RESUMEN
BACKGROUND: Ankle-foot orthoses (AFOs) are commonly used by children with cerebral palsy (CP), but traditional solutions are unable to address the heterogeneity and evolving needs amongst children with CP. One key limitation lies in the inability of current passive devices to customize the torque-angle relationship, which is essential to adapt the support to the specific individual needs. Powered alternatives can provide customized behavior, but often face challenges with reliability, weight, and cost. Overall, clinicians find certain barriers that hinder their prescription. In recent work, the Variable Stiffness Orthosis (VSO) was developed, enabling stiffness customization without the need for motors or sophisticated control. METHODS: This work evaluates a pediatric version of the VSO (inGAIT-VSO) by investigating its impact on the walking performance of children with CP and its potential to be used as a tool for assessing the effect of variable stiffness on pathological gait. Data was collected for three typical developing (TD) children and six pediatric participants with CP over two sessions involving walking/balance tasks and questionnaires. RESULTS: The sensors of the inGAIT-VSO provided useful information to assess the impact of the device. Increasing the stiffness of the inGAIT-VSO significantly reduced participants' dorsiflexion and plantarflexion. Despite reduced range of motion, the peak restoring torque increased with stiffness. Overall the participants' gait pattern was altered by reducing crouch gait, preventing drop-foot and supporting body weight. Participants with CP exhibited significantly lower (p < 0.05) physiological cost when walking with the inGAIT-VSO compared to normal condition (own AFO or shoes only). Generally, the device did not impair walking and balance of the participants compared to normal conditions. According to the questionnaire results, the inGAIT-VSO was easy to use and participants reported positive experiences. CONCLUSION: The inGAIT-VSO stiffnesses significantly affected participants' plantarflexion and dorsiflexion and yielded objective data regarding walking performance in pathological gait (e.g. ankle angle, exerted torque and restored assistive energy). These effects were captured by the sensors integrated in the device without using external equipment. The inGAIT-VSO shows promise for customizing AFO stiffness and aiding clinicians in selecting a personalized stiffness based on objective metrics.
Asunto(s)
Tobillo , Parálisis Cerebral , Ortesis del Pié , Caminata , Humanos , Parálisis Cerebral/rehabilitación , Parálisis Cerebral/fisiopatología , Niño , Masculino , Caminata/fisiología , Femenino , Tobillo/fisiopatología , Tobillo/fisiología , Adolescente , Trastornos Neurológicos de la Marcha/rehabilitación , Trastornos Neurológicos de la Marcha/etiología , Trastornos Neurológicos de la Marcha/fisiopatología , Diseño de Equipo , Fenómenos Biomecánicos , Equilibrio Postural/fisiología , Pie/fisiopatologíaRESUMEN
BACKGROUND: Spasticity, i.e. stretch hyperreflexia, increases joint resistance similar to symptoms like hypertonia and contractures. Botulinum neurotoxin-A (BoNT-A) injections are a widely used intervention to reduce spasticity. BoNT-A effects on spasticity are poorly understood, because clinical measures, e.g. modified Ashworth scale (MAS), cannot differentiate between the symptoms affecting joint resistance. This paper distinguishes the contributions of the reflexive and intrinsic pathways to ankle joint hyper-resistance for participants treated with BoNT-A injections. We hypothesized that the overall joint resistance and reflexive contribution decrease 6 weeks after injection, while returning close to baseline after 12 weeks. METHODS: Nine participants with spasticity after spinal cord injury or after stroke were evaluated across three sessions: 0, 6 and 12 weeks after BoNT-A injection in the calf muscles. Evaluation included clinical measures (MAS, Tardieu Scale) and motorized instrumented assessment using the instrumented spasticity test (SPAT) and parallel-cascade (PC) system identification. Assessments included measures for: (1) overall resistance from MAS and fast velocity SPAT; (2) reflexive resistance contribution from Tardieu Scale, difference between fast and slow velocity SPAT and PC reflexive gain; and (3) intrinsic resistance contribution from slow velocity SPAT and PC intrinsic stiffness/damping. RESULTS: Individually, the hypothesized BoNT-A effect, the combination of a reduced resistance (week 6) and return towards baseline (week 12), was observed in the MAS (5 participants), fast velocity SPAT (2 participants), Tardieu Scale (2 participants), SPAT (1 participant) and reflexive gain (4 participants). On group-level, the hypothesis was only confirmed for the MAS, which showed a significant resistance reduction at week 6. All instrumented measures were strongly correlated when quantifying the same resistance contribution. CONCLUSION: At group-level, the expected joint resistance reduction due to BoNT-A injections was only observed in the MAS (overall resistance). This observed reduction could not be attributed to an unambiguous group-level reduction of the reflexive resistance contribution, as no instrumented measure confirmed the hypothesis. Validity of the instrumented measures was supported through a strong association between different assessment methods. Therefore, further quantification of the individual contributions to joint resistance changes using instrumented measures across a large sample size are essential to understand the heterogeneous response to BoNT-A injections.
Asunto(s)
Toxinas Botulínicas Tipo A , Fármacos Neuromusculares , Accidente Cerebrovascular , Humanos , Toxinas Botulínicas Tipo A/uso terapéutico , Fármacos Neuromusculares/uso terapéutico , Articulación del Tobillo , Músculo Esquelético , Espasticidad Muscular/etiología , Accidente Cerebrovascular/complicaciones , Resultado del TratamientoRESUMEN
BACKGROUND: In the last two decades, lower-limb exoskeletons have been developed to assist human standing and locomotion. One of the ongoing challenges is the cooperation between the exoskeleton balance support and the wearer control. Here we present a cooperative ankle-exoskeleton control strategy to assist in balance recovery after unexpected disturbances during walking, which is inspired on human balance responses. METHODS: We evaluated the novel controller in ten able-bodied participants wearing the ankle modules of the Symbitron exoskeleton. During walking, participants received unexpected forward pushes with different timing and magnitude at the pelvis level, while being supported (Exo-Assistance) or not (Exo-NoAssistance) by the robotic assistance provided by the controller. The effectiveness of the assistive strategy was assessed in terms of (1) controller performance (Detection Delay, Joint Angles, and Exerted Ankle Torques), (2) analysis of effort (integral of normalized Muscle Activity after perturbation onset); and (3) Analysis of center of mass COM kinematics (relative maximum COM Motion, Recovery Time and Margin of Stability) and spatio-temporal parameters (Step Length and Swing Time). RESULTS: In general, the results show that when the controller was active, it was able to reduce participants' effort while keeping similar ability to counteract and withstand the balance disturbances. Significant reductions were found for soleus and gastrocnemius medialis activity of the stance leg when comparing Exo-Assistance and Exo-NoAssistance walking conditions. CONCLUSIONS: The proposed controller was able to cooperate with the able-bodied participants in counteracting perturbations, contributing to the state-of-the-art of bio-inspired cooperative ankle exoskeleton controllers for supporting dynamic balance. In the future, this control strategy may be used in exoskeletons to support and improve balance control in users with motor disabilities.
Asunto(s)
Dispositivo Exoesqueleto , Tobillo/fisiología , Articulación del Tobillo/fisiología , Fenómenos Biomecánicos/fisiología , Marcha/fisiología , Humanos , Caminata/fisiologíaRESUMEN
BACKGROUND: Impaired balance during walking is a common problem in people with incomplete spinal cord injury (iSCI). To improve walking capacity, it is crucial to characterize balance control and how it is affected in this population. The foot placement strategy, a dominant mechanism to maintain balance in the mediolateral (ML) direction during walking, can be affected in people with iSCI due to impaired sensorimotor control. This study aimed to determine if the ML foot placement strategy is impaired in people with iSCI compared to healthy controls. METHODS: People with iSCI (n = 28) and healthy controls (n = 19) performed a two-minute walk test at a self-paced walking speed on an instrumented treadmill. Healthy controls performed one extra test at a fixed speed set at 50% of their preferred speed. To study the foot placement strategy of a participant, linear regression was used to predict the ML foot placement based on the ML center of mass position and velocity. The accuracy of the foot placement strategy was evaluated by the root mean square error between the predicted and actual foot placements and was referred to as foot placement deviation. Independent t-tests were performed to compare foot placement deviation of people with iSCI versus healthy controls walking at two different walking speeds. RESULTS: Foot placement deviation was significantly higher in people with iSCI compared to healthy controls independent of walking speed. Participants with iSCI walking in the self-paced condition exhibited 0.40 cm (51%) and 0.33 cm (38%) higher foot placement deviation compared to healthy controls walking in the self-paced and the fixed-speed 50% condition, respectively. CONCLUSIONS: Higher foot placement deviation in people with iSCI indicates an impaired ML foot placement strategy in individuals with iSCI compared to healthy controls.
Asunto(s)
Traumatismos de la Médula Espinal , Caminata , Humanos , Traumatismos de la Médula Espinal/complicaciones , Pie , Velocidad al Caminar , Prueba de EsfuerzoRESUMEN
Motorized assessment of the stretch reflex is instrumental to gain understanding of the stretch reflex, its physiological origin and to differentiate effects of neurological disorders, like spasticity. Both short-latency (M1) and medium-latency (M2) stretch reflexes have been reported to depend on the velocity and acceleration of an applied ramp-and-hold perturbation. In the upper limb, M2 has also been reported to depend on stretch duration. However, wrong conclusions might have been drawn in previous studies as the interdependence of perturbation parameters (amplitude, duration, velocity, and acceleration) possibly created uncontrolled, confounding effects. We disentangled the duration-, velocity-, and acceleration-dependence and their interactions of the M1 and M2 stretch reflex in the ankle plantarflexors. To disentangle the parameter interdependence, 49 unique ramp-and-hold joint perturbations elicited reflexes in 10 healthy volunteers during a torque control task. Linear mixed model analysis showed that M1 depended on acceleration, not velocity or duration, whereas M2 depended on acceleration, velocity, and duration. Simulations of the muscle spindle Ia afferents coupled to a motoneuron pool corroborated these experimental findings. In addition, this simulation model did show a nonlinear M1 velocity- and duration-dependence for perturbation parameters outside the experimental scope. In conclusion, motorized assessment of the stretch reflex or spasticity using ramp-and-hold perturbations should be systematically executed and reported. Our systematic motorized and simulation assessments showed that M1 and M2 depend on acceleration, velocity, and duration of the applied perturbation. The simulation model suggested that these dependencies emerge from: muscle-tendon unit and muscle cross-bridge dynamics, Ia sensitivity to force and yank, and motoneuron synchronization.NEW & NOTEWORTHY Previous research and definitions of the stretch reflex and spasticity have focused on velocity-dependence. We showed that perturbation acceleration, velocity, and duration all shape the M1 and M2 response, often via nonlinear or interacting dependencies. Consequently, systematic execution and reporting of stretch reflex and spasticity studies, avoiding uncontrolled parameter interdependence, is essential for proper understanding of the reflex neurophysiology.
Asunto(s)
Tobillo/fisiología , Fenómenos Biomecánicos/fisiología , Músculo Esquelético/fisiología , Reflejo de Estiramiento/fisiología , Adulto , Femenino , Humanos , Masculino , Adulto JovenRESUMEN
BACKGROUND: People with brain or neural injuries, such as cerebral palsy or spinal cord injury, commonly have joint hyper-resistance. Diagnosis and treatment of joint hyper-resistance is challenging due to a mix of tonic and phasic contributions. The parallel-cascade (PC) system identification technique offers a potential solution to disentangle the intrinsic (tonic) and reflexive (phasic) contributions to joint impedance, i.e. resistance. However, a simultaneous neurophysiological validation of both intrinsic and reflexive joint impedances is lacking. This simultaneous validation is important given the mix of tonic and phasic contributions to joint hyper-resistance. Therefore, the main goal of this paper is to perform a group-level neurophysiological validation of the PC system identification technique using electromyography (EMG) measurements. METHODS: Ten healthy people participated in the study. Perturbations were applied to the ankle joint to elicit reflexes and allow for system identification. Participants completed 20 hold periods of 60 seconds, assumed to have constant joint impedance, with varying magnitudes of intrinsic and reflexive joint impedances across periods. Each hold period provided a paired data point between the PC-based estimates and neurophysiological measures, i.e. between intrinsic stiffness and background EMG, and between reflexive gain and reflex EMG. RESULTS: The intrinsic paired data points, with all subjects combined, were strongly correlated, with a range of [Formula: see text] in both ankle plantarflexors and dorsiflexors. The reflexive paired data points were moderately correlated, with [Formula: see text] in the ankle plantarflexors only. CONCLUSION: An agreement with the neurophysiological basis on which PC algorithms are built is necessary to support its clinical application in people with joint hyper-resistance. Our results show this agreement for the PC system identification technique on group-level. Consequently, these results show the validity of the use of the technique for the integrated assessment and training of people with joint hyper-resistance in clinical practice.
Asunto(s)
Algoritmos , Contractura/fisiopatología , Electromiografía/métodos , Enfermedades Neuromusculares/complicaciones , Procesamiento de Señales Asistido por Computador , Adulto , Articulación del Tobillo , Contractura/diagnóstico , Contractura/etiología , Impedancia Eléctrica , Femenino , Humanos , Masculino , Músculo Esquelético/fisiología , Enfermedades Neuromusculares/fisiopatología , Sistemas en LíneaRESUMEN
Recent advances in the control of overground exoskeletons are being centered on improving balance support and decreasing the reliance on crutches. However, appropriate methods to quantify the stability of these exoskeletons (and their users) are still under development. A reliable and reproducible balance assessment is critical to enrich exoskeletons' performance and their interaction with humans. In this work, we present the BenchBalance system, which is a benchmarking solution to conduct reproducible balance assessments of exoskeletons and their users. Integrating two key elements, i.e., a hand-held perturbator and a smart garment, BenchBalance is a portable and low-cost system that provides a quantitative assessment related to the reaction and capacity of wearable exoskeletons and their users to respond to controlled external perturbations. A software interface is used to guide the experimenter throughout a predefined protocol of measurable perturbations, taking into account antero-posterior and mediolateral responses. In total, the protocol is composed of sixteen perturbation conditions, which vary in magnitude and location while still controlling their orientation. The data acquired by the interface are classified and saved for a subsequent analysis based on synthetic metrics. In this paper, we present a proof of principle of the BenchBalance system with a healthy user in two scenarios: subject not wearing and subject wearing the H2 lower-limb exoskeleton. After a brief training period, the experimenter was able to provide the manual perturbations of the protocol in a consistent and reproducible way. The balance metrics defined within the BenchBalance framework were able to detect differences in performance depending on the perturbation magnitude, location, and the presence or not of the exoskeleton. The BenchBalance system will be integrated at EUROBENCH facilities to benchmark the balance capabilities of wearable exoskeletons and their users.
Asunto(s)
Dispositivo Exoesqueleto , Dispositivos Electrónicos Vestibles , Benchmarking , Muletas , Humanos , Extremidad InferiorRESUMEN
BACKGROUND: People use various strategies to maintain balance, such as taking a reactive step or rotating the upper body. To gain insight in human balance control, it is useful to know what makes people switch from one strategy to another. In previous studies the transition from a non-stepping balance response to reactive stepping was often described by an (extended) inverted pendulum model using a limited number of features. The goal of this study is to predict whether people will take a reactive step to recover from a push and to investigate what features are most relevant for that prediction by using a data-driven approach. METHODS: Ten subjects participated in an experiment in which they received forward pushes to which they had to respond naturally with or without stepping. The collected kinematic and center of pressure data were used to train several classification algorithms to predict reactive stepping. The classification algorithms that performed best were used to determine the most important features through recursive feature elimination. RESULTS: The neural networks performed better than the other classification algorithms. The prediction accuracy depended on the length of the observation time window: the longer the allowed time between the push and the prediction, the higher the accuracy. Using a neural network with one hidden layer and eight neurons, and a feature set consisting of various kinematic and center of pressure related features, an accuracy of 0.91 was obtained for predictions made up until the moment of step leg unloading, in combination with a sensitivity of 0.79 and a specificity 0.97. The most important features were the acceleration and velocity of the center of mass, and the position of the cervical joint center. CONCLUSION: Using our classification-based method the occurrence of reactive stepping could be predicted with a high accuracy, higher than previous methods for predicting natural reactive stepping. The feature set used for that prediction was different from the ones reported in other step prediction studies. Given the high step prediction performance, our method has the potential to be used for triggering reactive stepping in balance controllers of bipedal robots (e.g. exoskeletons).
Asunto(s)
Algoritmos , Fenómenos Biomecánicos/fisiología , Equilibrio Postural/fisiología , Adulto , Femenino , Humanos , MasculinoRESUMEN
BACKGROUND: In clinical practice, therapists choose the amount of assistance for robot-assisted training. This can result in outcomes that are influenced by subjective decisions and tuning of training parameters can be time-consuming. Therefore, various algorithms to automatically tune the assistance have been developed. However, the assistance applied by these algorithms has not been directly compared to manually-tuned assistance yet. In this study, we focused on subtask-based assistance and compared automatically-tuned (AT) robotic assistance with manually-tuned (MT) robotic assistance. METHODS: Ten people with neurological disorders (six stroke, four spinal cord injury) walked in the LOPES II gait trainer with AT and MT assistance. In both cases, assistance was adjusted separately for various subtasks of walking (in this study defined as control of: weight shift, lateral foot placement, trailing and leading limb angle, prepositioning, stability during stance, foot clearance). For the MT approach, robotic assistance was tuned by an experienced therapist and for the AT approach an algorithm that adjusted the assistance based on performances for the different subtasks was used. Time needed to tune the assistance, assistance levels and deviations from reference trajectories were compared between both approaches. In addition, participants evaluated safety, comfort, effect and amount of assistance for the AT and MT approach. RESULTS: For the AT algorithm, stable assistance levels were reached quicker than for the MT approach. Considerable differences in the assistance per subtask provided by the two approaches were found. The amount of assistance was more often higher for the MT approach than for the AT approach. Despite this, the largest deviations from the reference trajectories were found for the MT algorithm. Participants did not clearly prefer one approach over the other regarding safety, comfort, effect and amount of assistance. CONCLUSION: Automatic tuning had the following advantages compared to manual tuning: quicker tuning of the assistance, lower assistance levels, separate tuning of each subtask and good performance for all subtasks. Future clinical trials need to show whether these apparent advantages result in better clinical outcomes.
Asunto(s)
Algoritmos , Dispositivo Exoesqueleto , Trastornos Neurológicos de la Marcha/rehabilitación , Robótica/métodos , Traumatismos de la Médula Espinal/rehabilitación , Rehabilitación de Accidente Cerebrovascular/métodos , Adulto , Femenino , Humanos , Masculino , Persona de Mediana EdadRESUMEN
BACKGROUND: Recently developed controllers for robot-assisted gait training allow for the adjustment of assistance for specific subtasks (i.e. specific joints and intervals of the gait cycle that are related to common impairments after stroke). However, not much is known about possible interactions between subtasks and a better understanding of this can help to optimize (manual or automatic) assistance tuning in the future. In this study, we assessed the effect of separately assisting three commonly impaired subtasks after stroke: foot clearance (FC, knee flexion/extension during swing), stability during stance (SS, knee flexion/extension during stance) and weight shift (WS, lateral pelvis movement). For each of the assisted subtasks, we determined the influence on the performance of the respective subtask, and possible effects on other subtasks of walking and spatiotemporal gait parameters. METHODS: The robotic assistance for the FC, SS and WS subtasks was assessed in nine mildly impaired chronic stroke survivors while walking in the LOPES II gait trainer. Seven trials were performed for each participant in a randomized order: six trials in which either 20% or 80% of assistance was provided for each of the selected subtasks, and one baseline trial where the participant did not receive subtask-specific assistance. The influence of the assistance on performances (errors compared to reference trajectories) for the assisted subtasks and other subtasks of walking as well as spatiotemporal parameters (step length, width and height, swing and stance time) was analyzed. RESULTS: Performances for the impaired subtasks (FC, SS and WS) improved significantly when assistance was applied for the respective subtask. Although WS performance improved when assisting this subtask, participants were not shifting their weight well towards the paretic leg. On a group level, not many effects on other subtasks and spatiotemporal parameters were found. Still, performance for the leading limb angle subtask improved significantly resulting in a larger step length when applying FC assistance. CONCLUSION: FC and SS assistance leads to clear improvements in performance for the respective subtask, while our WS assistance needs further improvement. As effects of the assistance were mainly confined to the assisted subtasks, tuning of FC, SS and WS can be done simultaneously. Our findings suggest that there may be no need for specific, time-intensive tuning protocols (e.g. tuning subtasks after each other) in mildly impaired stroke survivors.
Asunto(s)
Dispositivo Exoesqueleto , Robótica/instrumentación , Rehabilitación de Accidente Cerebrovascular/métodos , Caminata/fisiología , Adulto , Femenino , Trastornos Neurológicos de la Marcha/etiología , Trastornos Neurológicos de la Marcha/rehabilitación , Humanos , Masculino , Persona de Mediana Edad , SobrevivientesRESUMEN
OBJECTIVE: To explore user-centered design methods currently implemented during development of lower limb wearable robots and how they are utilized during different stages of product development. BACKGROUND: Currently, there appears to be a lack of standardized frameworks for evaluation methods and design requirements to implement effective user-centered design for safe and effective clinical or ergonomic system application. METHOD: Responses from a total of 191 experts working in the field of lower limb exoskeletons were analyzed in this exploratory survey. Descriptive statistics were used to present responses and measures of frequency, and chi-square tests were used to contrast the answers of respondents who identified as clinicians versus engineers. RESULTS: A vast majority of respondents involve users in their development, in particular at the initial and iterative stages, although some differences were found between disciplines. A variety of methods and metrics are used to capture feedback from users and test devices, and although valuable, some methods used may not be based on validated measures. Guidelines regarding tests on safety of exoskeletons also lack standardization. CONCLUSION: There seems to be a consensus among experts regarding the importance of a user-centered approach in exoskeleton development; however, standardized frameworks with regard to appropriate testing methods and design approaches are lacking. Such frameworks should consider an interdisciplinary focus on the needs and safety of the intended user during each iteration of the process. APPLICATION: This exploratory study provides an overview of current practice among engineers and clinicians regarding the user-centered design of exoskeletons. Limitations and recommendations for future directions are identified.
Asunto(s)
Dispositivo Exoesqueleto , Extremidad Inferior/fisiología , Robótica , Participación de los Interesados , Diseño Centrado en el Usuario , Humanos , Dispositivos Electrónicos VestiblesRESUMEN
The ankle joint muscles can contribute to balance during walking by modulating the center of pressure and ground reaction forces through an ankle moment. This is especially effective in the sagittal plane through ankle plantar- or dorsiflexion. If the ankle joints were to be physically blocked to make an ankle strategy ineffective, there would be no functional contribution of these muscles to balance during walking, nor would these muscles generate afferent output regarding ankle joint rotation. Consequently, ankle muscle activation for the purpose of balance control would be expected to disappear. We have performed an experiment in which subjects received anteroposterior pelvis perturbations during walking while their ankle joints could not contribute to the balance recovery. The latter was realized by physically blocking the ankle joints through a pair of modified ankle-foot orthoses. In this article we present the lower limb muscle activity responses in reaction to these perturbations. Of particular interest are the tibialis anterior and gastrocnemius medialis muscles, which could not contribute to the balance recovery through the ankle joint or encode muscle length changes caused by ankle joint rotation. Yet, these muscles showed long-latency responses, ~100 ms after perturbation onset. The response amplitudes were dependent on the perturbation magnitude and direction, as well as the state of the leg. The results imply that ankle muscle responses can be evoked without changes in proprioceptive information of those muscles through ankle rotation. This suggest a more centralized regulation of balance control, not strictly related to the ankle joint kinematics. NEW & NOTEWORTHY Walking human subjects received forward-backward perturbations at the pelvis while wearing "pin-shoes," a pair of modified ankle-foot orthoses that physically blocked ankle joint movement and reduced the base of support of each foot to a single point. The lower leg muscles showed long-latency perturbation-dependent activity changes, despite having no functional contributions to balance control through the ankle joint and not having been subjected to muscle length changes through ankle joint rotation.
Asunto(s)
Articulación del Tobillo/fisiología , Músculo Esquelético/fisiología , Equilibrio Postural , Caminata/fisiología , Femenino , Humanos , Masculino , Contracción Muscular , Propiocepción , Tiempo de Reacción , Rotación , Adulto JovenRESUMEN
BACKGROUND: Wearable exoskeletons can be a powerful tool for the facilitation of ambulation of complete Spinal Cord Injury (SCI) subjects, which has several psychological and physical advantages. However, exoskeleton control is difficult for this group of users and requires a long period of training. People with SCI not only lack the motor control, but also miss the sensory information from below the level of the lesion, which is for example very important in their perception of body posture and makes balancing with an exoskeleton difficult. It is hypothesized that through sensory substitution part of the missing sensory information can be provided and might thereby improve the control of an exoskeleton. However, it is not known which information would be most important to receive while using an exoskeleton and how this feedback should be provided. METHODS: To investigate the preferences of users of an exoskeleton, a questionnaire was filled out by 10 SCI subjects who underwent a training program with a commercial exoskeleton (ReWalk). The questionnaire consisted of questions about the use of the exoskeleton to identify which information is missing and which instructions from the therapists were needed to be able to control the exoskeleton. The second part of the questionnaire focused on the possibilities of sensory feedback and preferences for stimulation methods (auditory, vibrotactile or visual) and feedback timing (discrete or continuous) were investigated. Furthermore, six options for feedback parameters (step initiation, continuous and discrete gait phases, foot position and mediolateral and anteroposterior weight shift) were proposed and the respondents were asked to indicate their preferences. RESULTS: Three feedback parameters (feedback about mediolateral and anteroposterior weight shift and feedback about step initiation) were considered as possibly helpful by the respondents. Furthermore, there were slight preferences for the use of vibrotactile (over auditory and visual) and discrete (over continuous) feedback. CONCLUSIONS: The answers of the respondents on the optimal feedback parameters were rather variable and therefore it is recommended to let the users choose their preferred feedback system during a training session with several feedback options. However, there are slight preferences for the use of vibrotactile stimulation provided in a discrete way.
Asunto(s)
Dispositivo Exoesqueleto , Retroalimentación Sensorial , Prioridad del Paciente , Traumatismos de la Médula Espinal/rehabilitación , Encuestas y Cuestionarios , Adulto , Femenino , Humanos , Masculino , Dispositivos Electrónicos VestiblesRESUMEN
BACKGROUND: Lower extremity exoskeletons are mainly used to provide stepping support, while balancing is left to the user. Designing balance controllers is one of the biggest challenges in the development of exoskeletons. The goal of this study was to design and evaluate a balance controller for a powered ankle-foot orthosis and assess its effect on the standing balance of healthy subjects. METHODS: We designed and implemented a balance controller based on the subject's body sway. This controller was compared to a simple virtual-ankle stiffness and a zero impedance controller. Ten healthy subjects wearing a powered ankle-foot orthosis had to maintain standing balance without stepping while receiving anteroposterior pushes. Center of mass kinematics, ankle torques and muscle activity of the lower legs were analyzed to assess the balance performance of the user and exoskeleton. RESULTS: The different controllers did not significantly affect the center of mass responses. However, the body sway based controller resulted in a decrease of 29% in the biological ankle torque compared to the zero impedance controller and a decrease of 32% compared to the virtual-ankle stiffness. Furthermore, the soleus muscle activity of the left and right leg decreased on average with 8%, while the tibialis anterior muscle activity increased with 47% compared to zero impedance. CONCLUSION: The body sway based controller generated human-like torque profiles, whereas the virtual-ankle stiffness did not. As a result, the powered ankle-foot orthosis with the body sway based controller was effective in assisting the healthy subjects in maintaining balance, although the improvements were not seen in the body sway response, but in the subjects' decreased biological ankle torques to counteract the perturbations. This decrease was a combined effect of decreased soleus muscle activity and increased tibialis anterior muscle activity.
Asunto(s)
Dispositivo Exoesqueleto , Ortesis del Pié , Equilibrio Postural/fisiología , Adulto , Tobillo/fisiología , Articulación del Tobillo/fisiología , Fenómenos Biomecánicos , Femenino , Pie/fisiología , Humanos , MasculinoRESUMEN
Clinically useful and efficient assessment of balance during standing and walking is especially challenging in patients with neurological disorders. However, rehabilitation robots could facilitate assessment procedures and improve their clinical value. We present a short overview of balance assessment in clinical practice and in posturography. Based on this overview, we evaluate the potential use of robotic tools for such assessment. The novelty and assumed main benefits of using robots for assessment are their ability to assess 'severely affected' patients by providing assistance-as-needed, as well as to provide consistent perturbations during standing and walking while measuring the patient's reactions. We provide a classification of robotic devices on three aspects relevant to their potential application for balance assessment: 1) how the device interacts with the body, 2) in what sense the device is mobile, and 3) on what surface the person stands or walks when using the device. As examples, nine types of robotic devices are described, classified and evaluated for their suitability for balance assessment. Two example cases of robotic assessments based on perturbations during walking are presented. We conclude that robotic devices are promising and can become useful and relevant tools for assessment of balance in patients with neurological disorders, both in research and in clinical use. Robotic assessment holds the promise to provide increasingly detailed assessment that allows to individually tailor rehabilitation training, which may eventually improve training effectiveness.
Asunto(s)
Enfermedades del Sistema Nervioso/diagnóstico , Modalidades de Fisioterapia/instrumentación , Equilibrio Postural , Robótica/métodos , Caminata , Humanos , MasculinoRESUMEN
BACKGROUND: The effects of a stroke, such as hemiparesis, can severely hamper the ability to walk and to maintain balance during gait. Providing support to stroke survivors through a robotic exoskeleton, either to provide training or daily-life support, requires an understanding of the balance impairments that result from a stroke. Here, we investigate the differences between the paretic and non-paretic leg in making recovery steps to restore balance following a disturbance during walking. METHODS: We perturbed 10 chronic-stage stroke survivors during walking using mediolateral perturbations of various amplitudes. Kinematic data as well as gluteus medius muscle activity levels during the first recovery step were recorded and analyzed. RESULTS: The results show that this group of subjects is able to modulate foot placement in response to the perturbations regardless of the leg being paretic or not. Modulation in gluteus medius activity with the various perturbations is in line with this observation. In general, the foot of the paretic leg was laterally placed further away from the center of mass than that of the non-paretic leg, while subjects spent more time standing on the non-paretic leg. CONCLUSIONS: The findings suggest that, though stroke-related gait characteristics are present, the modulation with the various perturbations remains unaffected. This might be because all subjects were only mildly impaired, or because these stepping responses partly occur through involuntary pathways which remain unaffected by the complications after the stroke.
Asunto(s)
Paresia/etiología , Paresia/fisiopatología , Pelvis/fisiopatología , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/fisiopatología , Caminata , Adulto , Anciano , Fenómenos Biomecánicos , Enfermedad Crónica , Femenino , Pie/fisiopatología , Humanos , Pierna/fisiopatología , Masculino , Persona de Mediana Edad , Músculo Esquelético/fisiopatología , Rehabilitación de Accidente Cerebrovascular , Sobrevivientes , Resultado del TratamientoRESUMEN
The assessment of sensorimotor functions is extremely important to understand the health status of a patient and its change over time. Assessments are necessary to plan and adjust the therapy in order to maximize the chances of individual recovery. Nowadays, however, assessments are seldom used in clinical practice due to administrative constraints or to inadequate validity, reliability and responsiveness. In clinical trials, more sensitive and reliable measurement scales could unmask changes in physiological variables that would not be visible with existing clinical scores.In the last decades robotic devices have become available for neurorehabilitation training in clinical centers. Besides training, robotic devices can overcome some of the limitations in traditional clinical assessments by providing more objective, sensitive, reliable and time-efficient measurements. However, it is necessary to understand the clinical needs to be able to develop novel robot-aided assessment methods that can be integrated in clinical practice.This paper aims at providing researchers and developers in the field of robotic neurorehabilitation with a comprehensive review of assessment methods for the lower extremities. Among the ICF domains, we included those related to lower extremities sensorimotor functions and walking; for each chapter we present and discuss existing assessments used in routine clinical practice and contrast those to state-of-the-art instrumented and robot-aided technologies. Based on the shortcomings of current assessments, on the identified clinical needs and on the opportunities offered by robotic devices, we propose future directions for research in rehabilitation robotics. The review and recommendations provided in this paper aim to guide the design of the next generation of robot-aided functional assessments, their validation and their translation to clinical practice.
Asunto(s)
Trastornos Neurológicos de la Marcha/rehabilitación , Extremidad Inferior , Robótica , Marcha , Humanos , Reproducibilidad de los Resultados , Investigación Biomédica Traslacional , CaminataRESUMEN
Inflammation associated with obesity is involved in the development of insulin resistance. We hypothesized that anti-inflammatory treatment with the Interleukin-1 receptor antagonist anakinra would improve insulin sensitivity. In an open label proof-of-concept study, we included overweight patients diagnosed with type 1 diabetes with an HbA1c level over 7.5%. Selecting insulin resistant patients with longstanding type 1 diabetes allowed us to study the effects of anakinra on insulin sensitivity. Patients were treated with 100mg anakinra daily for one week. Insulin sensitivity, insulin need and blood glucose profiles were measured before, after one week and after four weeks of follow-up. Fourteen patients completed the study. One week of anakinra treatment led to an improvement of insulin sensitivity, an effect that was sustained for four weeks. Similarly, glucose profiles, HbA1c levels and insulin needs improved. In conclusion, one week of treatment with anakinra improves insulin sensitivity in patients with type 1 diabetes.
Asunto(s)
Antiinflamatorios/uso terapéutico , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Hipoglucemiantes/administración & dosificación , Resistencia a la Insulina , Insulina/administración & dosificación , Proteína Antagonista del Receptor de Interleucina 1/uso terapéutico , Obesidad/metabolismo , Adulto , Glucemia/metabolismo , Estudios de Cohortes , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/metabolismo , Femenino , Hemoglobina Glucada/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Obesidad/complicaciones , Sobrepeso/complicaciones , Sobrepeso/metabolismo , Estudios Prospectivos , Resultado del TratamientoRESUMEN
Robot-mediated therapy can help improve walking ability in patients following injuries to the central nervous system. However, the efficacy of this treatment varies between patients, and evidence for the mechanisms underlying functional improvements in humans is poor, particularly in terms of neural changes in the spinal cord. Here, we review the recent literature on spinal plasticity induced by robotic-based training in humans and propose recommendations for the measurement of spinal plasticity using robotic devices. Evidence for spinal plasticity in humans following robotic training is limited to the lower limbs. Body weight-supported (BWS) robotic-assisted step training of patients with spinal cord injury (SCI) or stroke patients has been shown to lead to changes in the amplitude and phase modulation of spinal reflex pathways elicited by electrical stimulation or joint rotations. Of particular importance is the finding that, among other changes to the spinal reflex circuitries, BWS robotic-assisted step training in SCI patients resulted in the re-emergence of a physiological phase modulation of the soleus H-reflex during walking. Stretch reflexes elicited by joint rotations constitute a tool of interest to probe spinal circuitry since the technology necessary to produce these perturbations could be integrated as a natural part of robotic devices. Presently, ad-hoc devices with an actuator capable of producing perturbations powerful enough to elicit the reflex are available but are not part of robotic devices used for training purposes. A further development of robotic devices that include the technology to elicit stretch reflexes would allow for the spinal circuitry to be routinely tested as a part of the training and evaluation protocols.
Asunto(s)
Lesiones Encefálicas/rehabilitación , Extremidad Inferior , Plasticidad Neuronal/fisiología , Robótica , Traumatismos de la Médula Espinal/rehabilitación , HumanosRESUMEN
BACKGROUND: There is increasing interest in the use of robotic gait-training devices in walking rehabilitation of incomplete spinal cord injured (iSCI) individuals. These devices provide promising opportunities to increase the intensity of training and reduce physical demands on therapists. Despite these potential benefits, robotic gait-training devices have not yet demonstrated clear advantages over conventional gait-training approaches, in terms of functional outcomes. This might be due to the reduced active participation and step-to-step variability in most robotic gait-training strategies, when compared to manually assisted therapy. Impedance-controlled devices can increase active participation and step-to-step variability. The aim of this study was to assess the effect of impedance-controlled robotic gait training on walking ability and quality in chronic iSCI individuals. METHODS: A group of 10 individuals with chronic iSCI participated in an explorative clinical trial. Participants trained three times a week for eight weeks using an impedance-controlled robotic gait trainer (LOPES: LOwer extremity Powered ExoSkeleton). Primary outcomes were the 10-meter walking test (10 MWT), the Walking Index for Spinal Cord Injury (WISCI II), the six-meter walking test (6 MWT), the Timed Up and Go test (TUG) and the Lower Extremity Motor Scores (LEMS). Secondary outcomes were spatiotemporal and kinematics measures. All participants were tested before, during, and after training and at 8 weeks follow-up. RESULTS: Participants experienced significant improvements in walking speed (0.06 m/s, p = 0.008), distance (29 m, p = 0.005), TUG (3.4 s, p = 0.012), LEMS (3.4, p = 0.017) and WISCI after eight weeks of training with LOPES. At the eight-week follow-up, participants retained the improvements measured at the end of the training period. Significant improvements were also found in spatiotemporal measures and hip range of motion. CONCLUSION: Robotic gait training using an impedance-controlled robot is feasible in gait rehabilitation of chronic iSCI individuals. It leads to improvements in walking ability, muscle strength, and quality of walking. Improvements observed at the end of the training period persisted at the eight-week follow-up. Slower walkers benefit the most from the training protocol and achieve the greatest relative improvement in speed and walking distance.