Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artif Organs ; 44(12): 1267-1275, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32557690

RESUMEN

In this proof of principle study, we investigated the effectiveness and safety of hemodynamic support with the Intra-Ventricular Membrane Pump (IVMP). The IVMP was implanted into the apex of the left ventricle. Hemodynamic assessment was performed in six ex vivo beating porcine hearts (PhysioHeart platform). The cardiac output (CO), mean arterial pressure (MAP), coronary flow (CF) and pulse pressure (PP) were obtained before and during IVMP support and reported as means ± standard deviations. In two additional visualization experiments, the integrity of the mitral valve was assessed during IVMP support. We found a significant increase of the CO (+1.4 ± 0.2 L/min, P < .001), MAP (+13 ± 6 mm Hg, P = .008), CF (+0.23 ± 0.1 L/min, P = .004), and PP (+15 ± 4 mm Hg, P = .002) during IVMP support, when compared to baseline. No interference of the IVMP with mitral valve function was observed. An increase of premature ventricular complexes (PVC) was observed during support with the IVMP (mean PVC-burden 4.3% vs. 0.7% at baseline), negatively influencing hemodynamic parameters. The IVMP is able to significantly improve hemodynamic parameters in a co-pulsatile fashion, without hampering the function of the mitral valve. These findings provide a basis for future development of a catheter-based IVMP.


Asunto(s)
Corazón Auxiliar/efectos adversos , Diseño de Prótesis , Implantación de Prótesis/instrumentación , Choque Cardiogénico/cirugía , Complejos Prematuros Ventriculares/epidemiología , Animales , Gasto Cardíaco/fisiología , Catéteres/efectos adversos , Ventrículos Cardíacos/cirugía , Humanos , Membranas Artificiales , Válvula Mitral/fisiología , Prueba de Estudio Conceptual , Implantación de Prótesis/métodos , Sus scrofa , Función Ventricular Izquierda/fisiología , Complejos Prematuros Ventriculares/etiología , Complejos Prematuros Ventriculares/prevención & control
2.
J Thorac Dis ; 15(7): 3580-3592, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37559645

RESUMEN

Background: Sealants are used to prevent prolonged pulmonary air leakage (PAL) after lung resections (incidence 5.6-30%). However, clinical evidence to support sealant use is insufficient, with an unmet need for a more effective product. We compared a novel gelatin patch impregnated with functionalized polyoxazolines (NHS-POx) (GATT-Patch) to commercially available sealant products. Methods: GATT-Patch Single/Double layers were compared to Progel®, Coseal®, Hemopatch® and TachoSil® in an ex vivo porcine lung model (first experiment). Based on these results, a second head-to-head comparison between GATT-Patch Single and Hemopatch® was performed. Air leakage (AL) was assessed in three settings using increasing ventilatory pressures (max =70 cmH2O): (I) baseline, (II) with 25 mm × 25 mm superficial pleural defect, and (III) after sealant application. Lungs floating on saline (37 ℃) were video recorded for visual AL assessment. Pressure and tidal volumes were collected from the ventilator, and bursting pressure (BP), AL and AL-reduction were determined. Results: Per sealant 10 measurements were performed (both experiments). In the first experiment, BP was superior for GATT-Patch Double (60±24 cmH2O) compared to TachoSil® (30±11 cmH2O, P<0.001), Hemopatch® (33±6 cmH2O, P=0.006), Coseal® (25±13 cmH2O, P=0.001) and Progel® (33±11 cmH2O, P=0.005). AL-reduction was superior for GATT-Patch Double (100%±1%) compared to Hemopatch® (46%±50%, P=0.010) and TachoSil® (31%±29%, P<0.001), and also for GATT-Patch Single (100%±14%, P=0.004) and Progel (89%±40%, P=0.027) compared to TachoSil®. In the second experiment, GATT-Patch Single was superior regarding BP (45±10 vs. 40±6 cmH2O, P=0.043) and AL-reduction (100%±11% vs. 68%±40%, P=0.043) when compared to Hemopatch®. Conclusions: The novel NHS-POx patch shows promise as a lung sealant, demonstrating elevated BP, good adhesive strength and a superior AL-reduction.

3.
J Thorac Dis ; 15(9): 4703-4716, 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37868902

RESUMEN

Background: No validated and standardized animal models of pulmonary air leakage (PAL) exist for testing aerostatic efficacy of lung sealants. Lack of negative control groups in published studies and intrinsic sealing mechanisms of healthy animal lungs might contribute to a translational gap, leading to poor clinical results. This study aims to address the impact of intrinsic sealing mechanisms on the validity of PAL models, and investigate the conditions required for an ovine model of PAL for lung sealant testing. Methods: An ovine acute aerostasis model was developed, consisting of a bilateral thoracotomy with lesion creation, chest tube insertion and monitoring of air leaks using digital drains (≥80 minutes), under spontaneous respiration. Healthy mixed-breed adult female sheep were used and all in vivo procedures were performed under terminal anesthesia. Superficial parenchymal lesions were tested post-mortem and in vivo, extended lesions including bronchioles (deep bowl-shaped and sequential lung amputation lesions) were tested in vivo. Experiment outcomes include air leakage (AL), minimal leaking pressure (MLP) and histology. Results: Two post-mortem (N=4 superficial parenchymal lesions) and 10 in vivo experiments (N=5 superficial parenchymal and N=16 lesions involving bronchioles) were performed. In contrast to the post-mortem model, superficial parenchymal lesions in vivo showed less air leak [mean flow ± standard deviation (SD): 760±693 vs. 42±33 mL/min, P=0.055]. All superficial parenchymal lesions in vivo sealed intrinsically within a median time of 20 minutes [interquartile range (IQR), 10-75 minutes]. Histology of the intrinsic sealing layer revealed an extended area of alveolar collapse below the incision with intra-alveolar hemorrhage. Compared to superficial parenchymal lesions in vivo, lesions involving bronchioles induced significantly higher air leak post-operatively (normalized mean flow ± SD: 459±221 mL/min, P=0.003). At termination, 5/9 (55.6%) were still leaking (median drain time: 273 minutes, IQR, 207-435 minutes), and intrinsic sealing for the remaining lungs occurred within a median of 115 minutes (IQR, 52-245 minutes). Conclusions: Lung parenchyma of healthy sheep shows a strong intrinsic sealing mechanism, explained pathologically by an extended area of alveolar collapse, which may contribute to a translational gap in lung sealant research. A meaningful ovine model has to consist of deep lesions involving bronchioles of >⌀1.5 mm. Further research is needed to develop a standardized PAL model, to improve clinical effectiveness of lung sealants.

4.
Lab Anim ; 57(5): 504-517, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37032637

RESUMEN

Sealants may provide a solution for pulmonary air leakage (PAL), but their clinical application is debatable. For sealant comparison, standardized animal models are lacking. This systematic review aims to assess methodology and quality of animal models for PAL and sealant evaluation. All animal models investigating lung sealing devices (e.g., staplers, glues, energy devices) to prevent or treat PAL were retrieved systematically from Embase, Pubmed and Web of science. Methodological study characteristics, risk of bias, reporting quality and publication bias were assessed. A total of 71 studies were included (N = 75 experiments, N = 1659 animals). Six different species and 18 strains were described; 92% of experiments used healthy animals, disease models were used in only six studies. Lesions to produce PAL were heterogenous, and only 11 studies used a previously reported technique, encompassing N = 5 unique lesions. Clinically relevant outcomes were used in the minority of studies (imaging 16%, air leak 10.7%, air leak duration 4%). Reporting quality was poor, but revealed an upward trend per decade. Overall, high risk of bias was present, and only 18.7% used a negative control group. All but one study without control groups claimed positive outcomes (95.8%), in contrast to 84.3% using positive or negative control groups, which also concluded equivocal, adverse or inconclusive outcomes. In conclusion, animal studies evaluating sealants for prevention of PAL are heterogenous and of poor reporting quality. Using negative control groups, disease models and quantifiable outcomes seem important to increase validity and relevance. Further research is needed to reach consensus for model development and standardization.


Asunto(s)
Modelos Animales , Neumotórax , Adhesivos Tisulares , Animales , Neumotórax/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA