Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Arch Microbiol ; 206(4): 173, 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38492040

RESUMEN

Using microalgal growth-promoting bacteria (MGPB) to improve the cultured microalga metabolism during biotechnological processes is one of the most promising strategies to enhance their benefits. Nonetheless, the culture condition effect used during the biotechnological process on MGPB growth and metabolism is key to ensure the expected positive bacterium growth and metabolism of microalgae. In this sense, the present research study investigated the effect of the synthetic biogas atmosphere (75% CH4-25% CO2) on metabolic and physiological adaptations of the MGPB Azospirillum brasilense by a microarray-based transcriptome approach. A total of 394 A. brasilense differentially expressed genes (DEGs) were found: 201 DEGs (34 upregulated and 167 downregulated) at 24 h and 193 DEGs (140 upregulated and 53 downregulated) under the same conditions at 72 h. The results showed a series of A. brasilense genes regulating processes that could be essential for its adaptation to the early stressful condition generated by biogas. Evidence of energy production is shown by nitrate/nitrite reduction and activation of the hypothetical first steps of hydrogenotrophic methanogenesis; signal molecule modulation is observed: indole-3-acetic acid (IAA), riboflavin, and vitamin B6, activation of Type VI secretion system responding to IAA exposure, as well as polyhydroxybutyrate (PHB) biosynthesis and accumulation. Moreover, an overexpression of ipdC, ribB, and phaC genes, encoding the key enzymes for the production of the signal molecule IAA, vitamin riboflavin, and PHB production of 2, 1.5 and 11 folds, respectively, was observed at the first 24 h of incubation under biogas atmosphere Overall, the ability of A. brasilense to metabolically adapt to a biogas atmosphere is demonstrated, which allows its implementation for generating biogas with high calorific values and the use of renewable energies through microalga biotechnologies.


Asunto(s)
Azospirillum brasilense , Microalgas , Microalgas/genética , Biocombustibles , Transcriptoma , Ácidos Indolacéticos/metabolismo , Perfilación de la Expresión Génica , Adaptación Fisiológica/genética , Riboflavina/genética , Riboflavina/metabolismo
2.
Microb Ecol ; 85(4): 1412-1422, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-35524818

RESUMEN

The microalga Chlorella sorokiniana and the microalgae growth-promoting bacteria (MGPB) Azospirillum brasilense have a mutualistic interaction that can begin within the first hours of co-incubation; however, the metabolites participating in this initial interaction are not yet identified. Nuclear magnetic resonance (NMR) was used in the present study to characterize the metabolites exuded by two strains of C. sorokiniana (UTEX 2714 and UTEX 2805) and A. brasilense Cd when grown together in an oligotrophic medium. Lactate and myo-inositol were identified as carbon metabolites exuded by the two strains of C. sorokiniana; however, only the UTEX 2714 strain exuded glycerol as the main carbon compound. In turn, A. brasilense exuded uracil when grown on the exudates of either microalga, and both microalga strains were able to utilize uracil as a nitrogen source. Interestingly, although the total carbohydrate content was higher in exudates from C. sorokiniana UTEX 2805 than from C. sorokiniana UTEX 2714, the growth of A. brasilense was greater in the exudates from the UTEX 2714 strain. These results highlight the fact that in the exuded carbon compounds differ between strains of the same species of microalgae and suggest that the type, rather than the quantity, of carbon source is more important for sustaining the growth of the partner bacteria.


Asunto(s)
Azospirillum brasilense , Chlorella , Microalgas , Simbiosis , Exudados y Transudados
3.
J Appl Microbiol ; 132(5): 3650-3663, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35233885

RESUMEN

AIMS: This study assessed, at the physiological and molecular levels, the effect of biogas on indole-3-acetic acid (IAA) biosynthesis by Azospirillum brasilense as well as the impact of this bacterium during CO2 fixation from biogas by Chlorella vulgaris and Scenedesmus obliquus. METHODS AND RESULTS: IpdC gene expression, IAA production and the growth of A. brasilense cultured under air (control) and biogas (treatment) were evaluated. The results demonstrated that A. brasilense had a better growth capacity and IAA production (105.7 ± 10.3 µg ml-1 ) when cultured under biogas composed of 25% CO2  + 75% methane (CH4 ) with respect to the control (72.4 ± 7.9 µg ml-1 ), although the ipdC gene expression level was low under the stressful condition generated by biogas. Moreover, this bacterium was able to induce a higher cell density and CO2 fixation rate from biogas by C. vulgaris (0.27 ± 0.08 g l-1 d-1 ) and S. obliquus (0.22 ± 0.08 g l-1 d-1 ). CONCLUSIONS: This study demonstrated that A. brasilense has the capacity to grow and actively maintain its main microalgal growth-promoting mechanism when cultured under biogas and positively influence CO2 fixation from the biogas of C. vulgaris and S. obliquus. SIGNIFICANCE AND IMPACT OF THE STUDY: These findings broaden research in the field of Azospirillum-microalga interactions and the prevalence of Azospirillum in environmental and ecological topics in addition to supporting the uses of plant growth-promoting bacteria to enhance biotechnological strategies for biogas upgrading.


Asunto(s)
Azospirillum brasilense , Chlorella vulgaris , Microalgas , Atmósfera , Azospirillum brasilense/genética , Azospirillum brasilense/metabolismo , Biocombustibles , Dióxido de Carbono/metabolismo , Chlorella vulgaris/metabolismo , Ácidos Indolacéticos/metabolismo , Microalgas/metabolismo
4.
Environ Microbiol ; 23(10): 6257-6274, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34472164

RESUMEN

The plant-growth-promoting bacterium Azospirillum brasilense is able to associate with the microalgae Chlorella sorokiniana. Attachment of A. brasilense increases the metabolic performances of the microalgae. Recent genome analyses have revealed that the A. brasilense Az39 genome contains two complete sets of genes encoding type VI secretion systems (T6SS), including the T6SS1 that is induced by the indole-3-acetic acid (IAA) phytohormone. The T6SS is a multiprotein machine, widespread in Gram-negative bacteria, that delivers protein effectors in both prokaryotic and eukaryotic cells. Here we show that the A. brasilense T6SS is required for Chlorella-Azospirillum synthetic mutualism. Our data demonstrate that the T6SS is an important determinant to promote production of lipids, carbohydrates and photosynthetic pigments by the microalgae. We further show that this is likely due to the role of the T6SS during the attachment stage and for the production of IAA phytohormones. Finally, we demonstrate that the A. brasilense T6SS provides antagonistic activities against a number of plant pathogens such as Agrobacterium, Pectobacterium, Dickeya and Ralstonia species in vitro, suggesting that, in addition to promoting growth, A. brasilense might confer T6SS-dependent bio-control protection to microalgae and plants against bacterial pathogens.


Asunto(s)
Azospirillum brasilense , Chlorella , Microalgas , Sistemas de Secreción Tipo VI , Azospirillum brasilense/genética , Azospirillum brasilense/metabolismo , Microalgas/genética , Microalgas/metabolismo , Simbiosis , Sistemas de Secreción Tipo VI/metabolismo
5.
Microb Ecol ; 77(4): 980-992, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30397795

RESUMEN

The effect of three different nutritional conditions during the initial 12 h of interaction between the microalgae Chlorella sorokiniana UTEX 2714 and the plant growth-promoting bacterium Azospirillum brasilense Cd on formation of synthetic mutualism was assessed by changes in population growth, production of signal molecules tryptophan and indole-3-acetic acid, starch accumulation, and patterns of cell aggregation. When the interaction was supported by a nutrient-rich medium, production of both signal molecules was detected, but not when this interaction began with nitrogen-free (N-free) or carbon-free (C-free) media. Overall, populations of bacteria and microalgae were larger when co-immobilized. However, the highest starch production was measured in C. sorokiniana immobilized alone and growing continuously in a C-free mineral medium. In this interaction, the initial nutritional condition influenced the time at which the highest accumulation of starch occurred in Chlorella, where the N-free medium induced faster starch production and the richer medium delayed its accumulation. Formation of aggregates made of microalgae and bacteria occurred in all nutritional conditions, with maximum at 83 h in mineral medium, and coincided with declining starch content. This study demonstrates that synthetic mutualism between C. sorokiniana and A. brasilense can be modulated by the initial nutritional condition, mainly by the presence or absence of nitrogen and carbon in the medium in which they are interacting.


Asunto(s)
Azospirillum brasilense/fisiología , Chlorella/fisiología , Simbiosis , Ácidos Indolacéticos/metabolismo , Microalgas/fisiología , Crecimiento Demográfico , Almidón/metabolismo , Triptófano/metabolismo
6.
Naturwissenschaften ; 101(10): 819-30, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25129521

RESUMEN

The relation between fatty acid accumulation, activity of acetyl-CoA carboxylase (ACC), and consequently lipid accumulation was studied in the microalgae Chlorella vulgaris co-immobilized with the plant growth-promoting bacterium Azospirillum brasilense under dark heterotrophic conditions with Na acetate as a carbon source. In C. vulgaris immobilized alone, cultivation experiments for 6 days showed that ACC activity is directly related to fatty acid accumulation, especially in the last 3 days. In co-immobilization experiments, A. brasilense exerted a significant positive effect over ACC activity, increased the quantity in all nine main fatty acids, increased total lipid accumulation in C. vulgaris, and mitigated negative effects of nonoptimal temperature for growth. No correlation between ACC activity and lipid accumulation in the cells was established for three different temperatures. This study demonstrated that the interaction between A. brasilense and C. vulgaris has a significant effect on fatty acid and lipid accumulation in the microalgae.


Asunto(s)
Acetil-CoA Carboxilasa/metabolismo , Azospirillum brasilense/fisiología , Chlorella vulgaris/metabolismo , Chlorella vulgaris/microbiología , Ácidos Grasos/metabolismo , Temperatura , Chlorella vulgaris/enzimología , Ácidos Grasos/análisis , Procesos Heterotróficos , Acetato de Sodio/metabolismo
7.
Appl Microbiol Biotechnol ; 97(22): 9847-58, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23354446

RESUMEN

Secondary treatment of municipal wastewater affects the mechanical stability of polymer Ca-alginate beads containing the microalgae Chlorella vulgaris that are jointly immobilized with Azospirillum brasilense as treating agents whose presence do not affect bead stability. Nine strains of potential alginate-degrading bacteria were isolated from wastewater and identified, based on their nearly complete 16S rDNA sequence. Still, their population was relatively low. Attempts to enhance the strength of the beads, using different concentrations of alginate and CaCl2 or addition of either of three polymers (polyvinylpyrrolidone, polyvinyl alcohol, carboxymethylcellulose), CaCO3, or SrCl2, failed. Beads lost their mechanical strength after 24 h of incubation but not the integrity of their shape for at least 96 h, a fact that sustained successful tertiary wastewater treatment for 48 h. In small bioreactors, removal of phosphorus was low under sterile conditions but high in unsterile wastewater. Alginate beads did not absorb PO4 (-3) in sterile wastewater, but in natural wastewater, they contained PO4 (-3). Consequently, PO4 (-3) content declined in the wastewater. A supplement of 10 % beads (w/v) was significantly more efficient in removing nutrients than 4 %, especially in a jointly immobilized treatment where >90 % of PO4 (-3) and >50 % ammonium were removed. Tertiary wastewater treatment in 25-L triangular, airlift, autotrophic bioreactors showed, as in small bioreactors, very similar nutrient removal patterns, decline in bead strength phenomena, and increase in total bacteria during the wastewater treatment only in the presence of the immobilized treatment agents. This study demonstrates that partial biological degradation of alginate beads occurred during tertiary wastewater treatment, but the beads survive long enough to permit efficient nutrient removal.


Asunto(s)
Alginatos/metabolismo , Azospirillum brasilense/metabolismo , Bacterias/metabolismo , Células Inmovilizadas/metabolismo , Chlorella vulgaris/metabolismo , Microesferas , Aguas Residuales/química , Bacterias/clasificación , Bacterias/aislamiento & purificación , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Ácido Glucurónico/metabolismo , Ácidos Hexurónicos/metabolismo , Datos de Secuencia Molecular , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Purificación del Agua/métodos
8.
Biology (Basel) ; 12(5)2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37237506

RESUMEN

Soil restoration is one of the biggest challenges of this century. Besides the negative impacts of climate change, the current increase in food demands has put severe pressure on soil resources, resulting in a significant area of degraded land worldwide. However, beneficial microorganisms, such as microalgae and plant growth-promoting bacteria, have an outstanding ability to restore soil health and fertility. In this mini-review, we summarize state-of-the-art knowledge on these microorganisms as amendments that are used to restore degraded and contaminated soils. Furthermore, the potential of microbial consortia to maximize beneficial effects on soil health and boost the production of plant-growth-promoting compounds within a mutualistic interaction is discussed.

9.
Appl Microbiol Biotechnol ; 93(6): 2669-80, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22038243

RESUMEN

When the freshwater microalga Chlorella sorokiniana and the plant growth-promoting bacterium Azospirillum brasilense were deployed as free suspensions in unsterile, municipal wastewater for tertiary wastewater treatment, their population was significantly lower compared with their populations in sterile wastewater. At the same time, the numbers of natural microfauna and wastewater bacteria increased. Immobilization of C. sorokiniana and A. brasilense in small (2-4 mm in diameter), polymer Ca-alginate beads significantly enhanced their populations when these beads were suspended in normal wastewater. All microbial populations within and on the surface of the beads were evaluated by quantitative fluorescence in situ hybridization combined with scanning electron microscopy and direct measurements. Submerging immobilizing beads in wastewater created the following sequence of events: (a) a biofilm composed of wastewater bacteria and A. brasilense was created on the surface of the beads, (b) the bead inhibited penetration of outside organisms into the beads, (c) the bead inhibited liberation of the immobilized microorganisms into the wastewater, and (d) permitted an uninterrupted reduction of ammonium and phosphorus from the wastewater. This study demonstrated that wastewater microbial populations are responsible for decreasing populations of biological agents used for wastewater treatment and immobilization in alginate beads provided a protective environment for these agents to carry out uninterrupted tertiary wastewater treatment.


Asunto(s)
Azospirillum brasilense/metabolismo , Chlorella/metabolismo , Microalgas/metabolismo , Aguas del Alcantarillado/microbiología , Eliminación de Residuos Líquidos/instrumentación , Alginatos/química , Azospirillum brasilense/química , Células Inmovilizadas/química , Células Inmovilizadas/metabolismo , Chlorella/química , Ácido Glucurónico/química , Ácidos Hexurónicos/química , Microalgas/química , Eliminación de Residuos Líquidos/métodos
10.
J Fungi (Basel) ; 8(11)2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36354945

RESUMEN

The Capsicum genus has significant economic importance since it is cultivated and consumed worldwide for its flavor and pungent properties. In 2021, Mexico produced 3.3 billion tons on 45,000 hectares which yielded USD 2 billion in exports to the USA, Canada, Japan, etc. Soil type has a dramatic effect on phosphorus (P) availability for plantsdue to its ion retention.In a previous study, novel fungal isolates were shown to solubilize and mineralize P in different kinds of soils with different P retention capacities. The aim of this work was to study the effects of the mineralogy of different kinds of "milpa" soils on the germination, biomass production, and P absorption of chili plants (Capsicum annuum). The germination percentage, the germination speed index, and the mean germination time were significantly increased in the plants treated with dual inoculation. Foliar phosphorus, growth variables, and plant biomass of chili plants grown in a greenhouse were enhanced in different soil types and with different inocula. Correlation studies suggested that the most significant performance in the foliar P concentration and in the growth response of plants was achieved in Vertisol with dual inoculation of 7 × 106 mL-1 spores per chili plant, suggesting this would be an appropriate approach to enhance chili cultivation depending on the soil type. This study stresses the importance of careful analysis of the effect of the soil type in the plant-microbe interactions.

11.
Biology (Basel) ; 10(4)2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33915681

RESUMEN

Engineered mutualistic consortia of microalgae and bacteria may be a means of assembling a novel combination of metabolic capabilities with potential biotechnological advantages. Microalgae are promising organisms for the sustainable production of metabolites of commercial interest, such as lipids, carbohydrates, pigments, and proteins. Several studies reveal that microalgae growth and cellular storage of these metabolites can be enhanced significantly by co-cultivation with growth-promoting bacteria. This review summarizes the state of the art of microalgae-bacteria consortia for the production of microalgal metabolites. We discuss the current knowledge on microalgae-bacteria mutualism and the mechanisms of bacteria to enhance microalgae metabolism. Furthermore, the potential routes for a microalgae-bacteria biorefinery are outlined in an attempt to overcome the economic failures and negative energy balances of the existing production processes.

12.
J Biotechnol ; 325: 179-185, 2021 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-33147514

RESUMEN

In this study, we investigated oxidative stress in the green microalgae, Chlorella sorokiniana, in co-culture with the plant growth promoting bacteria (PGPB), Azospirillum brasilense. This relationship was studied in the absence of an exogenous stressor, under copper stress, and under nitrogen limitation stress. We confirmed that copper and nitrogen limitation induced algal oxidative stress and reductions in chlorophyll content. In all cases, the presence of A. brasilense lowered the accumulation of intracellular reactive oxygen species (ROS) while promoting chlorophyll content. This effect was driven, in part, by A. brasilense's secretion of the auxin hormone, indole-3-acetic acid, which is known to mitigate stress in higher plants. The findings of the present study show that stress mitigation by A. brasilense resulted in suppressed starch accumulation under nitrogen limitation stress and neutral lipid accumulation under copper stress. In fact, A. brasilense could almost completely mitigate oxidative stress in C. sorokiniana resulting from nitrogen limitation, with ROS accumulation rates comparable to the axenic control cultures. The biotechnological implication of these findings is that co-culture strategies with A. brasilense (and similar PGPB) are most effective for high growth applications. A second growth stage may be needed to induce accumulation of desired products.


Asunto(s)
Azospirillum brasilense , Chlorella , Microalgas , Biotecnología , Estrés Oxidativo
13.
Microb Ecol ; 60(4): 915-27, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20632001

RESUMEN

Mine tailing deposits in semiarid and arid environments frequently remain devoid of vegetation due to the toxicity of the substrate and the absence of a diverse soil microbial community capable of supporting seed germination and plant growth. The contribution of the plant growth promoting bacterium (PGPB) Azospirillum brasilense Sp6 to the growth of quailbush in compost-amended, moderately acidic, high-metal content mine tailings using an irrigation-based reclamation strategy was examined along with its influence on the rhizosphere bacterial community. Sp6 inoculation resulted in a significant (2.2-fold) increase in plant biomass production. The data suggest that the inoculum successfully colonized the root surface and persisted throughout the 60-day experiment in both the rhizosphere, as demonstrated by excision and sequencing of the appropriate denaturing gradient gel electrophoresis (DGGE) band, and the rhizoplane, as indicated by fluorescent in situ hybridization of root surfaces. Changes in rhizosphere community structure in response to Sp6 inoculation were evaluated after 15, 30, and 60 days using DGGE analysis of 16S rRNA polymerase chain reaction amplicons. A comparison of DGGE profiles using canonical correspondence analysis revealed a significant treatment effect (Sp6-inoculated vs. uninoculated plants vs. unplanted) on bacterial community structure at 15, 30, and 60 days (p < 0.05). These data indicate that in an extremely stressed environment such as acid mine tailings, an inoculated plant growth promoting bacterium not only can persist and stimulate plant growth but also can directly or indirectly influence rhizobacterial community development.


Asunto(s)
Atriplex/crecimiento & desarrollo , Atriplex/microbiología , Azospirillum brasilense/crecimiento & desarrollo , Rizosfera , Microbiología del Suelo , Ácidos/análisis , Azospirillum brasilense/genética , Azospirillum brasilense/aislamiento & purificación , Biomasa , Sedimentos Geológicos/análisis , Metales/análisis , Minería , Suelo/análisis
14.
Environ Exp Bot ; 69(3): 343-352, 2010 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25009362

RESUMEN

Three plant growth-promoting bacteria (PGPB; Bacillus pumilus ES4, B. pumilus RIZO1, and Azospirillum brasilense Cd) were tested for their ability to enhance plant growth and development of the native Sonoran Desert shrub quailbush (Atriplex lentiformis) and for their effect on the native bacterial community in moderately acidic, high-metal content (AHMT) and in neutral, low metal content natural tailings (NLMT) in controlled greenhouse experiments. Inoculation of quailbush with all three PGPB significantly enhanced plant growth parameters, such as germination, root length, dry weight of shoots and roots, and root/shoot ratio in both types of tailings. The effect of inoculation on the indigenous bacterial community by the most successful PGPB Bacillus pumilus ES4 was evaluated by denaturating gradient gel electrophoresis (PCR-DGGE) fingerprinting and root colonization was followed by specific fluorescent in situ hybridization (FISH). Inoculation with this strain significantly changed the bacterial community over a period of 60 days. FISH analysis showed that the preferred site of colonization was the root tips and root elongation area. This study shows that inoculation of native perennial plants with PGPB can be used for developing technologies for phytostabilizing mine tailings.

15.
Microorganisms ; 8(9)2020 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-32887277

RESUMEN

Phosphorus (P) is considered a scarce macronutrient for plants in most tropical soils. The application of rock phosphate (RP) has been used to fertilize crops, but the amount of P released is not always at a necessary level for the plant. An alternative to this problem is the use of Phosphorus Solubilizing Microorganisms (PSM) to release P from chemically unavailable forms. This study compared the P sorption capacity of soils (the ability to retain P, making it unavailable for the plant) and the profile of organic acids (OA) produced by fungal isolates and the in vitro solubilization efficiency of RP. Trichoderma and Aspergillus strains were assessed in media with or without RP and different soils (Andisol, Alfisol, Vertisol). The type and amount of OA and the amount of soluble P were quantified, and according to our data, under the conditions tested, significant differences were observed in the OA profiles and the amount of soluble P present in the different soils. The efficiency to solubilize RP lies in the release of OAs with low acidity constants independent of the concentration at which they are released. It is proposed that the main mechanism of RP dissolution is the production of OAs.

16.
Microorganisms ; 7(12)2019 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-31756978

RESUMEN

The microbiological interactions of the roots of non-photosynthetic plants in South America have been scarcely explored. This study analyzes culturable fungal diversity associated with the mycoheterotrophic plant Arachnitis uniflora Phil. (Corsiaceae) in southern Chile, growing in two different understoreys of native (Nothofagus-dominated) and mixed forest (native, Cupressus sempervirens, and Pinus radiata). Rhizospheric and endophytic fungi were isolated, cultured, and purified to identify microorganisms associated with A. uniflora roots. We showed the different fungi associated with the plant, and that these distributions are influenced by the sampling site. We isolated 410 fungal strains (144 endophytic and 266 from the rhizosphere). We identified 13 operative taxonomical units from plants sampled in the mixed forest, while 15 were from the native forest. Rhizospheric microorganisms were mainly related to Penicillium spp., whereas some pathogenic and saprophytic strains were more frequent inside the roots. Our results have also shown that the fungal strains are weak for phosphate solubilization, but other pathways such as organic acid exudation and indole acetic acid production can be considered as major mechanisms to stimulate plant growth. Our results point to new fungal associates of A. uniflora plants reported in Andean ecosystems, identifying new beneficial endophytic fungi associated with roots of this fully mycoheterotrophic plant.

17.
Appl Environ Microbiol ; 74(21): 6797-802, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18791009

RESUMEN

A simple, quantitative experimental model, offering a convenient and basic approach to studies of plant-bacterium interactions, is proposed. This involves immobilizing a unicellular, freshwater microalga, a Chlorella species, serving as the plant, with a plant growth-promoting bacterium, an Azospirillum species, in small alginate beads to allow close interaction and to avoid external interference from bacterial contaminants.


Asunto(s)
Alginatos , Azospirillum/fisiología , Chlorella/fisiología , Plantas/microbiología , Células Inmovilizadas , Ácido Glucurónico , Ácidos Hexurónicos , Modelos Teóricos
18.
Bioresour Technol ; 99(11): 4980-9, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18024023

RESUMEN

In the summer of 2003, a microalga strain was isolated from a massive green microalgae bloom in wastewater stabilization ponds at the treatment facility of La Paz, B.C.S., Mexico. Prevailing environmental conditions were air temperatures over 40 degrees C, water temperature of 37 degrees C, and insolation of up to 2400 micromol m2 s(-1) at midday for several hours at the water surface for four months. The microalga was identified as Chlorella sorokiniana Shih. et Krauss, based on sequencing its entire 18S rRNA gene. In a controlled photo-bioreactor, this strain can grow to high population densities in synthetic wastewater at temperatures of 40-42 degrees C and light intensity of 2500 micromol m2 s(-1) for 5h daily and efficiently remove ammonium from the wastewater under these conditions better than under normal lower temperature (28 degrees C) and lower light intensity (60 micromol m2 s(-1)). When co-immobilized with the bacterium Azospirillum brasilense that promotes growth of microalgae, the population of microalga grew faster and removed even more ammonium. Under exposure to extreme growth conditions, the quantity of four photosynthetic pigments increased in the co-immobilized cultures. This strain of microalga has potential as a wastewater treatment agent under extreme conditions of temperature and light intensity.


Asunto(s)
Adaptación Fisiológica , Chlorella/metabolismo , Chlorella/efectos de la radiación , Calor , Compuestos de Amonio Cuaternario/aislamiento & purificación , Luz Solar , Eliminación de Residuos Líquidos , Adaptación Fisiológica/efectos de la radiación , Alginatos/metabolismo , Azospirillum brasilense/metabolismo , Biodegradación Ambiental , Células Inmovilizadas , Chlorella/citología , Chlorella/crecimiento & desarrollo , Ácido Glucurónico/metabolismo , Ácidos Hexurónicos/metabolismo , Microesferas , Fotosíntesis/efectos de la radiación , Pigmentos Biológicos/metabolismo
19.
J Microbiol Methods ; 135: 96-104, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28232090

RESUMEN

Isolation of nucleic acids from Chlorella is difficult, given the chemically complex nature of their cell walls and variable production of metabolites. Immobilization of microalgae in polymers adds additional difficulty. Here, we modified, amended, and standardized methods for isolation of nucleic acids and compared the yield of DNA and RNA from free-living and encapsulated microalgae C. sorokiniana. Isolation of nucleic acids from immobilized cells required two steps in dissolving the alginate matrix, releasing the cells, and mechanical disruption with glass beads. For DNA extraction, we used modified versions of a commercial kit along with the hexadecyltrimethylammonium bromide (CTAB) method. For RNA extraction, we used the commercial TRI reagent procedure and the CTAB-dithiotreitol method. Quantity and quality of nucleic acids in extracts varied with growth conditions, isolation procedures, and time of incubation of the original culture. There were consistently higher amounts of DNA and RNA in extracts from immobilized cells. Quantitatively, the modified procedure with the commercial Promega kit was the most reliable procedure for isolating DNA and a modified commercial TRI reagent procedure was the choice for isolating RNA. All four procedures eliminated proteins efficiently and had low levels of contamination from residual polysaccharides from the matrices and/or metabolites naturally produced by the microalgae. All DNA extracts under both growth conditions, time of incubation, and two isolation methods successfully amplified the 18S ribosomal RNA by PCR and quantitative reverse transcription (RT-qPCR).


Asunto(s)
Alginatos/química , Células Inmovilizadas , ADN/aislamiento & purificación , Microalgas/química , Microalgas/genética , ARN/aislamiento & purificación , Cetrimonio , Compuestos de Cetrimonio/química , Chlorella/química , Chlorella/genética , Chlorella/crecimiento & desarrollo , Chlorella/metabolismo , ADN/química , Vidrio , Ácido Glucurónico/química , Ácidos Hexurónicos/química , Microalgas/crecimiento & desarrollo , Microalgas/metabolismo , Reacción en Cadena de la Polimerasa/métodos , Polisacáridos/metabolismo , ARN/química , ARN Ribosómico 18S/análisis , ARN Ribosómico 18S/genética
20.
Sci Rep ; 7: 41310, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28145473

RESUMEN

Remote effects (occurring without physical contact) of two plant growth-promoting bacteria (PGPB) Azospirillum brasilense Cd and Bacilus pumilus ES4 on growth of the green microalga Chlorella sorokiniana UTEX 2714 were studied. The two PGPB remotely enhanced the growth of the microalga, up to six-fold, and its cell volume by about three-fold. In addition to phenotypic changes, both bacteria remotely induced increases in the amounts of total lipids, total carbohydrates, and chlorophyll a in the cells of the microalga, indicating an alteration of the microalga's physiology. The two bacteria produced large amounts of volatile compounds, including CO2, and the known plant growth-promoting volatile 2,3-butanediol and acetoin. Several other volatiles having biological functions in other organisms, as well as numerous volatile compounds with undefined biological roles, were detected. Together, these bacteria-derived volatiles can positively affect growth and metabolic parameters in green microalgae without physical attachment of the bacteria to the microalgae. This is a new paradigm on how PGPB promote growth of microalgae which may serve to improve performance of Chlorella spp. for biotechnological applications.


Asunto(s)
Azospirillum brasilense/fisiología , Bacillus pumilus/fisiología , Chlorella/crecimiento & desarrollo , Microalgas/crecimiento & desarrollo , Azospirillum brasilense/efectos de los fármacos , Bacillus pumilus/efectos de los fármacos , Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Dióxido de Carbono/metabolismo , Chlorella/efectos de los fármacos , Chlorella/metabolismo , Clorofila/metabolismo , Clorofila A , Escherichia coli/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Microalgas/efectos de los fármacos , Microalgas/metabolismo , Compuestos Orgánicos Volátiles/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA