Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
New Phytol ; 241(6): 2435-2447, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38214462

RESUMEN

Radiation use efficiency (RUE) is a key crop adaptation trait that quantifies the potential amount of aboveground biomass produced by the crop per unit of solar energy intercepted. But it is unclear why elite maize and grain sorghum hybrids differ in their RUE at the crop level. Here, we used a non-traditional top-down approach via canopy photosynthesis modelling to identify leaf-level photosynthetic traits that are key to differences in crop-level RUE. A novel photosynthetic response measurement was developed and coupled with use of a Bayesian model fitting procedure, incorporating a C4 leaf photosynthesis model, to infer cohesive sets of photosynthetic parameters by simultaneously fitting responses to CO2 , light, and temperature. Statistically significant differences between leaf photosynthetic parameters of elite maize and grain sorghum hybrids were found across a range of leaf temperatures, in particular for effects on the quantum yield of photosynthesis, but also for the maximum enzymatic activity of Rubisco and PEPc. Simulation of diurnal canopy photosynthesis predicted that the leaf-level photosynthetic low-light response and its temperature dependency are key drivers of the performance of crop-level RUE, generating testable hypotheses for further physiological analysis and bioengineering applications.


Asunto(s)
Fotosíntesis , Luz Solar , Temperatura , Teorema de Bayes , Fotosíntesis/fisiología , Hojas de la Planta , Zea mays
2.
Agron Sustain Dev ; 44(3): 25, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38660316

RESUMEN

Sorghum production system in the semi-arid region of Africa is characterized by low yields which are generally attributed to high rainfall variability, poor soil fertility, and biotic factors. Production constraints must be well understood and quantified to design effective sorghum-system improvements. This study uses the state-of-the-art in silico methods and focuses on characterizing the sorghum production regions in Mali for drought occurrence and its effects on sorghum productivity. For this purpose, we adapted the APSIM-sorghum module to reproduce two cultivated photoperiod-sensitive sorghum types across a latitude of major sorghum production regions in Western Africa. We used the simulation outputs to characterize drought stress scenarios. We identified three main drought scenarios: (i) no-stress; (ii) early pre-flowering drought stress; and (iii) drought stress onset around flowering. The frequency of drought stress scenarios experienced by the two sorghum types across rainfall zones and soil types differed. As expected, the early pre-flowering and flowering drought stress occurred more frequently in isohyets < 600 mm, for the photoperiod-sensitive, late-flowering sorghum type. In isohyets above 600 mm, the frequency of drought stress was very low for both cultivars. We quantified the consequences of these drought scenarios on grain and biomass productivity. The yields of the highly-photoperiod-sensitive sorghum type were quite stable across the higher rainfall zones > 600 mm, but was affected by the drought stress in the lower rainfall zones < 600 mm. Comparatively, the less photoperiod-sensitive cultivar had notable yield gain in the driest regions < 600 mm. The results suggest that, at least for the tested crop types, drought stress might not be the major constraint to sorghum production in isohyets > 600 mm. The findings from this study provide the entry point for further quantitative testing of the Genotype × Environment × Management options required to optimize sorghum production in Mali. Supplementary Information: The online version contains supplementary material available at 10.1007/s13593-023-00909-5.

3.
Plant J ; 108(1): 231-243, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34309934

RESUMEN

Variation in grain size, a major determinant of grain yield and quality in cereal crops, is determined by both the plant's genetic potential and the available assimilate to fill the grain in the absence of stress. This study investigated grain size variation in response to variation in assimilate supply in sorghum using a diversity panel (n = 837) and a backcross-nested association mapping population (n = 1421) across four experiments. To explore the effects of genetic potential and assimilate availability on grain size, the top half of selected panicles was removed at anthesis. Results showed substantial variation in five grain size parameters with high heritability. Artificial reduction in grain number resulted in a general increase in grain weight, with the extent of the increase varying across genotypes. Genome-wide association studies identified 44 grain size quantitative trait locus (QTL) that were likely to act on assimilate availability and 50 QTL that were likely to act on genetic potential. This finding was further supported by functional enrichment analysis and co-location analysis with known grain number QTL and candidate genes. RNA interference and overexpression experiments were conducted to validate the function of one of the identified gene, SbDEP1, showing that SbDEP1 positively regulates grain number and negatively regulates grain size by controlling primary branching in sorghum. Haplotype analysis of SbDEP1 suggested a possible role in racial differentiation. The enhanced understanding of grain size variation in relation to assimilate availability presented in this study will benefit sorghum improvement and have implications for other cereal crops.


Asunto(s)
Sitios de Carácter Cuantitativo/genética , Sorghum/genética , Productos Agrícolas , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Estudio de Asociación del Genoma Completo , Genotipo , Haplotipos , Fenotipo , Semillas/genética , Semillas/crecimiento & desarrollo , Sorghum/crecimiento & desarrollo
4.
J Exp Bot ; 73(19): 6711-6726, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-35961690

RESUMEN

The stay-green trait is recognized as a key drought adaptation mechanism in cereals worldwide. Stay-green sorghum plants exhibit delayed senescence of leaves and stems, leading to prolonged growth, a reduced risk of lodging, and higher grain yield under end-of-season drought stress. More than 45 quantitative trait loci (QTL) associated with stay-green have been identified, including two major QTL (Stg1 and Stg2). However, the contributing genes that regulate functional stay-green are not known. Here we show that the PIN FORMED family of auxin efflux carrier genes induce some of the causal mechanisms driving the stay-green phenotype in sorghum, with SbPIN4 and SbPIN2 located in Stg1 and Stg2, respectively. We found that nine of 11 sorghum PIN genes aligned with known stay-green QTL. In transgenic studies, we demonstrated that PIN genes located within the Stg1 (SbPIN4), Stg2 (SbPIN2), and Stg3b (SbPIN1) QTL regions acted pleiotropically to modulate canopy development, root architecture, and panicle growth in sorghum, with SbPIN1, SbPIN2, and SbPIN4 differentially expressed in various organs relative to the non-stay-green control. The emergent consequence of such modifications in canopy and root architecture is a stay-green phenotype. Crop simulation modelling shows that the SbPIN2 phenotype can increase grain yield under drought.


Asunto(s)
Sequías , Sorghum , Sitios de Carácter Cuantitativo/genética , Sorghum/fisiología , Fenotipo , Adaptación Fisiológica/genética , Grano Comestible/genética
5.
Plant Biotechnol J ; 18(4): 1093-1105, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31659829

RESUMEN

Grain size is a key yield component of cereal crops and a major quality attribute. It is determined by a genotype's genetic potential and its capacity to fill the grains. This study aims to dissect the genetic architecture of grain size in sorghum. An integrated genome-wide association study (GWAS) was conducted using a diversity panel (n = 837) and a BC-NAM population (n = 1421). To isolate genetic effects associated with genetic potential of grain size, rather than the genotype's capacity to fill the grains, a treatment of removing half of the panicle was imposed during flowering. Extensive and highly heritable variation in grain size was observed in both populations in 5 field trials, and 81 grain size QTL were identified in subsequent GWAS. These QTL were enriched for orthologues of known grain size genes in rice and maize, and had significant overlap with SNPs associated with grain size in rice and maize, supporting common genetic control of this trait among cereals. Grain size genes with opposite effect on grain number were less likely to overlap with the grain size QTL from this study, indicating the treatment facilitated identification of genetic regions related to the genetic potential of grain size. These results enhance understanding of the genetic architecture of grain size in cereal, and pave the way for exploration of underlying molecular mechanisms and manipulation of this trait in breeding practices.


Asunto(s)
Estudios de Asociación Genética , Semillas/crecimiento & desarrollo , Sorghum/genética , Fenotipo , Sitios de Carácter Cuantitativo , Sorghum/crecimiento & desarrollo
6.
New Phytol ; 203(3): 817-30, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24898064

RESUMEN

Stay-green is an integrated drought adaptation trait characterized by a distinct green leaf phenotype during grain filling under terminal drought. We used sorghum (Sorghum bicolor), a repository of drought adaptation mechanisms, to elucidate the physiological and genetic mechanisms underpinning stay-green. Near-isogenic sorghum lines (cv RTx7000) were characterized in a series of field and managed-environment trials (seven experiments and 14 environments) to determine the influence of four individual stay-green (Stg1-4) quantitative trait loci (QTLs) on canopy development, water use and grain yield under post-anthesis drought. The Stg QTL decreased tillering and the size of upper leaves, which reduced canopy size at anthesis. This reduction in transpirational leaf area conserved soil water before anthesis for use during grain filling. Increased water uptake during grain filling of Stg near-isogenic lines (NILs) relative to RTx7000 resulted in higher post-anthesis biomass production, grain number and yield. Importantly, there was no consistent yield penalty associated with the Stg QTL in the irrigated control. These results establish a link between the role of the Stg QTL in modifying canopy development and the subsequent impact on crop water use patterns and grain yield under terminal drought.


Asunto(s)
Alelos , Sequías , Genes de Plantas , Hojas de la Planta/crecimiento & desarrollo , Semillas/crecimiento & desarrollo , Sorghum/genética , Agua/metabolismo , Productos Agrícolas/genética , Cruzamientos Genéticos , Flores/fisiología , Ligamiento Genético , Endogamia , Hojas de la Planta/anatomía & histología , Sitios de Carácter Cuantitativo , Carácter Cuantitativo Heredable , Semillas/genética , Sorghum/anatomía & histología , Sorghum/crecimiento & desarrollo
7.
New Phytol ; 203(1): 155-67, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24665928

RESUMEN

Tillering determines the plant size of sorghum (Sorghum bicolor) and an understanding of its regulation is important to match genotypes to prevalent growing conditions in target production environments. The aim of this study was to determine the physiological and environmental regulation of variability in tillering among sorghum genotypes, and to develop a framework for this regulation. Diverse sorghum genotypes were grown in three experiments with contrasting temperature, radiation and plant density to create variation in tillering. Data on phenology, tillering, and leaf and plant size were collected. A carbohydrate supply/demand (S/D) index that incorporated environmental and genotypic parameters was developed to represent the effects of assimilate availability on tillering. Genotypic differences in tillering not explained by this index were defined as propensity to tiller (PTT) and probably represented hormonal effects. Genotypic variation in tillering was associated with differences in leaf width, stem diameter and PTT. The S/D index captured most of the environmental effects on tillering and PTT most of the genotypic effects. A framework that captures genetic and environmental regulation of tillering through assimilate availability and PTT was developed, and provides a basis for the development of a model that connects genetic control of tillering to its phenotypic consequences.


Asunto(s)
Ambiente , Sorghum/crecimiento & desarrollo , Sorghum/genética , Genotipo , Luz , Hojas de la Planta/crecimiento & desarrollo , Brotes de la Planta/crecimiento & desarrollo , Temperatura
8.
J Exp Bot ; 65(21): 6251-63, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25381433

RESUMEN

Stay-green sorghum plants exhibit greener leaves and stems during the grain-filling period under water-limited conditions compared with their senescent counterparts, resulting in increased grain yield, grain mass, and lodging resistance. Stay-green has been mapped to a number of key chromosomal regions, including Stg1, Stg2, Stg3, and Stg4, but the functions of these individual quantitative trait loci (QTLs) remain unclear. The objective of this study was to show how positive effects of Stg QTLs on grain yield under drought can be explained as emergent consequences of their effects on temporal and spatial water-use patterns that result from changes in leaf-area dynamics. A set of four Stg near-isogenic lines (NILs) and their recurrent parent were grown in a range of field and semicontrolled experiments in southeast Queensland, Australia. These studies showed that the four Stg QTLs regulate canopy size by: (1) reducing tillering via increased size of lower leaves, (2) constraining the size of the upper leaves; and (3) in some cases, decreasing the number of leaves per culm. In addition, they variously affect leaf anatomy and root growth. The multiple pathways by which Stg QTLs modulate canopy development can result in considerable developmental plasticity. The reduction in canopy size associated with Stg QTLs reduced pre-flowering water demand, thereby increasing water availability during grain filling and, ultimately, grain yield. The generic physiological mechanisms underlying the stay-green trait suggest that similar Stg QTLs could enhance post-anthesis drought adaptation in other major cereals such as maize, wheat, and rice.


Asunto(s)
Adaptación Biológica , Hojas de la Planta/crecimiento & desarrollo , Sitios de Carácter Cuantitativo , Sorghum/fisiología , Agua/fisiología , Biomasa , Sequías , Hojas de la Planta/anatomía & histología , Raíces de Plantas/crecimiento & desarrollo , Transpiración de Plantas/genética , Semillas/crecimiento & desarrollo , Sorghum/anatomía & histología
9.
AoB Plants ; 15(4): plad040, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37448862

RESUMEN

Plant architecture modification (e.g. short-stature crops) is one of the key outcomes of modern crop breeding for high-yielding crop varieties. In cereals, delayed senescence, or stay-green, is an important trait that enables post-anthesis drought stress adaptation. Stay-green crops can prolong photosynthetic capacity during grain-filling period under post-anthesis drought stress, which is essential to ensure grain yield is not impacted under drought stress conditions. Although various stay-green quantitative trait loci have been identified in cereals, the underlying molecular mechanisms regulating stay-green remain elusive. Recent advances in various gene-editing technologies have provided avenues to fast-track crop improvement, such as the breeding of climate-resilient crops in the face of climate change. We present in this viewpoint the focus on using sorghum as the model cereal crop, to study PIN-FORMED (PIN) auxin efflux carriers as means to modulate plant architecture, and the potential to employ it as an adaptive strategy to address the environmental challenges posed by climate uncertainties.

10.
J Exp Bot ; 60(4): 1399-408, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19228817

RESUMEN

Kernel weight is an important factor determining grain yield and nutritional quality in sorghum, yet the developmental processes underlying the genotypic differences in potential kernel weight remain unclear. The aim of this study was to determine the stage in development at which genetic effects on potential kernel weight were realized, and to investigate the developmental mechanisms by which potential kernel weight is controlled in sorghum. Kernel development was studied in two field experiments with five genotypes known to differ in kernel weight at maturity. Pre-fertilization floret and ovary development was examined and post-fertilization kernel-filling characteristics were analysed. Large kernels had a higher rate of kernel filling and contained more endosperm cells and starch granules than normal-sized kernels. Genotypic differences in kernel development appeared before stamen primordia initiation in the developing florets, with sessile spikelets of large-seeded genotypes having larger floret apical meristems than normal-seeded genotypes. At anthesis, the ovaries for large-sized kernels were larger in volume, with more cells per layer and more vascular bundles in the ovary wall. Across experiments and genotypes, there was a significant positive correlation between kernel dry weight at maturity and ovary volume at anthesis. Genotypic effects on meristem size, ovary volume, and kernel weight were all consistent with additive genetic control, suggesting that they were causally related. The pre-fertilization genetic control of kernel weight probably operated through the developing pericarp, which is derived from the ovary wall and potentially constrains kernel expansion.


Asunto(s)
Biomasa , Flores/crecimiento & desarrollo , Flores/genética , Semillas/crecimiento & desarrollo , Semillas/genética , Sorghum/crecimiento & desarrollo , Sorghum/genética , Flores/citología , Genotipo , Meristema/citología , Meristema/crecimiento & desarrollo , Tamaño de los Órganos , Semillas/citología , Almidón/metabolismo , Factores de Tiempo , Agua
11.
Funct Plant Biol ; 46(12): 1072-1089, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31615621

RESUMEN

Water scarcity can limit sorghum (Sorghum bicolor (L.) Moench) production in dryland agriculture, but increased whole-plant transpiration efficiency (TEwp, biomass production per unit of water transpired) can enhance grain yield in such conditions. The objectives of this study were to quantify variation in TEwp for 27 sorghum genotypes and explore the linkages of this variation to responses of the underpinning leaf-level processes to environmental conditions. Individual plants were grown in large lysimeters in two well-watered experiments. Whole-plant transpiration per unit of green leaf area (TGLA) was monitored continuously and stomatal conductance and maximum photosynthetic capacity were measured during sunny conditions on recently expanded leaves. Leaf chlorophyll measurements of the upper five leaves of the main shoot were conducted during early grain filling. TEwp was determined at harvest. The results showed that diurnal patterns in TGLA were determined by vapour pressure deficit (VPD) and by the response of whole-plant conductance to radiation and VPD. Significant genotypic variation in the response of TGLA to VPD occurred and was related to genotypic differences in stomatal conductance. However, variation in TGLA explained only part of the variation in TEwp, with some of the residual variation explained by leaf chlorophyll readings, which were a reflection of photosynthetic capacity. Genotypes with different genetic background often differed in TEwp, TGLA and leaf chlorophyll, indicating potential differences in photosynthetic capacity among these groups. Observed differences in TEwp and its component traits can affect adaptation to drought stress.


Asunto(s)
Transpiración de Plantas , Sorghum , Sequías , Genotipo , Presión de Vapor
12.
Front Plant Sci ; 8: 1237, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28769949

RESUMEN

Seed size and seed weight are major quality attributes and important determinants of yield that have been strongly selected for during crop domestication. Limited information is available about the genetic control and genes associated with seed size and weight in sorghum. This study identified sorghum orthologs of genes with proven effects on seed size and weight in other plant species and searched for evidence of selection during domestication by utilizing resequencing data from a diversity panel. In total, 114 seed size candidate genes were identified in sorghum, 63 of which exhibited signals of purifying selection during domestication. A significant number of these genes also had domestication signatures in maize and rice, consistent with the parallel domestication of seed size in cereals. Seed size candidate genes that exhibited differentially high expression levels in seed were also found more likely to be under selection during domestication, supporting the hypothesis that modification to seed size during domestication preferentially targeted genes for intrinsic seed size rather than genes associated with physiological factors involved in the carbohydrate supply and transport. Our results provide improved understanding of the complex genetic control of seed size and weight and the impact of domestication on these genes.

13.
Front Plant Sci ; 7: 1518, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27790232

RESUMEN

The next advance in field crop productivity will likely need to come from improving crop use efficiency of resources (e.g., light, water, and nitrogen), aspects of which are closely linked with overall crop photosynthetic efficiency. Progress in genetic manipulation of photosynthesis is confounded by uncertainties of consequences at crop level because of difficulties connecting across scales. Crop growth and development simulation models that integrate across biological levels of organization and use a gene-to-phenotype modeling approach may present a way forward. There has been a long history of development of crop models capable of simulating dynamics of crop physiological attributes. Many crop models incorporate canopy photosynthesis (source) as a key driver for crop growth, while others derive crop growth from the balance between source- and sink-limitations. Modeling leaf photosynthesis has progressed from empirical modeling via light response curves to a more mechanistic basis, having clearer links to the underlying biochemical processes of photosynthesis. Cross-scale modeling that connects models at the biochemical and crop levels and utilizes developments in upscaling leaf-level models to canopy models has the potential to bridge the gap between photosynthetic manipulation at the biochemical level and its consequences on crop productivity. Here we review approaches to this emerging cross-scale modeling framework and reinforce the need for connections across levels of modeling. Further, we propose strategies for connecting biochemical models of photosynthesis into the cross-scale modeling framework to support crop improvement through photosynthetic manipulation.

14.
Funct Plant Biol ; 43(6): 502-511, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32480480

RESUMEN

Water availability can limit maize (Zea mays L.) yields, and root traits may enhance drought adaptation if they can moderate temporal patterns of soil water extraction to favour grain filling. Root system efficiency (RSE), defined as transpiration per unit leaf area per unit of root mass, represents the functional mass allocation to roots to support water capture relative to the allocation to aerial mass that determines water demand. The aims of this study were to identify the presence of hybrid variation for RSE in maize, determine plant attributes that drive these differences and illustrate possible links of RSE to drought adaptation via associations with water extraction patterns. Individual plants for a range of maize hybrids were grown in large containers in shadehouses in Queensland, Australia. Leaf area, shoot and root mass, transpiration, root distribution and soil water were measured in all or selected experiments. Significant hybrid differences in RSE existed. High RSE was associated with reduced dry mass allocation to roots and more efficient water capture per unit of root mass. It was also weakly negatively associated with total plant dry mass, reducing preanthesis water use. This could increase grain yield under drought. RSE provides a conceptual physiological framework to identify traits for high-throughput phenotyping in breeding programs.

15.
Funct Plant Biol ; 40(5): 439-448, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-32481120

RESUMEN

Sorghum (Sorghum bicolor (L.) Moench) is grown as a dryland crop in semiarid subtropical and tropical environments where it is often exposed to high temperatures around flowering. Projected climate change is likely to increase the incidence of exposure to high temperature, with potential adverse effects on growth, development and grain yield. The objectives of this study were to explore genetic variability for the effects of high temperature on crop growth and development, in vitro pollen germination and seed-set. Eighteen diverse sorghum genotypes were grown at day : night temperatures of 32 : 21°C (optimum temperature, OT) and 38 : 21°C (high temperature, HT during the middle of the day) in controlled environment chambers. HT significantly accelerated development, and reduced plant height and individual leaf size. However, there was no consistent effect on leaf area per plant. HT significantly reduced pollen germination and seed-set percentage of all genotypes; under HT, genotypes differed significantly in pollen viability percentage (17-63%) and seed-set percentage (7-65%). The two traits were strongly and positively associated (R2=0.93, n=36, P<0.001), suggesting a causal association. The observed genetic variation in pollen and seed-set traits should be able to be exploited through breeding to develop heat-tolerant varieties for future climates.

16.
Funct Plant Biol ; 32(10): 945-952, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32689190

RESUMEN

Limitations on maximum transpiration rates, which are commonly observed as midday stomatal closure, have been observed even under well-watered conditions. Such limitations may be caused by restricted hydraulic conductance in the plant or by limited supply of water to the plant from uptake by the roots. This behaviour would have the consequences of limiting photosynthetic rate, increasing transpiration efficiency, and conserving soil water. A key question is whether the conservation of water will be rewarded by sustained growth during seed fill and increased grain yield. This simulation analysis was undertaken to examine consequences on sorghum yield over several years when maximum transpiration rate was imposed in a model. Yields were simulated at four locations in the sorghum-growing area of Australia for 115 seasons at each location. Mean yield was increased slightly (5-7%) by setting maximum transpiration rate at 0.4 mm h-1. However, the yield increase was mainly in the dry, low-yielding years in which growers may be more economically vulnerable. In years with yield less than ∼450 g m-2, the maximum transpiration rate trait resulted in yield increases of 9-13%. At higher yield levels, decreased yields were simulated. The yield responses to restricted maximum transpiration rate were associated with an increase in efficiency of water use. This arose because transpiration was reduced at times of the day when atmospheric demand was greatest. Depending on the risk attitude of growers, incorporation of a maximum transpiration rate trait in sorghum cultivars could be desirable to increase yields in dry years and improve water use efficiency and crop yield stability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA