Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Hum Mol Genet ; 33(14): 1250-1261, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38676400

RESUMEN

Developmental and functional defects in the lymphatic system are responsible for primary lymphoedema (PL). PL is a chronic debilitating disease caused by increased accumulation of interstitial fluid, predisposing to inflammation, infections and fibrosis. There is no cure, only symptomatic treatment is available. Thirty-two genes or loci have been linked to PL, and another 22 are suggested, including Hepatocyte Growth Factor (HGF). We searched for HGF variants in 770 index patients from the Brussels PL cohort. We identified ten variants predicted to cause HGF loss-of-function (six nonsense, two frameshifts, and two splice-site changes; 1.3% of our cohort), and 14 missense variants predicted to be pathogenic in 17 families (2.21%). We studied co-segregation within families, mRNA stability for non-sense variants, and in vitro functional effects of the missense variants. Analyses of the mRNA of patient cells revealed degradation of the nonsense mutant allele. Reduced protein secretion was detected for nine of the 14 missense variants expressed in COS-7 cells. Stimulation of lymphatic endothelial cells with these 14 HGF variant proteins resulted in decreased activation of the downstream targets AKT and ERK1/2 for three of them. Clinically, HGF-associated PL was diverse, but predominantly bilateral in the lower limbs with onset varying from early childhood to adulthood. Finally, aggregation study in a second independent cohort underscored that rare likely pathogenic variants in HGF explain about 2% of PL. Therefore, HGF signalling seems crucial for lymphatic development and/or maintenance in human beings and HGF should be included in diagnostic genetic screens for PL.


Asunto(s)
Factor de Crecimiento de Hepatocito , Linfedema , Humanos , Factor de Crecimiento de Hepatocito/genética , Factor de Crecimiento de Hepatocito/metabolismo , Masculino , Femenino , Niño , Adulto , Linfedema/genética , Linfedema/patología , Adolescente , Persona de Mediana Edad , Animales , Mutación Missense/genética , Mutación con Pérdida de Función , Edad de Inicio , Preescolar , Células COS , Chlorocebus aethiops , Células Endoteliales/metabolismo , Células Endoteliales/patología , Adulto Joven
2.
Hum Mol Genet ; 32(22): 3123-3134, 2023 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-37166351

RESUMEN

Germline pathogenic variants in two genes encoding the lysine-specific histone methyltransferase genes SETD1A and SETD2 are associated with neurodevelopmental disorders (NDDs) characterized by developmental delay and congenital anomalies. The SETD1A and SETD2 gene products play a critical role in chromatin-mediated regulation of gene expression. Specific methylation episignatures have been detected for a range of chromatin gene-related NDDs and have impacted clinical practice by improving the interpretation of variant pathogenicity. To investigate if SETD1A and/or SETD2-related NDDs are associated with a detectable episignature, we undertook targeted genome-wide methylation profiling of > 2 M CpGs using a next-generation sequencing-based assay. A comparison of methylation profiles in patients with SETD1A variants (n = 6) did not reveal evidence of a strong methylation episignature. A review of the clinical and genetic features of the SETD2 patient group revealed that, as reported previously, there were phenotypic differences between patients with truncating mutations (n = 4, Luscan-Lumish syndrome; MIM:616831) and those with missense codon 1740 variants [p.Arg1740Trp (n = 4) and p.Arg1740Gln (n = 2)]. Both SETD2 subgroups demonstrated a methylation episignature, which was characterized by hypomethylation and hypermethylation events, respectively. Within the codon 1740 subgroup, both the methylation changes and clinical phenotype were more severe in those with p.Arg1740Trp variants. We also noted that two of 10 cases with a SETD2-NDD had developed a neoplasm. These findings reveal novel epigenotype-genotype-phenotype correlations in SETD2-NDDs and predict a gain-of-function mechanism for SETD2 codon 1740 pathogenic variants.


Asunto(s)
Cromatina , Trastornos del Neurodesarrollo , Humanos , Cromatina/genética , Metilación de ADN/genética , Mutación , Trastornos del Neurodesarrollo/genética , Estudios de Asociación Genética , Codón
3.
Am J Hum Genet ; 109(4): 750-758, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35202563

RESUMEN

Chromatin is essentially an array of nucleosomes, each of which consists of the DNA double-stranded fiber wrapped around a histone octamer. This organization supports cellular processes such as DNA replication, DNA transcription, and DNA repair in all eukaryotes. Human histone H4 is encoded by fourteen canonical histone H4 genes, all differing at the nucleotide level but encoding an invariant protein. Here, we present a cohort of 29 subjects with de novo missense variants in six H4 genes (H4C3, H4C4, H4C5, H4C6, H4C9, and H4C11) identified by whole-exome sequencing and matchmaking. All individuals present with neurodevelopmental features of intellectual disability and motor and/or gross developmental delay, while non-neurological features are more variable. Ten amino acids are affected, six recurrently, and are all located within the H4 core or C-terminal tail. These variants cluster to specific regions of the core H4 globular domain, where protein-protein interactions occur with either other histone subunits or histone chaperones. Functional consequences of the identified variants were evaluated in zebrafish embryos, which displayed abnormal general development, defective head organs, and reduced body axis length, providing compelling evidence for the causality of the reported disorder(s). While multiple developmental syndromes have been linked to chromatin-associated factors, missense-bearing histone variants (e.g., H3 oncohistones) are only recently emerging as a major cause of pathogenicity. Our findings establish a broader involvement of H4 variants in developmental syndromes.


Asunto(s)
Histonas , Pez Cebra , Animales , Cromatina , ADN , Histonas/metabolismo , Humanos , Síndrome , Pez Cebra/genética , Pez Cebra/metabolismo
4.
Eur J Pediatr ; 183(1): 345-355, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37889289

RESUMEN

This study aims to inform future genetic reanalysis management by evaluating the yield of whole-exome sequencing (WES) reanalysis in standard patient care in the Netherlands. Single-center data of 159 patients with a neurodevelopmental disorder (NDD), in which WES analysis and reanalysis were performed between January 1, 2014, and December 31, 2021, was retrospectively collected. Patients were included if they were under the age of 18 years at initial analysis and if this initial analysis did not result in a diagnosis. Demographic, phenotypic, and genotypic characteristics of patients were collected and analyzed. The primary outcomes of our study were (i) diagnostic yield at reanalysis, (ii) reasons for detecting a new possibly causal variant at reanalysis, (iii) unsolicited findings, and (iv) factors associated with positive result of reanalysis. In addition, we conducted a questionnaire study amongst the 7 genetic department in the Netherlands creating an overview of used techniques, yield, and organization of WES reanalysis. The single-center data show that in most cases, WES reanalysis was initiated by the clinical geneticist (65%) or treating physician (30%). The mean time between initial WES analysis and reanalysis was 3.7 years. A new (likely) pathogenic variant or VUS with a clear link to the phenotype was found in 20 initially negative cases, resulting in a diagnostic yield of 12.6%. In 75% of these patients, the diagnosis had clinical consequences, as for example, a screening plan for associated signs and symptoms could be devised. Most (32%) of the (likely) causal variants identified at WES reanalysis were discovered due to a newly described gene-disease association. In addition to the 12.6% diagnostic yield based on new diagnoses, reclassification of a variant of uncertain significance found at initial analysis led to a definite diagnosis in three patients. Diagnostic yield was higher in patients with dysmorphic features compared to patients without clear dysmorphic features (yield 27% vs. 6%; p = 0.001). CONCLUSIONS: Our results show that WES reanalysis in patients with NDD in standard patient care leads to a substantial increase in genetic diagnoses. In the majority of newly diagnosed patients, the diagnosis had clinical consequences. Knowledge about the clinical impact of WES reanalysis, clinical characteristics associated with higher yield, and the yield per year after a negative WES in larger clinical cohorts is warranted to inform guidelines for genetic reanalysis. These guidelines will be of great value for pediatricians, pediatric rehabilitation specialists, and pediatric neurologists in daily care of patients with NDD. WHAT IS KNOWN: • Whole exome sequencing can cost-effectively identify a genetic cause of intellectual disability in about 30-40% of patients. • WES reanalysis in a research setting can lead to a definitive diagnosis in 10-20% of previously exome negative cases. WHAT IS NEW: • WES reanalysis in standard patient care resulted in a diagnostic yield of 13% in previously exome negative children with NDD. • The presence of dysmorphic features is associated with an increased diagnostic yield of WES reanalysis.


Asunto(s)
Exoma , Discapacidad Intelectual , Niño , Humanos , Adolescente , Secuenciación del Exoma , Estudios Retrospectivos , Fenotipo , Exoma/genética , Discapacidad Intelectual/diagnóstico , Pruebas Genéticas/métodos
5.
Prenat Diagn ; 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39313411

RESUMEN

BACKGROUND: Chondrodysplasia punctata 1 (CDPX1) is an X-linked recessive disorder of cartilage and bone development characterized by stippling on the cartilage and bone, flattened nasal bridge, and brachydactyly, or short fingers. CDPX1 has been associated with variants in the ARSL gene and is known to manifest prenatally, however, there has been no systematic literature review on this evidence. AIMS: Here, we reviewed the current literature on prenatal manifestations of CDPX1, and additionally introduce previously unpublished cases. MATERIALS & METHODS: A systematic review of the literature was performed. Additionally, a GeneMatcher submission was created and a call for cases was presented at the Fetal Sequencing Consortium meetings to find previously unpublished cases. RESULTS: For the 22 fetuses reported here, we found that 55% had nasal hypoplasia, 41% had bony stippling or calcifications, 32% had polyhydramnios, 5% had oligohydramnios, 23% had shortened long bones, 23% had spinal canal stenosis, 18% had ventriculomegaly, 9% had brachydactyly/brachytelephalangy, 9% had clubbed feet, 9% had premature rupture of membranes, and 9% had intraventricular hemorrhage detected through sonography or radiography. We also found 17 unique variants in ARSL for these 22 fetuses. DISCUSSION: A previously unpublished association of ARSL variants with intrauterine fetal death or stillbirth has been noted in this study. It is also possible that intracranial hemorrhage is an underrecognized feature associated with CDPX1 variation. However, there have been challenges in applying ACMG criteria to ARSL, a gene without an associated Variant Curation Expert Panel. CONCLUSION: This literature review and case series highlights which features of CDPX1 manifest prenatally, as well as introduces new phenotypes that have not been previously identified.

6.
Hum Mol Genet ; 30(23): 2300-2314, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34245260

RESUMEN

Here, we report on six unrelated individuals, all presenting with early-onset global developmental delay, associated with impaired motor, speech and cognitive development, partly with developmental epileptic encephalopathy and physical dysmorphisms. All individuals carry heterozygous missense variants of KCND2, which encodes the voltage-gated potassium (Kv) channel α-subunit Kv4.2. The amino acid substitutions associated with the variants, p.(Glu323Lys) (E323K), p.(Pro403Ala) (P403A), p.(Val404Leu) (V404L) and p.(Val404Met) (V404M), affect sites known to be critical for channel gating. To unravel their likely pathogenicity, recombinant mutant channels were studied in the absence and presence of auxiliary ß-subunits under two-electrode voltage clamp in Xenopus oocytes. All channel mutants exhibited slowed and incomplete macroscopic inactivation, and the P403A variant in addition slowed activation. Co-expression of KChIP2 or DPP6 augmented the functional expression of both wild-type and mutant channels; however, the auxiliary ß-subunit-mediated gating modifications differed from wild type and among mutants. To simulate the putative setting in the affected individuals, heteromeric Kv4.2 channels (wild type + mutant) were studied as ternary complexes (containing both KChIP2 and DPP6). In the heteromeric ternary configuration, the E323K variant exhibited only marginal functional alterations compared to homomeric wild-type ternary, compatible with mild loss-of-function. By contrast, the P403A, V404L and V404M variants displayed strong gating impairment in the heteromeric ternary configuration, compatible with loss-of-function or gain-of-function. Our results support the etiological involvement of Kv4.2 channel gating impairment in early-onset monogenic global developmental delay. In addition, they suggest that gain-of-function mechanisms associated with a substitution of V404 increase epileptic seizure susceptibility.


Asunto(s)
Discapacidades del Desarrollo/etiología , Discapacidades del Desarrollo/metabolismo , Variación Genética , Activación del Canal Iónico , Canales de Potasio Shal/genética , Canales de Potasio Shal/metabolismo , Alelos , Sustitución de Aminoácidos , Biomarcadores , Discapacidades del Desarrollo/diagnóstico , Susceptibilidad a Enfermedades , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Mutación , Fenotipo , Subunidades de Proteína , Canales de Potasio Shal/química
7.
Genet Med ; 25(11): 100950, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37551667

RESUMEN

PURPOSE: Coffin-Siris and Nicolaides-Baraitser syndromes are recognizable neurodevelopmental disorders caused by germline variants in BAF complex subunits. The SMARCC2 BAFopathy was recently reported. Herein, we present clinical and molecular data on a large cohort. METHODS: Clinical symptoms for 41 novel and 24 previously published affected individuals were analyzed using the Human Phenotype Ontology. For genotype-phenotype correlations, molecular data were standardized and grouped into non-truncating and likely gene-disrupting (LGD) variants. Missense variant protein expression and BAF-subunit interactions were examined using 3D protein modeling, co-immunoprecipitation, and proximity-ligation assays. RESULTS: Neurodevelopmental delay with intellectual disability, muscular hypotonia, and behavioral disorders were the major manifestations. Clinical hallmarks of BAFopathies were rare. Clinical presentation differed significantly, with LGD variants being predominantly inherited and associated with mildly reduced or normal cognitive development, whereas non-truncating variants were mostly de novo and presented with severe developmental delay. These distinct manifestations and non-truncating variant clustering in functional domains suggest different pathomechanisms. In vitro testing showed decreased protein expression for N-terminal missense variants similar to LGD. CONCLUSION: This study improved SMARCC2 variant classification and identified discernible SMARCC2-associated phenotypes for LGD and non-truncating variants, which were distinct from other BAFopathies. The pathomechanism of most non-truncating variants has yet to be investigated.


Asunto(s)
Anomalías Múltiples , Discapacidad Intelectual , Micrognatismo , Trastornos del Neurodesarrollo , Humanos , Anomalías Múltiples/genética , Cara , Micrognatismo/genética , Discapacidad Intelectual/genética , Discapacidad Intelectual/complicaciones , Facies , Fenotipo , Proteínas de Unión al ADN/genética , Factores de Transcripción/genética
8.
Am J Med Genet A ; 191(7): 1889-1899, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37129290

RESUMEN

Triplication of chromosomal region 1p36.3 is a rare genomic rearrangement. In this report, we delineate the phenotypic spectrum associated with 1p36.3 triplications. We describe four patients with microtriplications of variable size, but with a strong phenotypic overlap, and compare them to previously described patients with an isolated triplication or duplication of this region. The 1p36.3 triplication syndrome is associated with a distinct phenotype, characterized by global developmental delay, moderate intellectual disability, seizures, behavioral problems, and specific facial dysmorphic features, including ptosis, hypertelorism, and arched eyebrows. The de novo occurrence of these microtriplications demonstrates the reduced reproductive fitness associated with this genotype, in contrast to 1p36.3 duplications which are mostly inherited and can be associated with similar facial features but with a less severe developmental phenotype. The shared triplicated region encompasses four disease-related genes of which GABRD and SKI are most likely to contribute to the phenotype.


Asunto(s)
Discapacidades del Desarrollo , Discapacidad Intelectual , Niño , Humanos , Cromosomas Humanos Par 3 , Discapacidades del Desarrollo/genética , Cara , Discapacidad Intelectual/genética , Fenotipo , Receptores de GABA-A/genética , Síndrome
9.
Mol Psychiatry ; 26(11): 6125-6148, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34188164

RESUMEN

While the transcription factor NEUROD2 has recently been associated with epilepsy, its precise role during nervous system development remains unclear. Using a multi-scale approach, we set out to understand how Neurod2 deletion affects the development of the cerebral cortex in mice. In Neurod2 KO embryos, cortical projection neurons over-migrated, thereby altering the final size and position of layers. In juvenile and adults, spine density and turnover were dysregulated in apical but not basal compartments in layer 5 neurons. Patch-clamp recordings in layer 5 neurons of juvenile mice revealed increased intrinsic excitability. Bulk RNA sequencing showed dysregulated expression of many genes associated with neuronal excitability and synaptic function, whose human orthologs were strongly associated with autism spectrum disorders (ASD). At the behavior level, Neurod2 KO mice displayed social interaction deficits, stereotypies, hyperactivity, and occasionally spontaneous seizures. Mice heterozygous for Neurod2 had similar defects, indicating that Neurod2 is haploinsufficient. Finally, specific deletion of Neurod2 in forebrain excitatory neurons recapitulated cellular and behavioral phenotypes found in constitutive KO mice, revealing the region-specific contribution of dysfunctional Neurod2 in symptoms. Informed by these neurobehavioral features in mouse mutants, we identified eleven patients from eight families with a neurodevelopmental disorder including intellectual disability and ASD associated with NEUROD2 pathogenic mutations. Our findings demonstrate crucial roles for Neurod2 in neocortical development, whose alterations can cause neurodevelopmental disorders including intellectual disability and ASD.


Asunto(s)
Trastorno Autístico , Neuropéptidos , Animales , Trastorno Autístico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Corteza Cerebral/metabolismo , Humanos , Ratones , Neuronas/metabolismo , Neuropéptidos/metabolismo , Prosencéfalo/metabolismo , Factores de Transcripción/metabolismo
10.
Am J Med Genet A ; 188(12): 3510-3515, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36000780

RESUMEN

Haplo-insufficiency of the TGFß-activated kinase 1 binding protein 2 (TAB2) gene is associated with short stature, facial dysmorphisms, connective tissue abnormalities, hearing loss, and cardiac disease. Skeletal dysplasia and sacral dimples are also found in a minority of patients. Here, we describe a 3-generation family with caudal appendage, other sacral anomalies, and skeletal abnormalities including hypoplasia of the iliac wings and scapulae, fusion of the carpal bones and stenosis of the spinal canal, as well as a remarkable course of prenatally-detected cardiomyopathy with characteristics changing over time. Genetic analysis showed a heterozygous nonsense variant in the TAB2 gene.


Asunto(s)
Cardiomiopatías , Osteocondrodisplasias , Embarazo , Femenino , Humanos , Proteínas Adaptadoras Transductoras de Señales/genética
11.
Brain ; 144(5): 1435-1450, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-33880529

RESUMEN

Constitutional heterozygous mutations of ATP1A2 and ATP1A3, encoding for two distinct isoforms of the Na+/K+-ATPase (NKA) alpha-subunit, have been associated with familial hemiplegic migraine (ATP1A2), alternating hemiplegia of childhood (ATP1A2/A3), rapid-onset dystonia-parkinsonism, cerebellar ataxia-areflexia-progressive optic atrophy, and relapsing encephalopathy with cerebellar ataxia (all ATP1A3). A few reports have described single individuals with heterozygous mutations of ATP1A2/A3 associated with severe childhood epilepsies. Early lethal hydrops fetalis, arthrogryposis, microcephaly, and polymicrogyria have been associated with homozygous truncating mutations in ATP1A2. We investigated the genetic causes of developmental and epileptic encephalopathies variably associated with malformations of cortical development in a large cohort and identified 22 patients with de novo or inherited heterozygous ATP1A2/A3 mutations. We characterized clinical, neuroimaging and neuropathological findings, performed in silico and in vitro assays of the mutations' effects on the NKA-pump function, and studied genotype-phenotype correlations. Twenty-two patients harboured 19 distinct heterozygous mutations of ATP1A2 (six patients, five mutations) and ATP1A3 (16 patients, 14 mutations, including a mosaic individual). Polymicrogyria occurred in 10 (45%) patients, showing a mainly bilateral perisylvian pattern. Most patients manifested early, often neonatal, onset seizures with a multifocal or migrating pattern. A distinctive, 'profound' phenotype, featuring polymicrogyria or progressive brain atrophy and epilepsy, resulted in early lethality in seven patients (32%). In silico evaluation predicted all mutations to be detrimental. We tested 14 mutations in transfected COS-1 cells and demonstrated impaired NKA-pump activity, consistent with severe loss of function. Genotype-phenotype analysis suggested a link between the most severe phenotypes and lack of COS-1 cell survival, and also revealed a wide continuum of severity distributed across mutations that variably impair NKA-pump activity. We performed neuropathological analysis of the whole brain in two individuals with polymicrogyria respectively related to a heterozygous ATP1A3 mutation and a homozygous ATP1A2 mutation and found close similarities with findings suggesting a mainly neural pathogenesis, compounded by vascular and leptomeningeal abnormalities. Combining our report with other studies, we estimate that ∼5% of mutations in ATP1A2 and 12% in ATP1A3 can be associated with the severe and novel phenotypes that we describe here. Notably, a few of these mutations were associated with more than one phenotype. These findings assign novel, 'profound' and early lethal phenotypes of developmental and epileptic encephalopathies and polymicrogyria to the phenotypic spectrum associated with heterozygous ATP1A2/A3 mutations and indicate that severely impaired NKA pump function can disrupt brain morphogenesis.


Asunto(s)
Encefalopatías/genética , Epilepsia/genética , Polimicrogiria/genética , ATPasa Intercambiadora de Sodio-Potasio/genética , Adolescente , Animales , Células COS , Niño , Preescolar , Chlorocebus aethiops , Femenino , Genotipo , Humanos , Lactante , Recién Nacido , Masculino , Mutación , Fenotipo
12.
Am J Hum Genet ; 102(5): 985-994, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29656860

RESUMEN

N-alpha-acetylation is a common co-translational protein modification that is essential for normal cell function in humans. We previously identified the genetic basis of an X-linked infantile lethal Mendelian disorder involving a c.109T>C (p.Ser37Pro) missense variant in NAA10, which encodes the catalytic subunit of the N-terminal acetyltransferase A (NatA) complex. The auxiliary subunit of the NatA complex, NAA15, is the dimeric binding partner for NAA10. Through a genotype-first approach with whole-exome or genome sequencing (WES/WGS) and targeted sequencing analysis, we identified and phenotypically characterized 38 individuals from 33 unrelated families with 25 different de novo or inherited, dominantly acting likely gene disrupting (LGD) variants in NAA15. Clinical features of affected individuals with LGD variants in NAA15 include variable levels of intellectual disability, delayed speech and motor milestones, and autism spectrum disorder. Additionally, mild craniofacial dysmorphology, congenital cardiac anomalies, and seizures are present in some subjects. RNA analysis in cell lines from two individuals showed degradation of the transcripts with LGD variants, probably as a result of nonsense-mediated decay. Functional assays in yeast confirmed a deleterious effect for two of the LGD variants in NAA15. Further supporting a mechanism of haploinsufficiency, individuals with copy-number variant (CNV) deletions involving NAA15 and surrounding genes can present with mild intellectual disability, mild dysmorphic features, motor delays, and decreased growth. We propose that defects in NatA-mediated N-terminal acetylation (NTA) lead to variable levels of neurodevelopmental disorders in humans, supporting the importance of the NatA complex in normal human development.


Asunto(s)
Anomalías Múltiples/genética , Trastorno del Espectro Autista/genética , Predisposición Genética a la Enfermedad , Variación Genética , Discapacidad Intelectual/genética , Acetiltransferasa A N-Terminal/genética , Acetiltransferasa E N-Terminal/genética , Adolescente , Adulto , Línea Celular , Niño , Exones/genética , Femenino , Regulación de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Mutación/genética , Acetiltransferasa A N-Terminal/metabolismo , Acetiltransferasa E N-Terminal/metabolismo , Linaje , Fenotipo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/metabolismo
13.
Am J Med Genet A ; 185(7): 2037-2045, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33847457

RESUMEN

Spectrins are common components of cytoskeletons, binding to cytoskeletal elements and the plasma membrane, allowing proper localization of essential membrane proteins, signal transduction, and cellular scaffolding. Spectrins are assembled from α and ß subunits, encoded by SPTA1 and SPTAN1 (α) and SPTB, SPTBN1, SPTBN2, SPTBN4, and SPTBN5 (ß). Pathogenic variants in various spectrin genes are associated with erythroid cell disorders (SPTA1, SPTB) and neurologic disorders (SPTAN1, SPTBN2, and SPTBN4), but no phenotypes have been definitively associated with variants in SPTBN1 or SPTBN5. Through exome sequencing and case matching, we identified seven unrelated individuals with heterozygous SPTBN1 variants: two with de novo missense variants and five with predicted loss-of-function variants (found to be de novo in two, while one was inherited from a mother with a history of learning disabilities). Common features include global developmental delays, intellectual disability, and behavioral disturbances. Autistic features (4/6) and epilepsy (2/7) or abnormal electroencephalogram without overt seizures (1/7) were present in a subset. Identification of loss-of-function variants suggests a haploinsufficiency mechanism, but additional functional studies are required to fully elucidate disease pathogenesis. Our findings support the essential roles of SPTBN1 in human neurodevelopment and expand the knowledge of human spectrinopathy disorders.


Asunto(s)
Trastorno Autístico/genética , Epilepsia/genética , Discapacidad Intelectual/genética , Convulsiones/genética , Espectrina/genética , Adolescente , Adulto , Trastorno Autístico/diagnóstico por imagen , Trastorno Autístico/patología , Proteínas Portadoras/genética , Niño , Preescolar , Electroencefalografía , Epilepsia/diagnóstico por imagen , Epilepsia/patología , Femenino , Haploinsuficiencia/genética , Heterocigoto , Humanos , Discapacidad Intelectual/diagnóstico por imagen , Discapacidad Intelectual/patología , Mutación con Pérdida de Función/genética , Masculino , Proteínas de Microfilamentos/genética , Fenotipo , Problema de Conducta , Convulsiones/diagnóstico por imagen , Convulsiones/patología , Secuenciación del Exoma , Adulto Joven
14.
Am J Med Genet A ; 185(5): 1366-1378, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33522091

RESUMEN

Neurodevelopmental disorder with dysmorphic facies and distal limb anomalies (NEDDFL), defined primarily by developmental delay/intellectual disability, speech delay, postnatal microcephaly, and dysmorphic features, is a syndrome resulting from heterozygous variants in the dosage-sensitive bromodomain PHD finger chromatin remodeler transcription factor BPTF gene. To date, only 11 individuals with NEDDFL due to de novo BPTF variants have been described. To expand the NEDDFL phenotypic spectrum, we describe the clinical features in 25 novel individuals with 20 distinct, clinically relevant variants in BPTF, including four individuals with inherited changes in BPTF. In addition to the previously described features, individuals in this cohort exhibited mild brain abnormalities, seizures, scoliosis, and a variety of ophthalmologic complications. These results further support the broad and multi-faceted complications due to haploinsufficiency of BPTF.


Asunto(s)
Ensamble y Desensamble de Cromatina/genética , Epilepsia/genética , Microcefalia/genética , Trastornos del Neurodesarrollo/genética , Anomalías Múltiples/genética , Anomalías Múltiples/fisiopatología , Adolescente , Adulto , Niño , Preescolar , Deleción Cromosómica , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/fisiopatología , Epilepsia/fisiopatología , Facies , Femenino , Haploinsuficiencia/genética , Humanos , Lactante , Discapacidad Intelectual/genética , Discapacidad Intelectual/fisiopatología , Trastornos del Desarrollo del Lenguaje/genética , Trastornos del Desarrollo del Lenguaje/fisiopatología , Masculino , Microcefalia/fisiopatología , Persona de Mediana Edad , Trastornos del Neurodesarrollo/fisiopatología , Fenotipo , Factores de Transcripción/genética , Adulto Joven
15.
Am J Hum Genet ; 101(5): 768-788, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-29100089

RESUMEN

Calcium/calmodulin-dependent protein kinase II (CAMK2) is one of the first proteins shown to be essential for normal learning and synaptic plasticity in mice, but its requirement for human brain development has not yet been established. Through a multi-center collaborative study based on a whole-exome sequencing approach, we identified 19 exceedingly rare de novo CAMK2A or CAMK2B variants in 24 unrelated individuals with intellectual disability. Variants were assessed for their effect on CAMK2 function and on neuronal migration. For both CAMK2A and CAMK2B, we identified mutations that decreased or increased CAMK2 auto-phosphorylation at Thr286/Thr287. We further found that all mutations affecting auto-phosphorylation also affected neuronal migration, highlighting the importance of tightly regulated CAMK2 auto-phosphorylation in neuronal function and neurodevelopment. Our data establish the importance of CAMK2A and CAMK2B and their auto-phosphorylation in human brain function and expand the phenotypic spectrum of the disorders caused by variants in key players of the glutamatergic signaling pathway.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Discapacidad Intelectual/genética , Mutación/genética , Animales , Encéfalo/patología , Línea Celular , Exoma/genética , Femenino , Ácido Glutámico/genética , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/patología , Fosforilación/genética , Transducción de Señal/genética
16.
Am J Hum Genet ; 100(6): 907-925, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28575647

RESUMEN

Yin and yang 1 (YY1) is a well-known zinc-finger transcription factor with crucial roles in normal development and malignancy. YY1 acts both as a repressor and as an activator of gene expression. We have identified 23 individuals with de novo mutations or deletions of YY1 and phenotypic features that define a syndrome of cognitive impairment, behavioral alterations, intrauterine growth restriction, feeding problems, and various congenital malformations. Our combined clinical and molecular data define "YY1 syndrome" as a haploinsufficiency syndrome. Through immunoprecipitation of YY1-bound chromatin from affected individuals' cells with antibodies recognizing both ends of the protein, we show that YY1 deletions and missense mutations lead to a global loss of YY1 binding with a preferential retention at high-occupancy sites. Finally, we uncover a widespread loss of H3K27 acetylation in particular on the YY1-bound enhancers, underscoring a crucial role for YY1 in enhancer regulation. Collectively, these results define a clinical syndrome caused by haploinsufficiency of YY1 through dysregulation of key transcriptional regulators.


Asunto(s)
Cromatina/metabolismo , Haploinsuficiencia/genética , Discapacidad Intelectual/genética , Transcripción Genética , Factor de Transcripción YY1/genética , Acetilación , Adolescente , Secuencia de Bases , Preescolar , Inmunoprecipitación de Cromatina , Estudios de Cohortes , Elementos de Facilitación Genéticos/genética , Femenino , Ontología de Genes , Haplotipos/genética , Hemicigoto , Histonas/metabolismo , Humanos , Linfocitos/metabolismo , Masculino , Metilación , Modelos Moleculares , Mutación Missense/genética , Unión Proteica/genética , Dominios Proteicos , Factor de Transcripción YY1/química
17.
Genet Med ; 22(2): 389-397, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31388190

RESUMEN

PURPOSE: Sifrim-Hitz-Weiss syndrome (SIHIWES) is a recently described multisystemic neurodevelopmental disorder caused by de novo variants inCHD4. In this study, we investigated the clinical spectrum of the disorder, genotype-phenotype correlations, and the effect of different missense variants on CHD4 function. METHODS: We collected clinical and molecular data from 32 individuals with mostly de novo variants in CHD4, identified through next-generation sequencing. We performed adenosine triphosphate (ATP) hydrolysis and nucleosome remodeling assays on variants from five different CHD4 domains. RESULTS: The majority of participants had global developmental delay, mild to moderate intellectual disability, brain anomalies, congenital heart defects, and dysmorphic features. Macrocephaly was a frequent but not universal finding. Additional common abnormalities included hypogonadism in males, skeletal and limb anomalies, hearing impairment, and ophthalmic abnormalities. The majority of variants were nontruncating and affected the SNF2-like region of the protein. We did not identify genotype-phenotype correlations based on the type or location of variants. Alterations in ATP hydrolysis and chromatin remodeling activities were observed in variants from different domains. CONCLUSION: The CHD4-related syndrome is a multisystemic neurodevelopmental disorder. Missense substitutions in different protein domains alter CHD4 function in a variant-specific manner, but result in a similar phenotype in humans.


Asunto(s)
Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Trastornos del Neurodesarrollo/genética , Anomalías Múltiples/genética , Adolescente , Adulto , Niño , Preescolar , Ensamble y Desensamble de Cromatina/genética , Discapacidades del Desarrollo/genética , Femenino , Estudios de Asociación Genética , Genotipo , Pérdida Auditiva/genética , Cardiopatías Congénitas/genética , Humanos , Lactante , Recién Nacido , Discapacidad Intelectual/genética , Masculino , Megalencefalia/genética , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Anomalías Musculoesqueléticas/genética , Mutación Missense/genética , Fenotipo , Síndrome , Factores de Transcripción/genética
19.
Brain ; 142(4): 867-884, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30879067

RESUMEN

Recessive mutations in RTTN, encoding the protein rotatin, were originally identified as cause of polymicrogyria, a cortical malformation. With time, a wide variety of other brain malformations has been ascribed to RTTN mutations, including primary microcephaly. Rotatin is a centrosomal protein possibly involved in centriolar elongation and ciliogenesis. However, the function of rotatin in brain development is largely unknown and the molecular disease mechanism underlying cortical malformations has not yet been elucidated. We performed both clinical and cell biological studies, aimed at clarifying rotatin function and pathogenesis. Review of the 23 published and five unpublished clinical cases and genomic mutations, including the effect of novel deep intronic pathogenic mutations on RTTN transcripts, allowed us to extrapolate the core phenotype, consisting of intellectual disability, short stature, microcephaly, lissencephaly, periventricular heterotopia, polymicrogyria and other malformations. We show that the severity of the phenotype is related to residual function of the protein, not only the level of mRNA expression. Skin fibroblasts from eight affected individuals were studied by high resolution immunomicroscopy and flow cytometry, in parallel with in vitro expression of RTTN in HEK293T cells. We demonstrate that rotatin regulates different phases of the cell cycle and is mislocalized in affected individuals. Mutant cells showed consistent and severe mitotic failure with centrosome amplification and multipolar spindle formation, leading to aneuploidy and apoptosis, which could relate to depletion of neuronal progenitors often observed in microcephaly. We confirmed the role of rotatin in functional and structural maintenance of primary cilia and determined that the protein localized not only to the basal body, but also to the axoneme, proving the functional interconnectivity between ciliogenesis and cell cycle progression. Proteomics analysis of both native and exogenous rotatin uncovered that rotatin interacts with the neuronal (non-muscle) myosin heavy chain subunits, motors of nucleokinesis during neuronal migration, and in human induced pluripotent stem cell-derived bipolar mature neurons rotatin localizes at the centrosome in the leading edge. This illustrates the role of rotatin in neuronal migration. These different functions of rotatin explain why RTTN mutations can lead to heterogeneous cerebral malformations, both related to proliferation and migration defects.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiología , Adulto , Encéfalo/patología , Proteínas Portadoras/genética , Ciclo Celular/fisiología , Cilios/metabolismo , Femenino , Estudios de Asociación Genética/métodos , Células HEK293 , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Lactante , Recién Nacido , Masculino , Malformaciones del Desarrollo Cortical/genética , Malformaciones del Desarrollo Cortical/metabolismo , Microcefalia/genética , Mutación , Malformaciones del Sistema Nervioso/genética , Polimicrogiria/etiología , Polimicrogiria/patología
20.
Genet Med ; 21(5): 1074-1082, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30287924

RESUMEN

PURPOSE: Several studies have reported diagnostic yields up to 57% for rapid exome or genome sequencing (rES/GS) as a single test in neonatal intensive care unit (NICU) patients, but the additional yield of rES/GS compared with other available diagnostic options still remains unquantified in this population. METHODS: We retrospectively evaluated all genetic NICU consultations in a 2-year period. RESULTS: In 132 retrospectively evaluated NICU consultations 27 of 32 diagnoses (84.4%) were made using standard genetic workup. Most diagnoses (65.6%) were made within 16 days. Diagnostic ES yield was 5/29 (17.2%). Genetic diagnoses had a direct effect on clinical management in 90.6% (29/32) of patients. CONCLUSIONS: Our study shows that exome sequencing has a place in NICU diagnostics, but given the associated costs and the high yield of alternative diagnostic strategies, we recommend to first perform clinical genetic consultation.


Asunto(s)
Enfermedades del Recién Nacido/diagnóstico , Enfermedades del Recién Nacido/genética , Mapeo Cromosómico/métodos , Exoma/genética , Femenino , Pruebas Genéticas/economía , Estudio de Asociación del Genoma Completo/métodos , Humanos , Recién Nacido , Cuidado Intensivo Neonatal , Masculino , Estudios Retrospectivos , Secuenciación del Exoma/economía , Secuenciación del Exoma/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA