Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
EMBO J ; 39(5): e102169, 2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-31930530

RESUMEN

Genetically engineered mouse models (GEMMs) of cancer have proven to be of great value for basic and translational research. Although CRISPR-based gene disruption offers a fast-track approach for perturbing gene function and circumvents certain limitations of standard GEMM development, it does not provide a flexible platform for recapitulating clinically relevant missense mutations in vivo. To this end, we generated knock-in mice with Cre-conditional expression of a cytidine base editor and tested their utility for precise somatic engineering of missense mutations in key cancer drivers. Upon intraductal delivery of sgRNA-encoding vectors, we could install point mutations with high efficiency in one or multiple endogenous genes in situ and assess the effect of defined allelic variants on mammary tumorigenesis. While the system also produces bystander insertions and deletions that can stochastically be selected for when targeting a tumor suppressor gene, we could effectively recapitulate oncogenic nonsense mutations. We successfully applied this system in a model of triple-negative breast cancer, providing the proof of concept for extending this flexible somatic base editing platform to other tissues and tumor types.


Asunto(s)
Neoplasias de la Mama/genética , Sistemas CRISPR-Cas , Edición Génica , Animales , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Transgénicos , Mutación
2.
Genes Dev ; 30(12): 1470-80, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27340177

RESUMEN

Large-scale sequencing studies are rapidly identifying putative oncogenic mutations in human tumors. However, discrimination between passenger and driver events in tumorigenesis remains challenging and requires in vivo validation studies in reliable animal models of human cancer. In this study, we describe a novel strategy for in vivo validation of candidate tumor suppressors implicated in invasive lobular breast carcinoma (ILC), which is hallmarked by loss of the cell-cell adhesion molecule E-cadherin. We describe an approach to model ILC by intraductal injection of lentiviral vectors encoding Cre recombinase, the CRISPR/Cas9 system, or both in female mice carrying conditional alleles of the Cdh1 gene, encoding for E-cadherin. Using this approach, we were able to target ILC-initiating cells and induce specific gene disruption of Pten by CRISPR/Cas9-mediated somatic gene editing. Whereas intraductal injection of Cas9-encoding lentiviruses induced Cas9-specific immune responses and development of tumors that did not resemble ILC, lentiviral delivery of a Pten targeting single-guide RNA (sgRNA) in mice with mammary gland-specific loss of E-cadherin and expression of Cas9 efficiently induced ILC development. This versatile platform can be used for rapid in vivo testing of putative tumor suppressor genes implicated in ILC, providing new opportunities for modeling invasive lobular breast carcinoma in mice.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/fisiopatología , Carcinoma Lobular/genética , Carcinoma Lobular/fisiopatología , Edición Génica , Glándulas Mamarias Humanas/fisiopatología , Animales , Sistemas CRISPR-Cas , Cadherinas/genética , Modelos Animales de Enfermedad , Femenino , Silenciador del Gen , Genes Supresores de Tumor , Humanos , Ratones
3.
Nat Commun ; 10(1): 397, 2019 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-30674894

RESUMEN

BRCA1-mutated breast cancer is primarily driven by DNA copy-number alterations (CNAs) containing large numbers of candidate driver genes. Validation of these candidates requires novel approaches for high-throughput in vivo perturbation of gene function. Here we develop genetically engineered mouse models (GEMMs) of BRCA1-deficient breast cancer that permit rapid introduction of putative drivers by either retargeting of GEMM-derived embryonic stem cells, lentivirus-mediated somatic overexpression or in situ CRISPR/Cas9-mediated gene disruption. We use these approaches to validate Myc, Met, Pten and Rb1 as bona fide drivers in BRCA1-associated mammary tumorigenesis. Iterative mouse modeling and comparative oncogenomics analysis show that MYC-overexpression strongly reshapes the CNA landscape of BRCA1-deficient mammary tumors and identify MCL1 as a collaborating driver in these tumors. Moreover, MCL1 inhibition potentiates the in vivo efficacy of PARP inhibition (PARPi), underscoring the therapeutic potential of this combination for treatment of BRCA1-mutated cancer patients with poor response to PARPi monotherapy.


Asunto(s)
Proteína BRCA1/genética , Neoplasias de la Mama/genética , Carcinogénesis/genética , Variaciones en el Número de Copia de ADN/genética , Regulación Neoplásica de la Expresión Génica/genética , Mutación , Animales , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Transformación Celular Neoplásica/genética , Colágeno Tipo I/genética , Cadena alfa 1 del Colágeno Tipo I , Células Madre Embrionarias , Femenino , Redes Reguladoras de Genes , Células HEK293 , Humanos , Neoplasias Mamarias Animales/genética , Ratones , Ratones Transgénicos , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Transcriptoma , Proteína p53 Supresora de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA