Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(24): 5916-5931.e17, 2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34767757

RESUMEN

There is increasing interest in the potential contribution of the gut microbiome to autism spectrum disorder (ASD). However, previous studies have been underpowered and have not been designed to address potential confounding factors in a comprehensive way. We performed a large autism stool metagenomics study (n = 247) based on participants from the Australian Autism Biobank and the Queensland Twin Adolescent Brain project. We found negligible direct associations between ASD diagnosis and the gut microbiome. Instead, our data support a model whereby ASD-related restricted interests are associated with less-diverse diet, and in turn reduced microbial taxonomic diversity and looser stool consistency. In contrast to ASD diagnosis, our dataset was well powered to detect microbiome associations with traits such as age, dietary intake, and stool consistency. Overall, microbiome differences in ASD may reflect dietary preferences that relate to diagnostic features, and we caution against claims that the microbiome has a driving role in ASD.


Asunto(s)
Trastorno Autístico/microbiología , Conducta Alimentaria , Microbioma Gastrointestinal , Adolescente , Factores de Edad , Trastorno Autístico/diagnóstico , Conducta , Niño , Preescolar , Heces/microbiología , Femenino , Humanos , Masculino , Fenotipo , Filogenia , Especificidad de la Especie
3.
Cereb Cortex ; 34(3)2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38494418

RESUMEN

Listeners can use prior knowledge to predict the content of noisy speech signals, enhancing perception. However, this process can also elicit misperceptions. For the first time, we employed a prime-probe paradigm and transcranial magnetic stimulation to investigate causal roles for the left and right posterior superior temporal gyri (pSTG) in the perception and misperception of degraded speech. Listeners were presented with spectrotemporally degraded probe sentences preceded by a clear prime. To produce misperceptions, we created partially mismatched pseudo-sentence probes via homophonic nonword transformations (e.g. The little girl was excited to lose her first tooth-Tha fittle girmn wam expited du roos har derst cooth). Compared to a control site (vertex), inhibitory stimulation of the left pSTG selectively disrupted priming of real but not pseudo-sentences. Conversely, inhibitory stimulation of the right pSTG enhanced priming of misperceptions with pseudo-sentences, but did not influence perception of real sentences. These results indicate qualitatively different causal roles for the left and right pSTG in perceiving degraded speech, supporting bilateral models that propose engagement of the right pSTG in sublexical processing.


Asunto(s)
Lenguaje , Habla , Humanos , Femenino , Habla/fisiología , Lóbulo Temporal , Estimulación Magnética Transcraneal , Ruido
4.
Hum Brain Mapp ; 45(8): e26717, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38798116

RESUMEN

Twin studies have found gross cerebellar volume to be highly heritable. However, whether fine-grained regional volumes within the cerebellum are similarly heritable is still being determined. Anatomical MRI scans from two independent datasets (QTIM: Queensland Twin IMaging, N = 798, mean age 22.1 years; QTAB: Queensland Twin Adolescent Brain, N = 396, mean age 11.3 years) were combined with an optimised and automated cerebellum parcellation algorithm to segment and measure 28 cerebellar regions. We show that the heritability of regional volumetric measures varies widely across the cerebellum ( h 2 $$ {h}^2 $$ 47%-91%). Additionally, the good to excellent test-retest reliability for a subsample of QTIM participants suggests that non-genetic variance in cerebellar volumes is due primarily to unique environmental influences rather than measurement error. We also show a consistent pattern of strong associations between the volumes of homologous left and right hemisphere regions. Associations were predominantly driven by genetic effects shared between lobules, with only sparse contributions from environmental effects. These findings are consistent with similar studies of the cerebrum and provide a first approximation of the upper bound of heritability detectable by genome-wide association studies.


Asunto(s)
Cerebelo , Imagen por Resonancia Magnética , Adolescente , Niño , Humanos , Adulto Joven , Cerebelo/diagnóstico por imagen , Cerebelo/anatomía & histología , Tamaño de los Órganos , Gemelos Monocigóticos
5.
Hum Brain Mapp ; 45(10): e26768, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38949537

RESUMEN

Structural neuroimaging data have been used to compute an estimate of the biological age of the brain (brain-age) which has been associated with other biologically and behaviorally meaningful measures of brain development and aging. The ongoing research interest in brain-age has highlighted the need for robust and publicly available brain-age models pre-trained on data from large samples of healthy individuals. To address this need we have previously released a developmental brain-age model. Here we expand this work to develop, empirically validate, and disseminate a pre-trained brain-age model to cover most of the human lifespan. To achieve this, we selected the best-performing model after systematically examining the impact of seven site harmonization strategies, age range, and sample size on brain-age prediction in a discovery sample of brain morphometric measures from 35,683 healthy individuals (age range: 5-90 years; 53.59% female). The pre-trained models were tested for cross-dataset generalizability in an independent sample comprising 2101 healthy individuals (age range: 8-80 years; 55.35% female) and for longitudinal consistency in a further sample comprising 377 healthy individuals (age range: 9-25 years; 49.87% female). This empirical examination yielded the following findings: (1) the accuracy of age prediction from morphometry data was higher when no site harmonization was applied; (2) dividing the discovery sample into two age-bins (5-40 and 40-90 years) provided a better balance between model accuracy and explained age variance than other alternatives; (3) model accuracy for brain-age prediction plateaued at a sample size exceeding 1600 participants. These findings have been incorporated into CentileBrain (https://centilebrain.org/#/brainAGE2), an open-science, web-based platform for individualized neuroimaging metrics.


Asunto(s)
Envejecimiento , Encéfalo , Imagen por Resonancia Magnética , Humanos , Adolescente , Femenino , Anciano , Adulto , Niño , Adulto Joven , Masculino , Encéfalo/diagnóstico por imagen , Encéfalo/anatomía & histología , Encéfalo/crecimiento & desarrollo , Anciano de 80 o más Años , Preescolar , Persona de Mediana Edad , Envejecimiento/fisiología , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos , Neuroimagen/normas , Tamaño de la Muestra
6.
J Cogn Neurosci ; 35(1): 111-127, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36306259

RESUMEN

Most of our knowledge about the neuroanatomy of speech errors comes from lesion-symptom mapping studies in people with aphasia and laboratory paradigms designed to elicit primarily phonological errors in healthy adults, with comparatively little evidence from naturally occurring speech errors. In this study, we analyzed perfusion fMRI data from 24 healthy participants during a picture naming task, classifying their responses into correct and different speech error types (e.g., semantic, phonological, omission errors). Total speech errors engaged a wide set of left-lateralized frontal, parietal, and temporal regions that were almost identical to those involved during the production of correct responses. We observed significant perfusion signal decreases in the left posterior middle temporal gyrus and inferior parietal lobule (angular gyrus) for semantic errors compared to correct trials matched on various psycholinguistic variables. In addition, the left dorsal caudate nucleus showed a significant perfusion signal decrease for omission (i.e., anomic) errors compared with matched correct trials. Surprisingly, we did not observe any significant perfusion signal changes in brain regions proposed to be associated with monitoring mechanisms during speech production (e.g., ACC, superior temporal gyrus). Overall, our findings provide evidence for distinct neural correlates of semantic and omission error types, with anomic speech errors likely resulting from failures to initiate articulatory-motor processes rather than semantic knowledge impairments as often reported for people with aphasia.


Asunto(s)
Afasia , Habla , Adulto , Humanos , Habla/fisiología , Mapeo Encefálico , Voluntarios Sanos , Encéfalo/diagnóstico por imagen , Semántica , Imagen por Resonancia Magnética
7.
Hum Brain Mapp ; 43(1): 300-328, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33615640

RESUMEN

The Enhancing NeuroImaging Genetics through Meta-Analysis copy number variant (ENIGMA-CNV) and 22q11.2 Deletion Syndrome Working Groups (22q-ENIGMA WGs) were created to gain insight into the involvement of genetic factors in human brain development and related cognitive, psychiatric and behavioral manifestations. To that end, the ENIGMA-CNV WG has collated CNV and magnetic resonance imaging (MRI) data from ~49,000 individuals across 38 global research sites, yielding one of the largest studies to date on the effects of CNVs on brain structures in the general population. The 22q-ENIGMA WG includes 12 international research centers that assessed over 533 individuals with a confirmed 22q11.2 deletion syndrome, 40 with 22q11.2 duplications, and 333 typically developing controls, creating the largest-ever 22q11.2 CNV neuroimaging data set. In this review, we outline the ENIGMA infrastructure and procedures for multi-site analysis of CNVs and MRI data. So far, ENIGMA has identified effects of the 22q11.2, 16p11.2 distal, 15q11.2, and 1q21.1 distal CNVs on subcortical and cortical brain structures. Each CNV is associated with differences in cognitive, neurodevelopmental and neuropsychiatric traits, with characteristic patterns of brain structural abnormalities. Evidence of gene-dosage effects on distinct brain regions also emerged, providing further insight into genotype-phenotype relationships. Taken together, these results offer a more comprehensive picture of molecular mechanisms involved in typical and atypical brain development. This "genotype-first" approach also contributes to our understanding of the etiopathogenesis of brain disorders. Finally, we outline future directions to better understand effects of CNVs on brain structure and behavior.


Asunto(s)
Encéfalo , Variaciones en el Número de Copia de ADN , Imagen por Resonancia Magnética , Trastornos Mentales , Trastornos del Neurodesarrollo , Neuroimagen , Encéfalo/diagnóstico por imagen , Encéfalo/crecimiento & desarrollo , Encéfalo/patología , Humanos , Trastornos Mentales/diagnóstico por imagen , Trastornos Mentales/genética , Trastornos Mentales/patología , Estudios Multicéntricos como Asunto , Trastornos del Neurodesarrollo/diagnóstico por imagen , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología
8.
Acta Neuropathol ; 144(1): 107-127, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35551471

RESUMEN

Mesial temporal lobe epilepsy with hippocampal sclerosis and a history of febrile seizures is associated with common variation at rs7587026, located in the promoter region of SCN1A. We sought to explore possible underlying mechanisms. SCN1A expression was analysed in hippocampal biopsy specimens of individuals with mesial temporal lobe epilepsy with hippocampal sclerosis who underwent surgical treatment, and hippocampal neuronal cell loss was quantitatively assessed using immunohistochemistry. In healthy individuals, hippocampal volume was measured using MRI. Analyses were performed stratified by rs7587026 type. To study the functional consequences of increased SCN1A expression, we generated, using transposon-mediated bacterial artificial chromosome transgenesis, a zebrafish line expressing exogenous scn1a, and performed EEG analysis on larval optic tecta at 4 day post-fertilization. Finally, we used an in vitro promoter analysis to study whether the genetic motif containing rs7587026 influences promoter activity. Hippocampal SCN1A expression differed by rs7587026 genotype (Kruskal-Wallis test P = 0.004). Individuals homozygous for the minor allele showed significantly increased expression compared to those homozygous for the major allele (Dunn's test P = 0.003), and to heterozygotes (Dunn's test P = 0.035). No statistically significant differences in hippocampal neuronal cell loss were observed between the three genotypes. Among 597 healthy participants, individuals homozygous for the minor allele at rs7587026 displayed significantly reduced mean hippocampal volume compared to major allele homozygotes (Cohen's D = - 0.28, P = 0.02), and to heterozygotes (Cohen's D = - 0.36, P = 0.009). Compared to wild type, scn1lab-overexpressing zebrafish larvae exhibited more frequent spontaneous seizures [one-way ANOVA F(4,54) = 6.95 (P < 0.001)]. The number of EEG discharges correlated with the level of scn1lab overexpression [one-way ANOVA F(4,15) = 10.75 (P < 0.001]. Finally, we showed that a 50 bp promoter motif containing rs7587026 exerts a strong regulatory role on SCN1A expression, though we could not directly link this to rs7587026 itself. Our results develop the mechanistic link between rs7587026 and mesial temporal lobe epilepsy with hippocampal sclerosis and a history of febrile seizures. Furthermore, we propose that quantitative precision may be important when increasing SCN1A expression in current strategies aiming to treat seizures in conditions involving SCN1A haploinsufficiency, such as Dravet syndrome.


Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , Canal de Sodio Activado por Voltaje NAV1.1/metabolismo , Convulsiones Febriles , Proteínas de Pez Cebra/metabolismo , Animales , Epilepsia/genética , Epilepsia del Lóbulo Temporal/genética , Genómica , Gliosis/patología , Hipocampo/patología , Humanos , Canal de Sodio Activado por Voltaje NAV1.1/genética , Esclerosis/patología , Convulsiones Febriles/complicaciones , Convulsiones Febriles/genética , Pez Cebra
9.
Mol Psychiatry ; 26(8): 3884-3895, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-31811260

RESUMEN

DNA methylation, which is modulated by both genetic factors and environmental exposures, may offer a unique opportunity to discover novel biomarkers of disease-related brain phenotypes, even when measured in other tissues than brain, such as blood. A few studies of small sample sizes have revealed associations between blood DNA methylation and neuropsychopathology, however, large-scale epigenome-wide association studies (EWAS) are needed to investigate the utility of DNA methylation profiling as a peripheral marker for the brain. Here, in an analysis of eleven international cohorts, totalling 3337 individuals, we report epigenome-wide meta-analyses of blood DNA methylation with volumes of the hippocampus, thalamus and nucleus accumbens (NAcc)-three subcortical regions selected for their associations with disease and heritability and volumetric variability. Analyses of individual CpGs revealed genome-wide significant associations with hippocampal volume at two loci. No significant associations were found for analyses of thalamus and nucleus accumbens volumes. Cluster-based analyses revealed additional differentially methylated regions (DMRs) associated with hippocampal volume. DNA methylation at these loci affected expression of proximal genes involved in learning and memory, stem cell maintenance and differentiation, fatty acid metabolism and type-2 diabetes. These DNA methylation marks, their interaction with genetic variants and their impact on gene expression offer new insights into the relationship between epigenetic variation and brain structure and may provide the basis for biomarker discovery in neurodegeneration and neuropsychiatric conditions.


Asunto(s)
Metilación de ADN , Epigenoma , Islas de CpG , Metilación de ADN/genética , Epigénesis Genética/genética , Estudio de Asociación del Genoma Completo , Humanos
10.
Twin Res Hum Genet ; 25(3): 115-128, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35856184

RESUMEN

In this prospective study of mental health, we examine the influence of three interrelated traits - perceived stress, rumination, and daytime sleepiness - and their association with symptoms of anxiety and depression in early adolescence. Given the known associations between these traits, an important objective is to determine the extent to which they may independently predict anxiety/depression symptoms. Twin pairs from the Queensland Twin Adolescent Brain (QTAB) project were assessed on two occasions (N = 211 pairs aged 9-14 years at baseline and 152 pairs aged 10-16 years at follow-up). Linear regression models and quantitative genetic modeling were used to analyze the data. Prospectively, perceived stress, rumination, and daytime sleepiness accounted for 8-11% of the variation in later anxiety/depression; familial influences contributed strongly to these associations. However, only perceived stress significantly predicted change in anxiety/depression, accounting for 3% of variance at follow-up after adjusting for anxiety/depression at baseline, although it did not do so independently of rumination and daytime sleepiness. Bidirectional effects were found between all traits over time. These findings suggest an underlying architecture that is shared, to some degree, by all traits, while the literature points to hypothalamic-pituitary-adrenal (HPA) axis and/or circadian systems as potential sources of overlapping influence and possible avenues for intervention.


Asunto(s)
Depresión , Trastornos de Somnolencia Excesiva , Adolescente , Ansiedad/genética , Ansiedad/psicología , Depresión/genética , Trastornos de Somnolencia Excesiva/psicología , Humanos , Estudios Prospectivos , Estrés Psicológico/genética , Estrés Psicológico/psicología
11.
Twin Res Hum Genet ; 25(3): 129-139, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35791873

RESUMEN

The hippocampus is a complex brain structure with key roles in cognitive and emotional processing and with subregion abnormalities associated with a range of disorders and psychopathologies. Here we combine data from two large independent young adult twin/sibling cohorts to obtain the most accurate estimates to date of genetic covariation between hippocampal subfield volumes and the hippocampus as a single volume. The combined sample included 2148 individuals, comprising 1073 individuals from 627 families (mean age = 22.3 years) from the Queensland Twin IMaging (QTIM) Study, and 1075 individuals from 454 families (mean age = 28.8 years) from the Human Connectome Project (HCP). Hippocampal subfields were segmented using FreeSurfer version 6.0 (CA4 and dentate gyrus were phenotypically and genetically indistinguishable and were summed to a single volume). Multivariate twin modeling was conducted in OpenMx to decompose variance into genetic and environmental sources. Bivariate analyses of hippocampal formation and each subfield volume showed that 10%-72% of subfield genetic variance was independent of the hippocampal formation, with greatest specificity found for the smaller volumes; for example, CA2/3 with 42% of genetic variance being independent of the hippocampus; fissure (63%); fimbria (72%); hippocampus-amygdala transition area (41%); parasubiculum (62%). In terms of genetic influence, whole hippocampal volume is a good proxy for the largest hippocampal subfields, but a poor substitute for the smaller subfields. Additive genetic sources accounted for 49%-77% of total variance for each of the subfields in the combined sample multivariate analysis. In addition, the multivariate analyses were sufficiently powered to identify common environmental influences (replicated in QTIM and HCP for the molecular layer and CA4/dentate gyrus, and accounting for 7%-16% of total variance for 8 of 10 subfields in the combined sample). This provides the clearest indication yet from a twin study that factors such as home environment may influence hippocampal volumes (albeit, with caveats).


Asunto(s)
Hipocampo , Imagen por Resonancia Magnética , Hermanos , Gemelos , Adulto , Encéfalo , Hipocampo/diagnóstico por imagen , Hipocampo/patología , Humanos , Imagen por Resonancia Magnética/métodos , Gemelos/genética , Adulto Joven
12.
J Cogn Neurosci ; 33(1): 129-145, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33054555

RESUMEN

Comprehending action words often engages similar brain regions to those involved in perceiving and executing actions. This finding has been interpreted as support for grounding of conceptual processing in motor representations or that conceptual processing involves motor simulation. However, such demonstrations cannot confirm the nature of the mechanism(s) responsible, as word comprehension involves multiple processes (e.g., lexical, semantic, morphological, phonological). In this study, we tested whether this motor cortex engagement instead reflects processing of statistical regularities in sublexical phonological features. Specifically, we measured brain activity in healthy participants using functional magnetic resonance imaging while they performed an auditory lexical decision paradigm involving monosyllabic action words associated with specific effectors (face, arm, and leg). We show that nonwords matched to the action words in terms of their phonotactic probability elicit common patterns of activation. In addition, we show that a measure of the action words' phonological typicality, the extent to which a word's phonology is typical of other words in the grammatical category to which it belongs (i.e., more or less verb-like), is responsible for their activating a significant portion of primary and premotor cortices. These results indicate motor cortex engagement during action word comprehension is more likely to reflect processing of statistical regularities in sublexical phonological features than conceptual processing. We discuss the implications for current neurobiological models of language, all of which implicitly or explicitly assume that the relationship between the sound of a word and its meaning is arbitrary.


Asunto(s)
Comprensión , Corteza Motora , Mapeo Encefálico , Humanos , Lenguaje , Semántica
13.
Psychol Sci ; 32(8): 1183-1197, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34323639

RESUMEN

On average, men and women differ in brain structure and behavior, raising the possibility of a link between sex differences in brain and behavior. But women and men are also subject to different societal and cultural norms. We navigated this challenge by investigating variability of sex-differentiated brain structure within each sex. Using data from the Queensland Twin IMaging study (n = 1,040) and Human Connectome Project (n = 1,113), we obtained data-driven measures of individual differences along a male-female dimension for brain and behavior based on average sex differences in brain structure and behavior, respectively. We found a weak association between these brain and behavioral differences, driven by brain size. These brain and behavioral differences were moderately heritable. Our findings suggest that behavioral sex differences are, to some extent, related to sex differences in brain structure but that this is mainly driven by differences in brain size, and causality should be interpreted cautiously.


Asunto(s)
Conectoma , Caracteres Sexuales , Encéfalo/diagnóstico por imagen , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Gemelos
14.
Mol Psychiatry ; 25(3): 692-695, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30705424

RESUMEN

Prior to and following the publication of this article the authors noted that the complete list of authors was not included in the main article and was only present in Supplementary Table 1. The author list in the original article has now been updated to include all authors, and Supplementary Table 1 has been removed. All other supplementary files have now been updated accordingly. Furthermore, in Table 1 of this Article, the replication cohort for the row Close relative in data set, n (%) was incorrect. All values have now been corrected to 0(0%). The publishers would like to apologise for this error and the inconvenience it may have caused.

15.
Mol Psychiatry ; 25(3): 584-602, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-30283035

RESUMEN

Carriers of large recurrent copy number variants (CNVs) have a higher risk of developing neurodevelopmental disorders. The 16p11.2 distal CNV predisposes carriers to e.g., autism spectrum disorder and schizophrenia. We compared subcortical brain volumes of 12 16p11.2 distal deletion and 12 duplication carriers to 6882 non-carriers from the large-scale brain Magnetic Resonance Imaging collaboration, ENIGMA-CNV. After stringent CNV calling procedures, and standardized FreeSurfer image analysis, we found negative dose-response associations with copy number on intracranial volume and on regional caudate, pallidum and putamen volumes (ß = -0.71 to -1.37; P < 0.0005). In an independent sample, consistent results were obtained, with significant effects in the pallidum (ß = -0.95, P = 0.0042). The two data sets combined showed significant negative dose-response for the accumbens, caudate, pallidum, putamen and ICV (P = 0.0032, 8.9 × 10-6, 1.7 × 10-9, 3.5 × 10-12 and 1.0 × 10-4, respectively). Full scale IQ was lower in both deletion and duplication carriers compared to non-carriers. This is the first brain MRI study of the impact of the 16p11.2 distal CNV, and we demonstrate a specific effect on subcortical brain structures, suggesting a neuropathological pattern underlying the neurodevelopmental syndromes.


Asunto(s)
Trastorno Autístico/genética , Ganglios Basales/patología , Trastornos de los Cromosomas/genética , Variaciones en el Número de Copia de ADN/genética , Discapacidad Intelectual/genética , Adulto , Trastorno del Espectro Autista/genética , Encéfalo/patología , Deleción Cromosómica , Duplicación Cromosómica , Cromosomas Humanos Par 16/genética , Bases de Datos Factuales , Femenino , Globo Pálido/patología , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Trastornos del Neurodesarrollo/genética , Tamaño de los Órganos/genética , Putamen/patología , Esquizofrenia/genética
16.
Neuroimage ; 215: 116781, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32278894

RESUMEN

The hippocampus is a brain region critical for learning and memory, and is also implicated in several neuropsychiatric disorders that show sex differences in prevalence, symptom expression, and mean age of onset. On average, males have larger hippocampal volumes than females, but findings are inconclusive after adjusting for overall brain size. Although the hippocampus is a heterogenous structure, few studies have focused on sex differences in the hippocampal subfields - with little consensus on whether there are regionally specific sex differences in the hippocampus after adjusting for brain size, or whether it is important to adjust for total hippocampal volume (HPV). Here, using two young adult cohorts from the Queensland Twin IMaging study (QTIM; N â€‹= â€‹727) and the Human Connectome Project (HCP; N â€‹= â€‹960), we examined differences between males and females in the volumes of 12 hippocampal subfields, extracted using FreeSurfer 6.0. After adjusting the subfield volumes for either HPV or brain size (brain segmentation volume (BSV)) using four controlling methods (allometric, covariate, residual and matching), we estimated the percentage difference of the sex effect (males versus females) and Cohen's d using hierarchical general linear models. Males had larger volumes compared to females in the parasubiculum (up to 6.04%; Cohen's d â€‹= â€‹0.46) and fimbria (up to 8.75%; d â€‹= â€‹0.54) after adjusting for HPV. These sex differences were robust across the two cohorts and multiple controlling methods, though within cohort effect sizes were larger for the matched approach, due to the smaller sub-sample. Additional sex effects were identified in the HCP cohort and combined (QTIM and HCP) sample (hippocampal fissure (up to 6.79%), presubiculum (up to 3.08%), and hippocampal tail (up to -0.23%)). In contrast, no sex differences were detected for the volume of the cornu ammonis (CA)2/3, CA4, Hippocampus-Amygdala Transition Area (HATA), or the granule cell layer of the dentate gyrus (GCDG). These findings show that, independent of differences in HPV, there are regionally specific sex differences in the hippocampus, which may be most prominent in the fimbria and parasubiculum. Further, given sex differences were less consistent across cohorts after controlling for BSV, adjusting for HPV rather than BSV may benefit future studies. This work may help in disentangling sex effects, and provide a better understanding of the implications of sex differences for behaviour and neuropsychiatric disorders.


Asunto(s)
Hipocampo/anatomía & histología , Hipocampo/fisiología , Caracteres Sexuales , Adulto , Conectoma , Femenino , Hipocampo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Masculino , Tamaño de los Órganos , Gemelos , Adulto Joven
17.
Cereb Cortex ; 29(3): 952-962, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29377989

RESUMEN

Quantifying the genetic architecture of the cerebral cortex is necessary for understanding disease and changes to the brain across the lifespan. Prior work shows that both surface area (SA) and cortical thickness (CT) are heritable. However, we do not yet understand the extent to which region-specific genetic factors (i.e., independent of global effects) play a dominant role in the regional patterning or inter-regional associations across the cortex. Using a population sample of young adult twins (N = 923), we show that the heritability of SA and CT varies widely across regions, generally independent of measurement error. When global effects are controlled for, we detected a complex pattern of genetically mediated clusters of inter-regional associations, which varied between hemispheres. There were generally weak associations between the SA of different regions, except within the occipital lobe, whereas CT was positively correlated within lobar divisions and negatively correlated across lobes, mostly due to genetic covariation. These findings were replicated in an independent sample of twins and siblings (N = 698) from the Human Connectome Project. The different genetic contributions to SA and CT across regions reveal the value of quantifying sources of covariation to appreciate the genetic complexity of cortical structures.


Asunto(s)
Corteza Cerebral/anatomía & histología , Interacción Gen-Ambiente , Adolescente , Adulto , Corteza Cerebral/diagnóstico por imagen , Conectoma , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Adulto Joven
18.
J Cogn Neurosci ; 31(6): 913-921, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30747589

RESUMEN

Studies of context effects in speech production have shown that semantic feature overlap produces interference in naming of categorically related objects. In neuroimaging studies, this semantic interference effect is consistently associated with involvement of left superior and middle temporal gyri. However, at least part of this effect has recently been shown to be attributable to visual form similarity, as categorically related objects typically share visual features. This fMRI study examined interference produced by visual form overlap in the absence of a category relation in a picture-word interference paradigm. Both visually similar and visually dissimilar distractors led to increased BOLD responses in the left inferior frontal gyrus compared with the congruent condition. Naming pictures in context with a distractor word denoting an object visually similar in form slowed RTs compared with unrelated words and was associated with reduced activity in the left posterior middle temporal gyrus. This area is reliably observed in lexical level processing during language production tasks. No significant differential activity was observed in areas typically engaged by early perceptual or conceptual feature level processing or in areas proposed to be engaged by postlexical language processes, suggesting that visual form interference does not arise from uncertainty or confusion during perceptual or conceptual identification or after lexical processing. We conclude that visual form interference has a lexical locus, consistent with the predictions of competitive lexical selection models.


Asunto(s)
Atención/fisiología , Corteza Cerebral/fisiología , Reconocimiento Visual de Modelos/fisiología , Corteza Prefrontal/fisiología , Habla/fisiología , Lóbulo Temporal/fisiología , Adolescente , Adulto , Corteza Cerebral/diagnóstico por imagen , Femenino , Neuroimagen Funcional , Humanos , Imagen por Resonancia Magnética , Masculino , Corteza Prefrontal/diagnóstico por imagen , Adulto Joven
19.
J Cogn Neurosci ; 31(12): 1946-1957, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31418336

RESUMEN

During conversation, speakers monitor their own and others' output so they can alter their production adaptively, including halting it if needed. We investigated the neural mechanisms of monitoring and halting in spoken word production by employing a modified stop signal task during fMRI. Healthy participants named target pictures and withheld their naming response when presented with infrequent auditory words as stop signals. We also investigated whether the speech comprehension system monitors inner (i.e., prearticulatory) speech via the output of phonological word form encoding as proposed by the perceptual loop theory [Levelt, W. J. M. Speaking: From intention to articulation. Cambridge, MA: MIT Press, 1989] by presenting stop signals phonologically similar to the target picture name (e.g., cabbage-CAMEL). The contrast of successful halting versus naming revealed extensive BOLD signal responses in bilateral inferior frontal gyrus, preSMA, and superior temporal gyrus. Successful versus unsuccessful halting of speech was associated with increased BOLD signal bilaterally in the posterior middle temporal, frontal, and parietal lobes and decreases bilaterally in the posterior and left anterior superior temporal gyrus and right inferior frontal gyrus. These results show, for the first time, the neural mechanisms engaged during both monitoring and interrupting speech production. However, we failed to observe any differential effects of phonological similarity in either the behavioral or neural data, indicating monitoring of inner versus external speech might involve different mechanisms.


Asunto(s)
Corteza Cerebral/fisiología , Inhibición Psicológica , Habla/fisiología , Conducta Verbal/fisiología , Adulto , Mapeo Encefálico , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Modelos Neurológicos , Modelos Psicológicos , Volición , Adulto Joven
20.
Hum Brain Mapp ; 40(12): 3488-3507, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31037793

RESUMEN

There are a wealth of tools for fitting linear models at each location in the brain in neuroimaging analysis, and a wealth of genetic tools for estimating heritability for a small number of phenotypes. But there remains a need for computationally efficient neuroimaging genetic tools that can conduct analyses at the brain-wide scale. Here we present a simple method for heritability estimation on twins that replaces a variance component model-which requires iterative optimisation-with a (noniterative) linear regression model, by transforming data to squared twin-pair differences. We demonstrate that the method has comparable bias, mean squared error, false positive risk, and power to best practice maximum-likelihood-based methods, while requiring a small fraction of the computation time. Combined with permutation, we call this approach "Accelerated Permutation Inference for the ACE Model (APACE)" where ACE refers to the additive genetic (A) effects, and common (C), and unique (E) environmental influences on the trait. We show how the use of spatial statistics like cluster size can dramatically improve power, and illustrate the method on a heritability analysis of an fMRI working memory dataset.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Memoria a Corto Plazo/fisiología , Modelos Neurológicos , Gemelos Dicigóticos/genética , Gemelos Monocigóticos/genética , Adulto , Femenino , Interacción Gen-Ambiente , Humanos , Modelos Lineales , Imagen por Resonancia Magnética/métodos , Masculino , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA