-pairing reversed-phase high-performance liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-Q-TOFMS). METHODS: Ion-pairing reversed-phase ultra-high-performance LC separation of the Pt(IV) complex anions present in aqueous solutions prior to detection by means of high-resolution ESI-Q-TOFMS using a low ESI source cone voltage (5 V) allows for the clear identification of all the platinum complexes from the characteristic pattern of fragment ions (m/z), presumably generated by 'reductive conversion' in the ESI source of the mass spectrometer. Sufficient chromatographic resolution for the series of Pt(IV) complexes is achieved using the (n-butyl)3 NH(+) ion generated in a formic acid/water/methanol (pH ~3.5) mobile phase. This mobile phase composition facilitates a low-background for optimal ESI-Q-TOFMS detection with enhanced sensitivity. RESULTS: Direct-infusion mass spectrometry of the inorganic platinum complexes in aqueous solution is impractical due to their low volatility, but more importantly as a result of the very extensive series of fragment ions generated in the ESI source, which leads to virtually uninterpretable mass spectra. However, with prior separation, and by using low ESI cone voltages (5 V), the mass spectra of the separated analyte ions show simpler and systematic fragmentation patterns [Pt(IV) X5](-) → [Pt(III) X4 ](-) → [Pt(II) X3](-) → [Pt(I)X2 ](-) (X = Cl(-) and Br(-)), resulting in clear assignments. This methodology facilitates the characterization of the partially aquated [PtCl5-n Brn (H2O)](-) (n = 0-5) anions derived from the homo- and heteroleptic [PtCl6-n Brn](2-) (n = 0-6) anions, in equilibrated solutions at low concentrations. CONCLUSIONS: Speciation of homo- and heteroleptic [PtCl6-n Brn](2-) (n = 0-6) anions, together with some of their partially aquated [PtCl5-n Brn (H2O)](-) (n = 0-5) species in dilute solution, can successfully be carried out by means of prior ion-pairing reversed-phase LC separation coupled to high-resolution ESI-Q-TOFMS at low ESI cone-voltage settings.

16.
Anal Bioanal Chem ; 406(17): 4233-42, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24817360

RESUMEN

The on-line combination of comprehensive two-dimensional liquid chromatography (LC × LC) with the 2,2'-azino-bis(3-ethylbenzothiazoline)-6 sulphonic acid (ABTS) radical scavenging assay was investigated as a powerful method to determine the free radical scavenging activities of individual phenolics in natural products. The combination of hydrophilic interaction chromatography (HILIC) separation according to polarity and reversed-phase liquid chromatography (RP-LC) separation according to hydrophobicity is shown to provide much higher resolving power than one-dimensional separations, which, combined with on-line ABTS detection, allows the detailed characterisation of antioxidants in complex samples. Careful optimisation of the ABTS reaction conditions was required to maintain the chromatographic separation in the antioxidant detection process. Both on-line and off-line HILIC × RP-LC-ABTS methods were developed, with the former offering higher throughput and the latter higher resolution. Even for the fast analyses used in the second dimension of on-line HILIC × RP-LC, good performance for the ABTS assay was obtained. The combination of LC × LC separation with an on-line radical scavenging assay increases the likelihood of identifying individual radical scavenging species compared to conventional LC-ABTS assays. The applicability of the approach was demonstrated for cocoa, red grape seed and green tea phenolics.


Asunto(s)
Antioxidantes/análisis , Cacao/química , Técnicas de Química Analítica/métodos , Cromatografía de Fase Inversa/métodos , Fenoles/análisis , Extractos Vegetales/análisis , Té/química , Vitis/química , Benzotiazoles/análisis , Cromatografía Líquida de Alta Presión/métodos , Radicales Libres/análisis , Ácidos Sulfónicos/análisis
17.
Anal Chem ; 85(19): 9107-15, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23978274

RESUMEN

Despite the significant importance of tannins in viticulture and enology, relatively little is known about the detailed chemical composition of these molecules. This is due to challenges associated with the accurate analytical determination of the highly structurally diverse proanthocyanidins which comprise tannins. In this contribution, we address this limitation by demonstrating how online comprehensive two-dimensional liquid chromatography (LC × LC) coupled to high resolution mass spectrometry (HR-MS) can be exploited as a powerful analytical approach for the detailed characterization of grape seed tannins. Hydrophilic interaction chromatography (HILIC) and reversed-phase liquid chromatography (RP-LC) were employed in the two dimensions to provide complementary information in terms of separation according to hydrophilicity and hydrophobicity, respectively. Online coupling of HILIC × RP-LC with fluorescence detection and electrospray ionization MS delivered high resolution analysis in a practical analysis time, while allowing selective detection and facilitating compound identification. Time-of-flight (TOF) MS provided high acquisition rates and sensitivity coupled to accurate mass information, which allowed detection of procyanidins up to a degree of polymerization (DP) of 16 and a degree of galloylation up to 8 in a red grape seed extract. This analytical methodology promises to shed new light on these important grape constituents and potentially on their evolution during wine production.


Asunto(s)
Extracto de Semillas de Uva/química , Sistemas en Línea , Taninos/análisis , Taninos/química , Vitis/química , Cromatografía Liquida , Interacciones Hidrofóbicas e Hidrofílicas , Espectrometría de Masas , Factores de Tiempo
18.
J Chromatogr A ; 1692: 463843, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36780845

RESUMEN

The combination of hydrophilic interaction chromatography (HILIC) and reversed-phase liquid chromatography (RP-LC) has proved effective in the LC × LC analysis of polyphenols due to the high degree of orthogonality associated with these separation modes for various classes of phenolic compounds. However, despite the growing number of such applications, HILIC is almost exclusively used as the first dimension (1D) separation mode, and RP-LC in the second dimension (2D). This is somewhat surprising in light of the potential advantages of swapping these separation modes. In this contribution, we present a detailed evaluation of the potential of online RP-LC × HILIC-MS for the analysis of phenolic compounds, comparing the performance of this system to the more established HILIC × RP-LC-MS configuration. Method development was performed using a predictive optimisation program, and fixed solvent modulation was employed to combat the solvent incompatibility between HILIC and RP-LC mobile phases. Red wine, rooibos tea, Protea and chestnut phenolic extracts containing a large diversity of phenolic compound classes were analysed by both HILIC × RP-LC- and RP-LC × HILIC-MS in order to compare the separation performance. Overall, the kinetic performance of HILIC × RP-LC was found to be clearly superior, with higher peak capacities and better resolution obtained for the majority of samples compared to RP-LC × HILIC analyses using similar column dimensions. Dilution of the 1D solvent combined with large volume injections proved insufficient to focus especially phenolic acids in the 2D HILIC separation, which resulted in severe 2D peak distortion for these compounds, and negatively impacted on method performance. On the other hand, a noteworthy improvement in the sensitivity of RP-LC × HILIC-MS analyses was observed due to higher ESI-MS response for the 2D HILIC mobile phase and greater sample loading capacity of the 1D RP-LC column, brought on by the high solubility of phenolic samples in aqueous solutions. As a result, a significantly higher number of compounds were detected in the RP-LC × HILIC-MS separations. These findings point to the potential advantage of RP-LC × HILIC as a complementary configuration to HILIC × RP-LC for phenolic analysis.


Asunto(s)
Cromatografía de Fase Inversa , Fenoles , Cromatografía de Fase Inversa/métodos , Fenoles/análisis , Interacciones Hidrofóbicas e Hidrofílicas , Solventes
19.
J Chromatogr A ; 1705: 464223, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37487299

RESUMEN

Analytical data processing often requires the comparison of data, i.e. finding similarities and differences within separations. In this context, a peak-tracking algorithm was developed to compare multiple datasets in one-dimensional (1D) and two-dimensional (2D) chromatography. Two application strategies were investigated: i) data processing where all chromatograms are produced in one sequence and processed simultaneously, and ii) method optimization where chromatograms are produced and processed cumulatively. The first strategy was tested on data from comprehensive 2D liquid chromatography and comprehensive 2D gas chromatography separations of academic and industrial samples of varying compound classes (monoclonal-antibody digest, wine volatiles, polymer granulate headspace, and mayonnaise). Peaks were tracked in up to 29 chromatograms at once, but this could be upscaled when necessary. However, the peak-tracking algorithm performed less accurate for trace analytes, since, peaks that are difficult to detect are also difficult to track. The second strategy was tested with 1D liquid chromatography separations, that were optimized using automated method-development. The strategy for method optimization was quicker to detect peaks that were still poorly separated in earlier chromatograms compared to assigning a target chromatogram, to which all other chromatograms are compared. Rendering it a useful tool for automated method optimization.


Asunto(s)
Algoritmos , Análisis de Datos , Cromatografía Liquida/métodos , Cromatografía de Gases/métodos
20.
J Sep Sci ; 35(14): 1808-20, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22807363

RESUMEN

Rooibos tea is an unique beverage prepared from unfermented and fermented plant material of the endemic Cape fynbos plant, Aspalathus linearis. The well-known health-promoting benefits of rooibos are partly attributed to its phenolic composition. Detailed investigation of the minor phenolic constituents of rooibos is, however, hampered by the limitations associated with conventional HPLC methods used for its analysis. In this study, the applicability of comprehensive two-dimensional liquid chromatographic methods for the in-depth analysis of rooibos phenolics was investigated. Phenolic compounds were separated according to polarity by hydrophilic interaction chromatography (HILIC) in the first dimension, whilst reversed-phase liquid chromatography (RP-LC) provided separation according to hydrophobicity in the second dimension. Ultraviolet photodiode array and electrospray ionisation mass spectrometry were used to identify phenolic compounds. Comprehensive HILIC × RP-LC demonstrated its applicability for the analysis of a diverse range of phenolic compounds in unfermented and fermented rooibos samples, in which large qualitative differences in the phenolic composition were established. The combination of these orthogonal separations provided a significant improvement in resolution, as exemplified by practical peak capacities in excess of 2000 and 500 for off-line and on-line methods, respectively.


Asunto(s)
Aspalathus/química , Cromatografía Liquida/métodos , Fenoles/química , Extractos Vegetales/química , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA