Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Q Rev Biophys ; 54: e6, 2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33785082

RESUMEN

Over the past decade, the structural biology of membrane proteins (MPs) has taken a new turn thanks to epoch-making technical progress in single-particle electron cryo-microscopy (cryo-EM) as well as to improvements in sample preparation. The present analysis provides an overview of the extent and modes of usage of the various types of surfactants for cryo-EM studies. Digitonin, dodecylmaltoside, protein-based nanodiscs, lauryl maltoside-neopentyl glycol, glyco-diosgenin, and amphipols (APols) are the most popular surfactants at the vitrification step. Surfactant exchange is frequently used between MP purification and grid preparation, requiring extensive optimization each time the study of a new MP is undertaken. The variety of both the surfactants and experimental approaches used over the past few years bears witness to the need to continue developing innovative surfactants and optimizing conditions for sample preparation. The possibilities offered by novel APols for EM applications are discussed.


Asunto(s)
Electrones , Proteínas de la Membrana , Microscopía por Crioelectrón , Tensoactivos
2.
Anal Chem ; 94(41): 14151-14158, 2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36200347

RESUMEN

One of the biggest challenges in membrane protein (MP) research is to secure physiologically relevant structural and functional information after extracting MPs from their native membrane. Amphipathic polymers represent attractive alternatives to detergents for stabilizing MPs in aqueous solutions. The predominant polymers used in MP biochemistry and biophysics are amphipols (APols), one class of which, styrene maleic acid (SMA) copolymers and their derivatives, has proven particularly efficient at MP extraction. In order to examine the relationship between the chemical structure of the polymers and their ability to extract MPs from membranes, we have developed two novel classes of APols bearing either cycloalkane or aryl (aromatic) rings, named CyclAPols and ArylAPols, respectively. The effect on solubilization of such parameters as the density of hydrophobic groups, the number of carbon atoms and their arrangement in the hydrophobic moieties, as well as the charge density of the polymers was evaluated. The membrane-solubilizing efficiency of the SMAs, CyclAPols, and ArylAPols was compared using as models (i) two MPs, BmrA and a GFP-fused version of LacY, overexpressed in the inner membrane of Escherichia coli, and (ii) bacteriorhodopsin, naturally expressed in the purple membrane of Halobacterium salinarum. This analysis shows that, as compared to SMAs, the novel APols feature an improved efficiency at extracting MPs while preserving native protein-lipid interactions.


Asunto(s)
Bacteriorodopsinas , Cicloparafinas , Carbono , Detergentes/química , Lípidos , Maleatos/química , Polímeros/química , Poliestirenos/química
3.
Biotechnol Bioeng ; 118(11): 4317-4330, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34297405

RESUMEN

Pathogen surface antigens are at the forefront of the viral strategy when invading host organisms. These antigens, including membrane proteins (MPs), are broadly targeted by the host immune response. Obtaining these MPs in a soluble and stable form constitutes a real challenge, regardless of the application purposes (e.g. quantification/characterization assays, diagnosis, and preventive and curative strategies). A rapid process to obtain a native-like antigen by solubilization of a full-length MP directly from a pathogen is reported herein. Rabies virus (RABV) was used as a model for this demonstration and its full-length G glycoprotein (RABV-G) was stabilized with amphipathic polymers, named amphipols (APols). The stability of RABV-G trapped in APol A8-35 (RABV-G/A8-35) was evaluated under different stress conditions (temperature, agitation, and light exposure). RABV-G/A8-35 in liquid form exhibited higher unfolding temperature (+6°C) than in detergent and was demonstrated to be antigenically stable over 1 month at 5°C and 25°C. Kinetic modeling of antigenicity data predicted antigenic stability of RABV-G/A8-35 in a solution of up to 1 year at 5°C. The RABV-G/A8-35 complex formulated in an optimized buffer composition and subsequently freeze-dried displayed long-term stability for 2-years at 5, 25, and 37°C. This study reports for the first time that a natural full-length MP extracted from a virus, complexed to APols and subsequently freeze-dried, displayed long-term antigenic stability, without requiring storage under refrigerated conditions.


Asunto(s)
Antígenos Virales/química , Antígenos Virales/aislamiento & purificación , Detergentes/química , Virus de la Rabia/química , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/aislamiento & purificación , Liofilización , Estabilidad Proteica
4.
Biomacromolecules ; 21(8): 3459-3467, 2020 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-32602705

RESUMEN

Membrane proteins (MPs) need to be extracted from biological membranes and purified in their native state for most structural and functional in vitro investigations. Amphiphilic copolymers, such as amphipols (APols), have emerged as very useful alternatives to detergents for keeping MPs water-soluble under their native form. However, classical APols, such as poly(acrylic acid) (PAA) derivatives, seldom enable direct MP extraction. Poly(styrene maleic anhydride) copolymers (SMAs), which bear aromatic rings as hydrophobic side groups, have been reported to be more effective extracting agents. In order to test the hypothesis of the role of cyclic hydrophobic moieties in membrane solubilization by copolymers, we have prepared PAA derivatives comprising cyclic rather than linear aliphatic side groups (CyclAPols). As references, APol A8-35, SMAs, and diisobutylene maleic acid (DIBMA) were compared with CyclAPols. Using as models the plasma membrane of Escherichia coli and the extraction-resistant purple membrane from Halobacterium salinarum, we show that CyclAPols combine the extraction efficiency of SMAs with the stabilization afforded to MPs by classical APols such as A8-35.


Asunto(s)
Cicloparafinas , Polímeros , Escherichia coli , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas de la Membrana
5.
Methods ; 147: 95-105, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29678587

RESUMEN

Membrane proteins (MPs) are important pharmacological targets because of their involvement in many essential cellular processes whose dysfunction can lead to a large variety of diseases. A detailed knowledge of the structure of MPs and the molecular mechanisms of their activity is essential to the design of new therapeutic agents. However, studying MPs in vitro is challenging, because it generally implies their overexpression under a functional form, followed by their extraction from membranes and purification. Targeting an overexpressed MP to a membrane is often toxic and expression yields tend to be limited. One alternative is the formation of inclusion bodies (IBs) in the cytosol of the cell, from which MPs need then to be folded to their native conformation before structural and functional analysis can be contemplated. Folding MPs targeted to IBs is a difficult task. Specially designed amphipathic polymers called 'amphipols' (APols), which have been initially developed with the view of improving the stability of MPs in aqueous solutions compared to detergents, can be used to fold both α-helical and ß-barrel MPs. APols represent an interesting novel amphipathic medium, in which high folding yields can be achieved. In this review, the properties of APol A8-35 and of the complexes they form with MPs are summarized. An overview of the most important studies reported so far using A8-35 to fold MPs is presented. Finally, from a practical point of view, a detailed description of the folding and trapping methods is given.


Asunto(s)
Proteínas de la Membrana/química , Polímeros/química , Propilaminas/química , Pliegue de Proteína , Conformación Proteica en Hélice alfa , Desnaturalización Proteica , Estabilidad Proteica
6.
Nucleic Acids Res ; 42(10): e83, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24744236

RESUMEN

Amphipols (APols) are specially designed amphipathic polymers that stabilize membrane proteins (MPs) in aqueous solutions in the absence of detergent. A8-35, a polyacrylate-based APol, has been grafted with an oligodeoxynucleotide (ODN). The synthesis, purification and properties of the resulting 'OligAPol' have been investigated. Grafting was performed by reacting an ODN carrying an amine-terminated arm with the carboxylates of A8-35. The use of OligAPol for trapping MPs and immobilizing them onto solid supports was tested using bacteriorhodopsin (BR) and the transmembrane domain of Escherichia coli outer membrane protein A (tOmpA) as model proteins. BR and OligAPol form water-soluble complexes in which BR remains in its native conformation. Hybridization of the ODN arm with a complementary ODN was not hindered by the assembly of OligAPol into particles, nor by its association with BR. BR/OligAPol and tOmpA/OligAPol complexes could be immobilized onto either magnetic beads or gold nanoparticles grafted with the complementary ODN, as shown by spectroscopic measurements, fluorescence microscopy and the binding of anti-BR and anti-tOmpA antibodies. OligAPols provide a novel, highly versatile approach to tagging MPs, without modifying them chemically nor genetically, for specific, reversible and targetable immobilization, e.g. for nanoscale applications.


Asunto(s)
Proteínas de la Membrana/química , Oligodesoxirribonucleótidos/química , Polímeros/química , Propilaminas/química , Proteínas de la Membrana Bacteriana Externa/química , Bacteriorodopsinas/química , Oro , Proteínas Inmovilizadas/química , Nanopartículas del Metal , Microesferas , Hibridación de Ácido Nucleico , Polímeros/síntesis química , Propilaminas/síntesis química
7.
Biomacromolecules ; 16(12): 3751-61, 2015 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-26492302

RESUMEN

Amphipols (APols) are short amphipathic polymers that stabilize membrane proteins (MPs) in aqueous solutions. In the present study, A8-35, a polyacrylate-based APol, was grafted with hexahistidine tags (His6-tags). The synthesis and characterization of this novel functionalized APol, named HistAPol, are described. Its ability to immobilize MPs on nickel ion-bearing surfaces was tested using two complementary methods, immobilized metal affinity chromatography (IMAC) and surface plasmon resonance (SPR). Compared to a single His6-tag fused at one extremity of a MP, the presence of several His6-tags carried by the APol belt surrounding the transmembrane domain of a MP increases remarkably the affinity of the protein/APol complex for nickel ion-bearing SPR chips, whereas it does not show such a strong effect on an IMAC resin. HistAPol-mediated immobilization, which allows reversibility of the interaction and easy regeneration of the supports and dispenses with any genetic modification of the target protein, provides a novel, promising tool for attaching MPs onto solid supports while stabilizing them.


Asunto(s)
Histidina/química , Proteínas Inmovilizadas/química , Proteínas de la Membrana/química , Oligopéptidos/química , Polímeros/síntesis química , Propilaminas/síntesis química , Cationes Bivalentes , Cromatografía de Afinidad , Níquel/química , Polímeros/química , Propilaminas/química , Estabilidad Proteica , Soluciones , Resonancia por Plasmón de Superficie , Agua
8.
J Membr Biol ; 247(9-10): 797-814, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24696186

RESUMEN

Amphipols (APols) are short amphipathic polymers developed as an alternative to detergents for handling membrane proteins (MPs) in aqueous solution. MPs are, as a rule, much more stable following trapping with APols than they are in detergent solutions. The best-characterized APol to date, called A8-35, is a mixture of short-chain sodium polyacrylates randomly derivatized with octylamine and isopropylamine. Its solution properties have been studied in detail, and it has been used extensively for biochemical and biophysical studies of MPs. One of the attractive characteristics of APols is that it is relatively easy to label them, isotopically or otherwise, without affecting their physical-chemical properties. Furthermore, several variously modified APols can be mixed, achieving multiple functionalization of MP/APol complexes in the easiest possible manner. Labeled or tagged APols are being used to study the solution properties of APols, their miscibility, their biodistribution upon injection into living organisms, their association with MPs and the composition, structure and dynamics of MP/APol complexes, examining the exchange of surfactants at the surface of MPs, labeling MPs to follow their distribution in fractionation experiments or to immobilize them, increasing the contrast between APols and solvent or MPs in biophysical experiments, improving NMR spectra, etc. Labeling or functionalization of APols can take various courses, each of which has its specific constraints and advantages regarding both synthesis and purification. The present review offers an overview of the various derivatives of A8-35 and its congeners that have been developed in our laboratory and discusses the pros and cons of various synthetic routes.


Asunto(s)
Membrana Celular/química , Membrana Dobles de Lípidos/química , Proteínas de la Membrana/química , Polímeros/química , Propilaminas/química , Coloración y Etiquetado/métodos , Tensoactivos/química , Agua/química , Animales , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Polímeros/síntesis química , Propilaminas/síntesis química , Solubilidad , Soluciones
9.
J Membr Biol ; 247(9-10): 925-40, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25086771

RESUMEN

Specific, tight-binding protein partners are valuable helpers to facilitate membrane protein (MP) crystallization, because they can i) stabilize the protein, ii) reduce its conformational heterogeneity, and iii) increase the polar surface from which well-ordered crystals can grow. The design and production of a new family of synthetic scaffolds (dubbed αReps, for "artificial alpha repeat protein") have been recently described. The stabilization and immobilization of MPs in a functional state are an absolute prerequisite for the screening of binders that recognize specifically their native conformation. We present here a general procedure for the selection of αReps specific of any MP. It relies on the use of biotinylated amphipols, which act as a universal "Velcro" to stabilize, and immobilize MP targets onto streptavidin-coated solid supports, thus doing away with the need to tag the protein itself.


Asunto(s)
Membrana Celular/química , Proteínas de la Membrana/química , Biblioteca de Péptidos , Péptidos/química , Mapeo de Interacción de Proteínas/métodos , Tensoactivos/química , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas de la Membrana/análisis , Unión Proteica , Transporte de Proteínas , Solubilidad , Andamios del Tejido/química
10.
J Membr Biol ; 247(9-10): 827-42, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24676477

RESUMEN

Solution-state nuclear magnetic resonance studies of membrane proteins are facilitated by the increased stability that trapping with amphipols confers to most of them as compared to detergent solutions. They have yielded information on the state of folding of the proteins, their areas of contact with the polymer, their dynamics, water accessibility, and the structure of protein-bound ligands. They benefit from the diversification of amphipol chemical structures and the availability of deuterated amphipols. The advantages and constraints of working with amphipols are discussed and compared to those associated with other non-conventional environments, such as bicelles and nanodiscs.


Asunto(s)
Membrana Celular/química , Membrana Dobles de Lípidos/química , Espectroscopía de Resonancia Magnética/métodos , Proteínas de la Membrana/química , Polímeros/química , Tensoactivos/química , Animales , Artefactos , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Solubilidad , Soluciones , Evaluación de la Tecnología Biomédica , Agua/química
11.
Biochemistry ; 51(7): 1416-30, 2012 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-22304405

RESUMEN

Nonionic amphipols (NAPols) synthesized by homotelomerization of an amphiphatic monomer are able to keep membrane proteins (MPs) stable and functional in the absence of detergent. Some of their biochemical and biophysical properties and applications have been examined, with particular attention being paid to their complementarity with the classical polyacrylate-based amphipol A8-35. Bacteriorhodopsin (BR) from Halobacterium salinarum and the cytochrome b(6)f complex from Chlamydomonas reinhardtii were found to be in their native state and highly stable following complexation with NAPols. NAPol-trapped BR was shown to undergo its complete photocycle. Because of the pH insensitivity of NAPols, solution nuclear magnetic resonance (NMR) two-dimensional (1)H-(15)N heteronuclear single-quantum coherence spectra of NAPol-trapped outer MP X from Escherichia coli (OmpX) could be recorded at pH 6.8. They present a resolution similar to that of the spectra of OmpX/A8-35 complexes recorded at pH 8.0 and give access to signals from solvent-exposed rapidy exchanging amide protons. Like A8-35, NAPols can be used to fold MPs to their native state as demonstrated here with BR and with the ghrelin G protein-coupled receptor GHS-R1a, thus extending the range of accessible folding conditions. Following NAPol-assisted folding, GHS-R1a bound four of its specific ligands, recruited arrestin-2, and activated binding of GTPγS by the G(αq) protein. Finally, cell-free synthesis of MPs, which is inhibited by A8-35 and sulfonated amphipols, was found to be very efficient in the presence of NAPols. These results open broad new perspectives on the use of amphipols for MP studies.


Asunto(s)
Proteínas de la Membrana/química , Polímeros/química , Propilaminas/química , Bacteriorodopsinas/química , Tampones (Química) , Sistema Libre de Células , Chlamydomonas reinhardtii/metabolismo , Citocromos b6/química , Escherichia coli/metabolismo , Proteínas de Unión al GTP/química , Ghrelina/química , Glicosilación , Halobacterium salinarum/metabolismo , Iones , Espectroscopía de Resonancia Magnética/métodos , Pliegue de Proteína , Receptores de Ghrelina/química
12.
Langmuir ; 28(10): 4625-39, 2012 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-22299604

RESUMEN

A novel type of nonionic amphipols for handling membrane proteins in detergent-free aqueous solutions has been obtained through free-radical homo-telomerization of an acrylamide-based monomer comprising a C(11) alkyl chain and two glucose moieties, using a thiol as transfer reagent. By controlling the thiol/monomer ratio, the number-average molecular weight of the polymers was varied from 8 to 63 kDa. Homopolymeric nonionic amphipols were found to be highly soluble in water and to self-organize, within a large concentration range, into small, compact particles of ~6 nm diameter with a narrow size distribution, regardless of the molecular weight of the polymer. They proved able to trap and stabilize two test membrane proteins, bacteriorhodopsin from Halobium salinarum and the outer membrane protein X of Escherichia coli, under the form of small and well-defined complexes, whose size, composition, and shape were studied by aqueous size-exclusion chromatography, analytical ultracentrifugation, and small-angle neutron scattering. As shown in a companion paper, nonionic amphipols can be used for membrane protein folding, cell-free synthesis, and solution NMR studies (Bazzacco et al. 2012, Biochemistry, DOI: 10.1021/bi201862v).


Asunto(s)
Polímeros/química , Polímeros/síntesis química , Tensoactivos/química , Tensoactivos/síntesis química , Proteínas de la Membrana Bacteriana Externa/química , Bacteriorodopsinas/química , Proteínas de Escherichia coli/química , Halobacterium salinarum/química , Hidrolasas/química , Luz , Sustancias Macromoleculares/química , Modelos Moleculares , Estructura Molecular , Difracción de Neutrones , Estabilidad Proteica , Dispersión del Ángulo Pequeño , Soluciones
13.
Methods Mol Biol ; 2507: 19-39, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35773575

RESUMEN

Despite recent progresses in the use of eukaryotic expression system, production of membrane proteins for structural studies still relies on microbial expression systems. In this review, we provide protocols to achieve high level expression of membrane proteins in Escherichia coli, especially using the T7 RNA polymerase based expression system. From the design of the construct, the choice of the appropriate vector-host combination, the assessment of the bacterial fitness, to the selection of bacterial mutant adapted to the production of the target membrane protein, the chapter covers all necessary methods for a rapid optimization of a specific target membrane protein. In addition, we provide a protocol for membrane protein solubilization based on our recent analysis of the Protein Data Bank.


Asunto(s)
Escherichia coli , Proteínas de la Membrana , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Recombinantes/metabolismo , Literatura de Revisión como Asunto
14.
Nat Commun ; 13(1): 1780, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35365643

RESUMEN

Cell membranes represent a complex and variable medium in time and space of lipids and proteins. Their physico-chemical properties are determined by lipid components which can in turn influence the biological function of membranes. Here, we used hydrostatic pressure to study the close dynamic relationships between lipids and membrane proteins. Experiments on the ß-barrel OmpX and the α-helical BLT2 G Protein-Coupled Receptor in nanodiscs of different lipid compositions reveal conformational landscapes intimately linked to pressure and lipids. Pressure can modify the conformational landscape of the membrane protein per se, but also increases the gelation of lipids, both being monitored simultaneously at high atomic resolution by NMR. Our study also clearly shows that a membrane protein can modulate, at least locally, the fluidity of the bilayer. The strategy proposed herein opens new perspectives to scrutinize the dynamic interplay between membrane proteins and their surrounding lipids.


Asunto(s)
Membrana Dobles de Lípidos , Proteínas de la Membrana , Membrana Celular , Presión Hidrostática , Membrana Dobles de Lípidos/química , Espectroscopía de Resonancia Magnética , Proteínas de la Membrana/química
15.
Vaccine ; 38(28): 4412-4422, 2020 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-32386746

RESUMEN

A new vaccine formulated with the Chlamydia muridarum native major outer membrane protein (nMOMP) and amphipols was assessed in an intranasal (i.n.) challenge mouse model. nMOMP was trapped either in amphipol A8-35 (nMOMP/A8-35) or in A8-35 conjugated with Resiquimod (nMOMP/Resiq-A8-35), a TLR7/8 agonist added as adjuvant. The effects of free Resiquimod and/or additional adjuvants, Montanide ISA 720 (TLR independent) and CpG-1826 (TLR9 agonist), were also evaluated. Immunization with nMOMP/A8-35 alone administered i.n. was used as negative adjuvant-control group, whereas immunizations with C. muridarum elementary bodies (EBs) and MEM buffer, administered i.n., were used as positive and negative controls, respectively. Vaccinated mice were challenged i.n. with C. muridarum and changes in body weight, lungs weight and recovery of Chlamydia from the lungs were evaluated. All the experimental groups showed protection when compared with the negative control group. Resiquimod alone produced weak humoral and cellular immune responses, but both Montanide and CpG-1826 showed significant increases in both responses. The addition of CpG-1826 alone switched immune responses to be Th1-biased. The most robust protection was elicited in mice immunized with the three adjuvants and conjugated Resiquimod. Increased protection induced by the Resiquimod covalently linked to A8-35, in the presence of Montanide and CpG-1826 was established based on a set of parameters: (1) the ability of the antibodies to neutralize C. muridarum; (2) the increased proliferation of T-cells in vitro accompanied by higher production of IFN-γ, IL-6 and IL-17; (3) the decreased body weight loss over the 10 days after challenge; and (4) the number of IFUs recovered from the lungs at day 10 post challenge. In conclusion, a vaccine formulated with the C. muridarum nMOMP bound to amphipols conjugated with Resiquimod enhances protective immune responses that can be further improved by the addition of Montanide and CpG-1826.


Asunto(s)
Infecciones por Chlamydia , Chlamydia muridarum , Adyuvantes Inmunológicos , Animales , Anticuerpos Antibacterianos , Proteínas de la Membrana Bacteriana Externa , Vacunas Bacterianas , Infecciones por Chlamydia/prevención & control , Imidazoles , Ratones , Ratones Endogámicos BALB C , Oligodesoxirribonucleótidos
16.
Vaccine ; 36(45): 6640-6649, 2018 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-30293763

RESUMEN

INTRODUCTION: Chlamydial infections are spread worldwide and a vaccine is needed to control this pathogen. The goals of this study were to determine if the delivery of an adjuvant associated to the antigen, via a derivatized amphipol, and adjuvant combinations improve vaccine protection. METHODS: A novel approach, trapping the Chlamydia muridarum (Cm) native MOMP (nMOMP) with amphipols (A8-35), bearing a covalently conjugated peptide (EP67), was used. Adjuvants incorporated were: EP67 either conjugated to A8-35, which was used to trap nMOMP (nMOMP/EP67-A8-35), or free as a control, added to nMOMP/A8-35 complexes (nMOMP/A8-35+EP67); Montanide ISA 720 to enhance humoral responses, and CpG-1826 to elicit robust cell-mediated immunity (CMI). BALB/c mice were immunized by mucosal and systemic routes. Intranasal immunization with live Cm was used as positive control and three negative controls were included. Mice were challenged intranasally with Cm and changes in body weight, lungs weight and number of Cm-inclusion forming units (IFU) recovered from the lungs were evaluated to establish protection. To assess local responses levels of IFN- γ and Cm-specific IgA were determined in lungs' supernatants. RESULTS: Structural assays demonstrated that nMOMP secondary structure and thermal stability were maintained when A8-35 was covalently modified. Mice vaccinated with nMOMP/EP67-A8-35 were better protected than animals immunized with nMOMP/A8-35+EP67. Addition of Montanide enhanced Th2 responses and improved protection. Including CpG-1826 further broadened, intensified and switched to Th1-biased immune responses. With delivery of nMOMP and the three adjuvants, as determined by changes in body weight, lungs weight and number of IFU recovered from lungs, protection at 10 days post-challenge was equivalent to that induced by immunization with live Cm. CONCLUSIONS: Covalent association of EP67 to A8-35, used to keep nMOMP water-soluble, improves protection over that conferred by free EP67. Adjuvant combinations including EP67+Montanide+CpG-1826, by broadening and intensifying cellular and humoral immune responses, further enhanced protection.


Asunto(s)
Adyuvantes Inmunológicos/uso terapéutico , Proteínas de la Membrana Bacteriana Externa/inmunología , Vacunas Bacterianas/uso terapéutico , Infecciones por Chlamydia/prevención & control , Animales , Anticuerpos Antibacterianos/inmunología , Chlamydia muridarum/inmunología , Chlamydia muridarum/patogenicidad , Femenino , Ratones , Ratones Endogámicos BALB C
17.
ACS Nano ; 8(2): 1844-53, 2014 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-24476392

RESUMEN

Whether for fundamental biological research or for diagnostic and drug discovery applications, protein micro- and nanoarrays are attractive technologies because of their low sample consumption, high-throughput, and multiplexing capabilities. However, the arraying platforms developed so far are still not able to handle membrane proteins, and specific methods to selectively immobilize these hydrophobic and fragile molecules are needed to understand their function and structural complexity. Here we integrate two technologies, electropolymerization and amphipols, to demonstrate the electrically addressable functionalization of micro- and nanosurfaces with membrane proteins. Gold surfaces are selectively modified by electrogeneration of a polymeric film in the presence of biotin, where avidin conjugates can then be selectively immobilized. The method is successfully applied to the preparation of protein-multiplexed arrays by sequential electropolymerization and biomolecular functionalization steps. The surface density of the proteins bound to the electrodes can be easily tuned by adjusting the amount of biotin deposited during electropolymerization. Amphipols are specially designed amphipathic polymers that provide a straightforward method to stabilize and add functionalities to membrane proteins. Exploiting the strong affinity of biotin for streptavidin, we anchor distinct membrane proteins onto different electrodes via a biotin-tagged amphipol. Antibody-recognition events demonstrate that the proteins are stably immobilized and that the electrodeposition of polypyrrole films bearing biotin units is compatible with the protein-binding activity. Since polypyrrole films show good conductivity properties, the platform described here is particularly well suited to prepare electronically transduced bionanosensors.


Asunto(s)
Biotina/química , Proteínas de la Membrana/química , Nanoestructuras , Polímeros/química , Pirroles/química
18.
J Agric Food Chem ; 56(23): 11217-24, 2008 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-19012406

RESUMEN

A non-radioactive blot binding assay has proved the capacity of a purified recombinant form of Arabidopsis thaliana caleosin (AtClo1), a key protein of this plant oil body, to bind calcium. Calcium affected recombinant caleosin aggregation state, solubility, and electrophoretic mobility on SDS-PAGE. The effect of calcium on interfacial behavior of recombinant caleosin was studied at three interfaces: air/water (A/W), purified oil/water (O/W), and air/phosholipid/water (A/PLs/W). Recombinant caleosin was able to decrease interfacial tension (IFT) at A/W and O/W interfaces as a function of concentration and calcium, whereas no interaction was detected at the A/PLs/W interface. Effect of calcium was time dependent, and its amplitude strongly varied with the interface considered. Reconstituted oil bodies were used to prove the involvement of recombinant caleosin in their calcium-driven aggregation and coalescence. Calcium ions at concentration as low as 100 nM were able to strongly modify the shape and aggregation state of purified oil bodies, as well as their behavior within a monolayer, reflecting potentially profound changes in their structure and dynamic.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/metabolismo , Calcio/metabolismo , Arabidopsis/química , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA