Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(28): e2217405120, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37406095

RESUMEN

Early placenta development involves cytotrophoblast differentiation into extravillous trophoblast (EVT) and syncytiotrophoblast (STB). Defective trophoblast development and function may result in severe pregnancy complications, including fetal growth restriction and pre-eclampsia. The incidence of these complications is increased in pregnancies of fetuses affected by Rubinstein-Taybi syndrome, a developmental disorder predominantly caused by heterozygous mutations in CREB-binding protein (CREBBP) or E1A-binding protein p300 (EP300). Although the acetyltransferases CREBBP and EP300 are paralogs with many overlapping functions, the increased incidence of pregnancy complications is specific for EP300 mutations. We hypothesized that these complications have their origin in early placentation and that EP300 is involved in that process. Therefore, we investigated the role of EP300 and CREBBP in trophoblast differentiation, using human trophoblast stem cells (TSCs) and trophoblast organoids. We found that pharmacological CREBBP/EP300 inhibition blocks differentiation of TSCs into both EVT and STB lineages, and results in an expansion of TSC-like cells under differentiation-inducing conditions. Specific targeting by RNA interference or CRISPR/Cas9-mediated mutagenesis demonstrated that knockdown of EP300 but not CREBBP, inhibits trophoblast differentiation, consistent with the complications seen in Rubinstein-Taybi syndrome pregnancies. By transcriptome sequencing, we identified transforming growth factor alpha (TGFA, encoding TGF-α) as being strongly upregulated upon EP300 knockdown. Moreover, supplementing differentiation medium with TGF-α, which is a ligand for the epidermal growth factor receptor (EGFR), likewise affected trophoblast differentiation and resulted in increased TSC-like cell proliferation. These findings suggest that EP300 facilitates trophoblast differentiation by interfering with at least EGFR signaling, pointing towards a crucial role for EP300 in early human placentation.


Asunto(s)
Preeclampsia , Síndrome de Rubinstein-Taybi , Embarazo , Femenino , Humanos , Trofoblastos/metabolismo , Factor de Crecimiento Transformador alfa , Síndrome de Rubinstein-Taybi/genética , Síndrome de Rubinstein-Taybi/metabolismo , Diferenciación Celular , Proteína p300 Asociada a E1A/genética , Proteína de Unión a CREB/genética , Receptores ErbB
2.
Bioessays ; 45(1): e2200112, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36300921

RESUMEN

Cancers often express hundreds of genes otherwise specific to germ cells, the germline/cancer (GC) genes. Here, we present and discuss the hypothesis that activation of a "germline program" promotes cancer cell malignancy. We do so by proposing four hallmark processes of the germline: meiosis, epigenetic plasticity, migration, and metabolic plasticity. Together, these hallmarks enable replicative immortality of germ cells as well as cancer cells. Especially meiotic genes are frequently expressed in cancer, implying that genes unique to meiosis may play a role in oncogenesis. Because GC genes are not expressed in healthy somatic tissues, they form an appealing source of specific treatment targets with limited side effects besides infertility. Although it is still unclear why germ cell specific genes are so abundantly expressed in cancer, from our hypothesis it follows that the germline's reproductive program is intrinsic to cancer development.


Asunto(s)
Neoplasias , Humanos , Neoplasias/genética , Células Germinativas , Carcinogénesis/metabolismo , Meiosis , Reproducción
3.
Hum Reprod ; 38(3): 359-370, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36708005

RESUMEN

STUDY QUESTION: What is the impact of cancer or hematological disorders on germ cells in pediatric male patients? SUMMARY ANSWER: Spermatogonial quantity is reduced in testes of prepubertal boys diagnosed with cancer or severe hematological disorder compared to healthy controls and this reduction is disease and age dependent: patients with central nervous system cancer (CNS tumors) and hematological disorders, as well as boys <7 years are the most affected. WHAT IS KNOWN ALREADY: Fertility preservation in pediatric male patients is considered based on the gonadotoxicity of selected treatments. Although treatment effects on germ cells have been extensively investigated, limited data are available on the effect of the disease on the prepubertal male gonad. Of the few studies investigating the effects of cancer or hematologic disorders on testicular function and germ cell quantity in prepuberty, the results are inconsistent. However, recent studies suggested impairments before the initiation of known gonadotoxic therapy. Understanding which diseases and at what age affect the germ cell pool in pediatric patients before treatment is critical to optimize strategies and counseling for fertility preservation. STUDY DESIGN, SIZE, DURATION: This multicenter retrospective cohort study included 101 boys aged <14 years with extra-cerebral cancer (solid tumors), CNS tumors, leukemia/lymphoma (blood cancer), or non-malignant hematological disorders, who were admitted for a fertility preservation programme between 2002 and 2018. PARTICIPANTS/MATERIALS, SETTING, METHODS: In addition to clinical data, we analyzed measurements of testicular volume and performed histological staining on testicular biopsies obtained before treatment, at cryopreservation, to evaluate number of spermatogonia per tubular cross-section, tubular fertility index, and the most advanced germ cell type prior to chemo-/radiotherapy. The controls were data simulations with summary statistics from original studies reporting healthy prepubertal boys' testes characteristics. MAIN RESULTS AND THE ROLE OF CHANCE: Prepubertal patients with childhood cancer or hematological disorders were more likely to have significantly reduced spermatogonial quantity compared to healthy controls (48.5% versus 31.0% prevalence, respectively). The prevalence of patients with reduced spermatogonial quantity was highest in the CNS tumor (56.7%) and the hematological disorder (55.6%) groups, including patients with hydroxyurea pre-treated sickle cell disease (58.3%) and patients not exposed to hydroxyurea (50%). Disease also adversely impacted spermatogonial distribution and differentiation. Irrespective of disease, we observed the highest spermatogonial quantity reduction in patients <7 years of age. LIMITATIONS, REASONS FOR CAUTION: For ethical reasons, we could not collect spermatogonial quantity data in healthy prepubertal boys as controls and thus deployed statistical simulation on data from literature. Also, our results should be interpreted considering low patient numbers per (sub)group. WIDER IMPLICATIONS OF THE FINDINGS: Cancers, especially CNS tumors, and severe hematological disorders can affect spermatogonial quantity in prepubertal boys before treatment. Consequently, these patients may have a higher risk of depleted spermatogonia following therapies, resulting in persistent infertility. Therefore, patient counseling prior to disease treatment and timing of fertility preservation should not only be based on treatment regimes, but also on diagnoses and age. STUDY FUNDING/COMPETING INTEREST(S): This study was supported by Marie Curie Initial Training Network (ITN) (EU-FP7-PEOPLE-2013-ITN) funded by European Commision grant no. 603568; ZonMW Translational Adult stem cell research (TAS) grant no. 116003002. No competing interests. TRIAL REGISTRATION NUMBER: N/A.


Asunto(s)
Preservación de la Fertilidad , Enfermedades Hematológicas , Neoplasias , Adulto , Niño , Humanos , Masculino , Espermatogonias , Preservación de la Fertilidad/métodos , Estudios Retrospectivos , Hidroxiurea , Testículo , Criopreservación
4.
Reprod Biomed Online ; 46(6): 973-981, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37005152

RESUMEN

RESEARCH QUESTION: What is the risk of hypogonadism in men with obstructive azoospermia, non-obstructive azoospermia (NOA) or Klinefelter syndrome after testicular sperm extraction (TESE)? DESIGN: This prospective longitudinal cohort study was carried out between 2007 and 2015. RESULTS: Around 36% of men with Klinefelter syndrome, 4% of men with obstructive azoospermia and 3% of men with NOA needed testosterone replacement therapy (TRT). Klinefelter syndrome was strongly associated with TRT while no association was found between obstructive azoospermia or NOA and TRT. Irrespective of the pre-operative diagnosis, a higher testosterone concentration before TESE was associated with a lower chance of needing TRT. CONCLUSIONS: Men with obstructive azoospermia or NOA have a similar moderate risk of clinical hypogonadism after TESE, while this risk is much larger for men with Klinefelter syndrome. The risk of clinical hypogonadism is lower when testosterone concentrations are high before TESE.


Asunto(s)
Azoospermia , Hipogonadismo , Síndrome de Klinefelter , Masculino , Humanos , Azoospermia/terapia , Estudios Prospectivos , Síndrome de Klinefelter/complicaciones , Estudios Longitudinales , Recuperación de la Esperma , Estudios Retrospectivos , Semen , Testículo/cirugía , Espermatozoides , Hipogonadismo/complicaciones , Testosterona
5.
Lancet Oncol ; 22(2): e57-e67, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33539754

RESUMEN

Male patients with childhood, adolescent, and young adult cancer are at an increased risk for infertility if their treatment adversely affects reproductive organ function. Future fertility is a primary concern of patients and their families. Variations in clinical practice are barriers to the timely implementation of interventions that preserve fertility. As part of the PanCareLIFE Consortium, in collaboration with the International Late Effects of Childhood Cancer Guideline Harmonization Group, we reviewed the current literature and developed a clinical practice guideline for fertility preservation in male patients who are diagnosed with childhood, adolescent, and young adult cancer at age 25 years or younger, including guidance on risk assessment and available methods for fertility preservation. The Grading of Recommendations Assessment, Development and Evaluation methodology was used to grade the available evidence and to form the recommendations. Recognising the need for global consensus, this clinical practice guideline used existing evidence and international expertise to rigorously develop transparent recommendations that are easy to use to facilitate the care of male patients with childhood, adolescent, and young adult cancer who are at high risk of fertility impairment and to enhance their quality of life.


Asunto(s)
Preservación de la Fertilidad/tendencias , Neoplasias/epidemiología , Neoplasias/terapia , Adolescente , Adulto , Supervivientes de Cáncer , Niño , Guías como Asunto , Humanos , Masculino , Neoplasias/complicaciones , Neoplasias/patología , Medición de Riesgo , Adulto Joven
6.
Development ; 145(16)2018 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-29540502

RESUMEN

To prevent chromosomal aberrations being transmitted to the offspring, strict meiotic checkpoints are in place to remove aberrant spermatocytes. However, in about 1% of males these checkpoints cause complete meiotic arrest leading to azoospermia and subsequent infertility. Here, we unravel two clearly distinct meiotic arrest mechanisms that occur during prophase of human male meiosis. Type I arrested spermatocytes display severe asynapsis of the homologous chromosomes, disturbed XY-body formation and increased expression of the Y chromosome-encoded gene ZFY and seem to activate a DNA damage pathway leading to induction of p63, possibly causing spermatocyte apoptosis. Type II arrested spermatocytes display normal chromosome synapsis, normal XY-body morphology and meiotic crossover formation but have a lowered expression of several cell cycle regulating genes and fail to silence the X chromosome-encoded gene ZFX Discovery and understanding of these meiotic arrest mechanisms increases our knowledge of how genomic stability is guarded during human germ cell development.


Asunto(s)
Puntos de Control del Ciclo Celular/genética , Meiosis/genética , Profase/genética , Espermatocitos/metabolismo , Espermatogénesis/fisiología , Apoptosis/fisiología , Azoospermia/genética , Daño del ADN/genética , Reparación del ADN/genética , Perfilación de la Expresión Génica , Humanos , Factores de Transcripción de Tipo Kruppel/biosíntesis , Masculino , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo
7.
Mol Cell Proteomics ; 18(Suppl 1): S132-S144, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30683686

RESUMEN

Spermatogenesis is a complex cell differentiation process that includes marked genetic, cellular, functional and structural changes. It requires tight regulation, because disturbances in any of the spermatogenic processes would lead to fertility deficiencies as well as disorders in offspring. To increase our knowledge of signal transduction during sperm development, we carried out a large-scale identification of the phosphorylation events that occur in the human male gonad. Metal oxide affinity chromatography using TiO2 combined with LC-MS/MS was conducted to profile the phosphoproteome of adult human testes with full spermatogenesis. A total of 8187 phosphopeptides derived from 2661 proteins were identified, resulting in the most complete report of human testicular phosphoproteins to date. Phosphorylation events were enriched in proteins functionally related to spermatogenesis, as well as to highly active processes in the male gonad, such as transcriptional and translational regulation, cytoskeleton organization, DNA packaging, cell cycle and apoptosis. Moreover, 174 phosphorylated kinases were identified. The most active human protein kinases in the testis were predicted both by the number of phosphopeptide spectra identified and the phosphorylation status of the kinase activation loop. The potential function of cyclin-dependent kinase 12 (CDK12) and p21-activated kinase 4 (PAK4) has been explored by in silico, protein-protein interaction analysis, immunodetection in testicular tissue, and a functional assay in a human embryonal carcinoma cell line. The colocalization of CDK12 with Golgi markers suggests a potential crucial role of this protein kinase during sperm formation. PAK4 has been found expressed in human spermatogonia, and a role in embryonal carcinoma cell response to apoptosis has been observed. Together, our protein discovery analysis confirms that phosphoregulation by protein kinases is highly active in sperm differentiation and opens a window to detailed characterization and validation of potential targets for the development of drugs modulating male fertility and tumor behavior.


Asunto(s)
Fosfoproteínas/metabolismo , Proteínas Quinasas/metabolismo , Proteoma/metabolismo , Espermatogénesis , Neoplasias Testiculares/metabolismo , Testículo/metabolismo , Anciano , Anciano de 80 o más Años , Apoptosis , Carcinoma Embrionario/patología , Ontología de Genes , Humanos , Masculino , Persona de Mediana Edad , Anotación de Secuencia Molecular , Mapeo de Interacción de Proteínas , Neoplasias Testiculares/patología , Testículo/patología
8.
Dev Biol ; 456(1): 25-30, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31421080

RESUMEN

The current strategy to preserve fertility of male prepubertal cancer patients consists of cryopreservation of a testicular tissue biopsy containing spermatogonial stem cells (SSCs). While in humans, fertility restoration strategies from prepubertal testicular tissues are still under investigation and have not yet resulted in complete germ cell differentiation, in mice various studies have described production of sperm and offspring through testicular organ culture and transplantation of in vitro propagated SSCs. Organ culture has shown to be successful in generating mature spermatozoa when using testicular fragments from various mouse strains, including CD1 and C57BL/6 J. Conversely, in vitro proliferation of SSCs from C57BL/6 J mice is highly inefficient when compared to other strains such as DBA2 or hybrid mice of C57BL/6 J and DBA2 with 75% C57BL/6 J background (B6D2F2). In this study, we investigated in vitro spermatogenesis by organ culture using testicular tissue from C57BL/6 J and B6D2F2 mice. Whereas spermatogenesis was initiated and completed in C57BL/6 J fragments, it could not be effectively supported in B6D2F2 testicular tissue. While maturation of Sertoli cells and Leydig cells functionality appeared to be identical between the two strains, in B6D2F2 tissue spermatogenesis did not proceed past the spermatocyte step, followed by a rapid decline of the number of all germ cells in the fragments. This suggests that the spermatogenic potential in vitro is dependent on specialized sites in the genome and therefore the organ culture conditions suboptimal for some strains of mice.


Asunto(s)
Células Madre Germinales Adultas/fisiología , Ratones Endogámicos/genética , Espermatogénesis/genética , Células Madre Germinales Adultas/metabolismo , Animales , Diferenciación Celular , Proliferación Celular , Criopreservación , Antecedentes Genéticos , Masculino , Ratones , Técnicas de Cultivo de Órganos/métodos , Maduración Sexual , Espermatogénesis/fisiología , Espermatogonias/citología , Espermatozoides/citología , Testículo/citología
9.
Development ; 144(20): 3659-3673, 2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28935708

RESUMEN

Spermatogenesis is a dynamic developmental process that includes stem cell proliferation and differentiation, meiotic cell divisions and extreme chromatin condensation. Although studied in mice, the molecular control of human spermatogenesis is largely unknown. Here, we developed a protocol that enables next-generation sequencing of RNA obtained from pools of 500 individually laser-capture microdissected cells of specific germ cell subtypes from fixed human testis samples. Transcriptomic analyses of these successive germ cell subtypes reveals dynamic transcription of over 4000 genes during human spermatogenesis. At the same time, many of the genes encoding for well-established meiotic and post-meiotic proteins are already present in the pre-meiotic phase. Furthermore, we found significant cell type-specific expression of post-transcriptional regulators, including expression of 110 RNA-binding proteins and 137 long non-coding RNAs, most of them previously not linked to spermatogenesis. Together, these data suggest that the transcriptome of precursor cells already contains the genes necessary for cellular differentiation and that timely translation controlled by post-transcriptional regulators is crucial for normal development. These established transcriptomes provide a reference catalog for further detailed studies on human spermatogenesis and spermatogenic failure.


Asunto(s)
Espermatogénesis , Espermatozoides/citología , Transcriptoma , Adulto , Animales , Biopsia , Diferenciación Celular , Cromatina/química , Regulación del Desarrollo de la Expresión Génica , Humanos , Captura por Microdisección con Láser , Masculino , Meiosis , Ratones , Persona de Mediana Edad , Familia de Multigenes , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Espermatogonias/citología , Testículo/citología
10.
Hum Reprod ; 35(3): 516-528, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-32222762

RESUMEN

STUDY QUESTION: Is there a difference in DNA methylation status of imprinted genes in placentas derived from IVF conceptions where embryo culture was performed in human tubal fluid (HTF) versus G5 culture medium? SUMMARY ANSWER: We found no statistically significant differences in the mean DNA methylation status of differentially methylated regions (DMRs) associated with parentally imprinted genes in placentas derived from IVF conceptions cultured in HTF versus G5 culture medium. WHAT IS KNOWN ALREADY: Animal studies indicate that the embryo culture environment affects the DNA methylation status of the embryo. In humans, birthweight is known to be affected by the type of embryo culture medium used. The effect of embryo culture media on pregnancy, birth and child development may thus be mediated by differential methylation of parentally imprinted genes in the placenta. STUDY DESIGN, SIZE, DURATION: To identify differential DNA methylation of imprinted genes in human placenta derived from IVF conceptions exposed to HTF or G5 embryo culture medium, placenta samples (n = 43 for HTF, n = 54 for G5) were collected between 2010 and 2012 s as part of a multi-center randomized controlled trial in the Netherlands comparing these embryo culture media. Placenta samples from 69 naturally conceived (NC) live births were collected during 2008-2013 in the Netherlands as reference material. PARTICIPANTS/MATERIALS, SETTING, METHODS: To identify differential DNA methylation of imprinted genes, we opted for an amplicon-based sequencing strategy on an Illumina MiSeq sequencing platform. DNA was isolated and 34 DMRs associated with well-defined parentally imprinted genes were amplified in a two-step PCR before sequencing using MiSeq technology. Sequencing data were analyzed in a multivariate fashion to eliminate possible confounding effects. MAIN RESULTS AND THE ROLE OF CHANCE: We found no statistically significant differences in the mean DNA methylation status of any of the imprinted DMRs in placentas derived from IVF conceptions cultured in HTF or G5 culture medium. We also did not observe any differences in the mean methylation status per amplicon nor in the variance in methylation per amplicon between the two culture medium.groups. A separate surrogate variable analysis also demonstrated that the IVF culture medium was not associated with the DNA methylation status of these DMRs. The mean methylation level and variance per CpG was equal between HTF and G5 placenta. Additional comparison of DNA methylation status of NC placenta samples revealed no statistically significant differences in mean amplicon and CpG methylation between G5, HTF and NC placenta; however, the number of placenta samples exhibiting outlier methylation levels was higher in IVF placenta compared to NC (P < 0.00001). Also, we were able to identify 37 CpG sites that uniquely displayed outlier methylation in G5 placentas and 32 CpG sites that uniquely displayed outlier methylation in HTF. In 8/37 (G5) and 4/32 (HTF) unique outliers CpGs, a medium-specific unique outlier could be directly correlated to outlier methylation of the entire amplicon. LIMITATIONS, REASONS FOR CAUTION: Due to practical reasons, not all placentas were collected during the trial, and we collected the placentas from natural conceptions from a different cohort, potentially creating bias. We limited ourselves to the DNA methylation status of 34 imprinted DMRs, and we studied only the placenta and no other embryo-derived tissues. WIDER IMPLICATIONS OF THE FINDINGS: It has often been postulated, but has yet to be rigorously tested, that imprinting mediates the effects of embryo culture conditions on pregnancy, birth and child development in humans. Since we did not detect any statistically significant effects of embryo culture conditions on methylation status of imprinted genes in the placenta, this suggests that other unexplored mechanisms may underlie these effects. The biological and clinical relevance of detected outliers with respect to methylation levels of CpGs and DMR require additional analysis in a larger sample size as well. Given the importance and the growing number of children born through IVF, research into these molecular mechanisms is urgently needed. STUDY FUNDING/COMPETING INTEREST(S): This study was funded by the March of Dimes grant number #6-FY13-153. The authors have no conflicts of interest. TRIAL REGISTRATION NUMBER: Placental biopsies were obtained under Netherlands Trial Registry number 1979 and 1298.


Asunto(s)
Metilación de ADN , Fertilización In Vitro , Medios de Cultivo/metabolismo , Femenino , Humanos , Países Bajos , Placenta/metabolismo , Embarazo
11.
Int J Mol Sci ; 21(21)2020 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-33158248

RESUMEN

Autologous spermatogonial stem cell transplantation is an experimental technique aimed at restoring fertility in infertile men. Although effective in animal models, in vitro propagation of human spermatogonia prior to transplantation has proven to be difficult. A major limiting factor is endogenous somatic testicular cell overgrowth during long-term culture. This makes the culture both inefficient and necessitates highly specific cell sorting strategies in order to enrich cultured germ cell fractions prior to transplantation. Here, we employed RNA-Seq to determine cell type composition in sorted integrin alpha-6 (ITGA6+) primary human testicular cells (n = 4 donors) cultured for up to two months, using differential gene expression and cell deconvolution analyses. Our data and analyses reveal that long-term cultured ITGA6+ testicular cells are composed mainly of cells expressing markers of peritubular myoid cells, (progenitor) Leydig cells, fibroblasts and mesenchymal stromal cells and only a limited percentage of spermatogonial cells as compared to their uncultured counterparts. These findings provide valuable insights into the cell type composition of cultured human ITGA6+ testicular cells during in vitro propagation and may serve as a basis for optimizing future cell sorting strategies as well as optimizing the current human testicular cell culture system for clinical use.


Asunto(s)
Técnicas de Cultivo de Célula , Integrina alfa6/metabolismo , Células Madre Mesenquimatosas/metabolismo , Espermatogonias/metabolismo , Testículo/citología , Transcriptoma , Biomarcadores/metabolismo , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular/genética , Proliferación Celular/genética , Separación Celular , Células Cultivadas , Humanos , Células Intersticiales del Testículo/metabolismo , Masculino , Células Madre Mesenquimatosas/citología , Espermatogénesis/genética , Espermatogonias/citología , Testículo/metabolismo , Factores de Tiempo
12.
Microsc Microanal ; 25(1): 221-228, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30246678

RESUMEN

TorsinA is a member of the AAA+ superfamily of adenosine triphosphatases. These AAA+ proteins have numerous biological functions, including vesicle fusion, cytoskeleton dynamics, intracellular trafficking, protein folding, and degradation as well as organelle biogenesis. Of particular interest is torsinA, which is mainly located in the endoplasmic reticulum (ER) and nuclear envelope (NE). Interestingly, mutations in the TOR1A gene (the gene encoding torsinA) are associated with DYT1 dystonia and with the preferential localization of mutated torsinA at the NE, where it is associated with lamina-associated polypeptide 1. A bioinformatics study of the torsinA interactome revealed reproductive processes to be highly relevant, as proteins in this class were found to interact with the former. Interestingly, the torsin protein family had never been previously described to be associated with the mammalian spermatogenic process. Histological staining of torsinA in human testis tissue revealed a granular cytoplasmic localization in mid- and late spermatocytes. We further sought to understand this newly discovered expression of torsinA in the meiotic phase of human spermatogenesis by studying its specific subcellular distribution. TorsinA is not present in the ER as commonly described. The proposal that torsinA might relocate to the pro-acrosomal vesicles in the Golgi apparatus is discussed.


Asunto(s)
Chaperonas Moleculares/metabolismo , Transporte de Proteínas , Espermatogénesis/fisiología , Anciano de 80 o más Años , Animales , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Humanos , Masculino , Chaperonas Moleculares/genética , Mutación , Membrana Nuclear/metabolismo , Neoplasias de la Próstata , Testículo/patología
13.
Hum Reprod ; 33(5): 784-792, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29635479

RESUMEN

In medicine, safety and efficacy are the two pillars on which the implementation of novel treatments rest. To protect the patient from unnecessary or unsafe treatments, usually, a stringent path of (pre) clinical testing is followed before a treatment is introduced into routine patient care. However, in reproductive medicine several techniques have been clinically introduced without elaborate preclinical studies. Moreover, novel reproductive techniques may harbor safety risks not only for the patients undergoing treatment, but also for the offspring conceived through these techniques. If preclinical (animal) studies were performed, efficacy and functionality the upper hand. When a new medically assisted reproduction (MAR) treatment was proven effective (i.e. if it resulted in live birth) the treatment was often rapidly implemented in the clinic. For IVF, the first study on the long-term health of IVF children was published a decade after its clinical implementation. In more recent years, prospective follow-up studies have been conducted that provided the opportunity to study the health of large groups of children derived from different reproductive techniques. Although such studies have indicated differences between children conceived through MAR and children conceived naturally, results are often difficult to interpret due to the observational nature of these studies (and the associated risk of confounding factors, e.g. subfertility of the parents), differences in definitions of clinical outcome measures, lack of uniformity in assessment protocols and heterogeneity of the underlying reasons for fertility treatment. With more novel MARs waiting at the horizon, there is a need for a framework on how to assess safety of novel reproductive techniques in a preclinical (animal) setting before they are clinically implemented. In this article, we provide a blueprint for preclinical testing of safety and health of offspring generated by novel MARs using a mouse model involving an array of tests that comprise the entire lifespan. We urge scientists to perform the proposed extensive preclinical tests for novel reproductive techniques with the goal to acquire knowledge on efficacy and the possible health effects of to-be implemented reproductive techniques to safeguard quality of novel MARs.


Asunto(s)
Técnicas Reproductivas Asistidas/efectos adversos , Femenino , Estudios de Seguimiento , Humanos , Recién Nacido , Estudios Longitudinales , Embarazo , Resultado del Embarazo , Estudios Prospectivos , Proyectos de Investigación
14.
Hum Reprod ; 33(1): 81-90, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29165614

RESUMEN

STUDY QUESTION: Is testicular transplantation of in vitro propagated spermatogonial stem cells associated with increased cancer incidence and decreased survival rates in recipient mice? SUMMARY ANSWER: Cancer incidence was not increased and long-term survival rate was not altered after transplantation of in vitro propagated murine spermatogonial stem cells (SSCs) in busulfan-treated recipients as compared to non-transplanted busulfan-treated controls. WHAT IS KNOWN ALREADY: Spermatogonial stem cell autotransplantation (SSCT) is a promising experimental reproductive technique currently under development to restore fertility in male childhood cancer survivors. Most preclinical studies have focused on the proof-of-principle of the functionality and efficiency of this technique. The long-term health of recipients of SSCT has not been studied systematically. STUDY DESIGN, SIZE, DURATION: This study was designed as a murine equivalent of a clinical prospective study design. Long-term follow-up was performed for mice who received a busulfan treatment followed by either an intratesticular transplantation of in vitro propagated enhanced green fluorescent protein (eGFP) positive SSCs (cases, n = 34) or no transplantation (control, n = 37). Using a power calculation, we estimated that 36 animals per group would be sufficient to provide an 80% power and with a 5% level of significance to demonstrate a 25% increase in cancer incidence in the transplanted group. The survival rate and cancer incidence was investigated until the age of 18 months. PARTICIPANTS/MATERIALS, SETTING, METHODS: Neonatal male B6D2F1 actin-eGFP transgenic mouse testis were used to initiate eGFP positive germline stem (GS) cell culture, which harbor SSCs. Six-week old male C57BL/6 J mice received a single dose busulfan treatment to deplete the testis from endogenous spermatogenesis. Half of these mice received a testicular transplantation of cultured eGFP positive GS cells, while the remainder of mice served as a control group. Mice were followed up until the age of 18 months (497-517 days post-busulfan) or sacrificed earlier due to severe discomfort or illness. Survival data were collected. To evaluate cancer incidence a necropsy was performed and tissues were collected. eGFP signal in transplanted testis and in benign and malignant lesions was assessed by standard PCR. MAIN RESULTS AND THE ROLE OF CHANCE: We found 9% (95% CI: 2-25%) malignancies in the transplanted busulfan-treated animals compared to 26% (95% CI: 14-45%) in the busulfan-treated control group, indicating no statistically significant difference in incidence of malignant lesions in transplanted and control mice (OR: 0.3, 95% CI: 0.1-1.1). Furthermore, none of the malignancies that arose in the transplanted animals contained eGFP signal, suggesting that they are not derived from the in vitro propagated transplanted SSCs. Mean survival time after busulfan treatment was found to be equal, with a mean survival time for transplanted animals of 478 days and 437 days for control animals (P = 0.076). LARGE SCALE DATA: NA. LIMITATIONS, REASONS FOR CAUTION: Although we attempted to mimic the future clinical application of SSCT in humans as close as possible, the mouse model that we used might not reflect all aspects of the future clinical setting. WIDER IMPLICATIONS OF THE FINDINGS: The absence of an increase in cancer incidence and a decrease in survival of mice that received a testicular transplantation of in vitro propagated SSCs is reassuring in light of the future clinical application of SSCT in humans. STUDY FUNDING/COMPETING INTEREST(S): This study was funded by KiKa (Kika86) and ZonMw (TAS 116003002). The authors report no financial or other conflict of interest relevant to the subject of this article.


Asunto(s)
Espermatogonias/trasplante , Trasplante de Células Madre/métodos , Testículo/cirugía , Animales , Células Cultivadas , Preservación de la Fertilidad/efectos adversos , Preservación de la Fertilidad/métodos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Animales , Estudios Prospectivos , Espermatogonias/citología , Espermatogonias/metabolismo , Trasplante de Células Madre/efectos adversos , Testículo/citología , Testículo/metabolismo
15.
Reprod Biomed Online ; 37(1): 6-17, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29776850

RESUMEN

RESEARCH QUESTION: From a clinical perspective, which parameters grant optimal cryopreservation of mouse testicular cell suspensions? DESIGN: We studied the effect of different cryopreservation rates, the addition of sugars, different vessels and the addition of an apoptotic inhibitor on the efficiency of testicular cell suspension cryopreservation. After thawing and warming, testicular cell suspensions were transplanted to recipient mice for further functional assay. After selecting the optimal cryopreservation procedure, a second experiment compared the transplantation efficiency between the selected freezing protocol and fresh testicular cell suspensions. RESULTS: Multiple- and single-step freezing did not differ significantly in terms of recovered viable cells (RVC) (33 ± 28% and 38 ± 25%). The addition of sucrose did not result in a higher RVC (33 ± 20%). Cells frozen in vials recovered better than those frozen in straws (52 ± 20% versus 33 ± 20%; P = 0.0049). The inclusion of an apoptosis inhibitor (z-VAD[Oe]-FMK) significantly increased the RVC after thawing (61 ± 18% versus 50 ± 17%; P = 0.0480). When comparing the optimal cryopreservation procedure with fresh testicular cell suspensions, a lower RVC (63 ± 11% versus 92 ± 4%; P < 0.0001) and number of donor-derived spermatogonial stem cell colonies per testis (34.04 ± 2.34 versus 16.78 ± 7.76; P = 0.0051) were observed. CONCLUSION: Upon freeze-thawing or vitrification-warming, and assessment of donor-derived spermatogenesis after transplantation, Dulbecco's modified Eagle's medium supplemented with 1.5M dimethyl-sulphoxide, 10% fetal calf serum and 60 µM of Z-VAD-(OMe)-FMK in vials at a freezing rate of -1°C/min was optimal.


Asunto(s)
Criopreservación/métodos , Crioprotectores/farmacología , Espermatogénesis/efectos de los fármacos , Testículo/citología , Animales , Masculino , Ratones , Testículo/efectos de los fármacos , Vitrificación
16.
Hum Reprod ; 30(11): 2463-75, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26358785

RESUMEN

STUDY QUESTION: What clinical practices, patient management strategies and experimental methods are currently being used to preserve and restore the fertility of prepubertal boys and adolescent males? SUMMARY ANSWER: Based on a review of the clinical literature and research evidence for sperm freezing and testicular tissue cryopreservation, and after consideration of the relevant ethical and legal challenges, an algorithm for the cryopreservation of sperm and testicular tissue is proposed for prepubertal boys and adolescent males at high risk of fertility loss. WHAT IS KNOWN ALREADY: A known late effect of the chemotherapy agents and radiation exposure regimes used to treat childhood cancers and other non-malignant conditions in males is the damage and/or loss of the proliferating spermatogonial stem cells in the testis. Cryopreservation of spermatozoa is the first line treatment for fertility preservation in adolescent males. Where sperm retrieval is impossible, such as in prepubertal boys, or it is unfeasible in adolescents prior to the onset of ablative therapies, alternative experimental treatments such as testicular tissue cryopreservation and the harvesting and banking of isolated spermatogonial stem cells can now be proposed as viable means of preserving fertility. STUDY DESIGN, SIZE, DURATION: Advances in clinical treatments, patient management strategies and the research methods used to preserve sperm and testicular tissue for prepubertal boys and adolescents were reviewed. A snapshot of the up-take of testis cryopreservation as a means to preserve the fertility of young males prior to December 2012 was provided using a questionnaire. PARTICIPANTS/MATERIALS, SETTING, METHODS: A comprehensive literature review was conducted. In addition, survey results of testis freezing practices in young patients were collated from 24 European centres and Israeli University Hospitals. MAIN RESULTS AND THE ROLE OF CHANCE: There is increasing evidence of the use of testicular tissue cryopreservation as a means to preserve the fertility of pre- and peri-pubertal boys of up to 16 year-old. The survey results indicate that of the 14 respondents, half of the centres were actively offering testis tissue cryobanking as a means of safeguarding the future fertility of boys and adolescents as more than 260 young patients (age range less than 1 year old to 16 years of age), had already undergone testicular tissue retrieval and storage for fertility preservation. The remaining centres were considering the implementation of a tissue-based fertility preservation programme for boys undergoing oncological treatments. LIMITATIONS, REASONS FOR CAUTION: The data collected were limited by the scope of the questionnaire, the geographical range of the survey area, and the small number of respondents. WIDER IMPLICATIONS OF THE FINDINGS: The clinical and research questions identified and the ethical and legal issues raised are highly relevant to the multi-disciplinary teams developing treatment strategies to preserve the fertility of prepubertal and adolescent boys who have a high risk of fertility loss due to ablative interventions, trauma or genetic pre-disposition.


Asunto(s)
Criopreservación/métodos , Preservación de la Fertilidad/métodos , Testículo , Adolescente , Niño , Europa (Continente) , Humanos , Masculino
17.
Cell Death Dis ; 15(1): 38, 2024 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-38216586

RESUMEN

In principle, germline cells possess the capability to transmit a nearly unaltered set of genetic material to infinite future generations, whereas somatic cells are limited by strict growth constraints necessary to assure an organism's physical structure and eventual mortality. As the potential to replicate indefinitely is a key feature of cancer, we hypothesized that the activation of a "germline program" in somatic cells can contribute to oncogenesis. Our group recently described over one thousand germline specific genes that can be ectopically expressed in cancer, yet how germline specific processes contribute to the malignant properties of cancer is poorly understood. We here show that the expression of germ cell/cancer (GC) genes correlates with malignancy in lung adenocarcinoma (LUAD). We found that LUAD cells expressing more GC genes can repair DNA double strand breaks more rapidly, show higher rates of proliferation and are more resistant to ionizing radiation, compared to LUAD cells that express fewer GC genes. In particular, we identified the HORMA domain protein regulator TRIP13 to be predominantly responsible for this malignant phenotype, and that TRIP13 inhibition or expression levels affect the response to ionizing radiation and subsequent DNA repair. Our results demonstrate that GC genes are viable targets in oncology, as they induce increased radiation resistance and increased propagation in cancer cells. Because their expression is normally restricted to germline cells, we anticipate that GC gene directed therapeutic options will effectively target cancer, with limited side effects besides (temporary) infertility.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Reparación del ADN/genética , Adenocarcinoma del Pulmón/genética , ADN , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/metabolismo , Células Germinativas/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas de Ciclo Celular/metabolismo
18.
Hum Reprod Open ; 2024(2): hoae010, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38449521

RESUMEN

STUDY QUESTION: Twenty years after the inception of the first fertility preservation programme for pre-pubertal boys, what are the current international practices with regard to cryopreservation of immature testicular tissue? SUMMARY ANSWER: Worldwide, testicular tissue has been cryopreserved from over 3000 boys under the age of 18 years for a variety of malignant and non-malignant indications; there is variability in practices related to eligibility, clinical assessment, storage, and funding. WHAT IS KNOWN ALREADY: For male patients receiving gonadotoxic treatment prior to puberty, testicular tissue cryopreservation may provide a method of fertility preservation. While this technique remains experimental, an increasing number of centres worldwide are cryopreserving immature testicular tissue and are approaching clinical application of methods to use this stored tissue to restore fertility. As such, standards for quality assurance and clinical care in preserving immature testicular tissue should be established. STUDY DESIGN SIZE DURATION: A detailed survey was sent to 17 centres within the recently established ORCHID-NET consortium, which offer testicular tissue cryopreservation to patients under the age of 18 years. The study encompassed 60 questions and remained open from 1 July to 1 November 2022. PARTICIPANTS/MATERIALS SETTING METHODS: Of the 17 invited centres, 16 completed the survey, with representation from Europe, Australia, and the USA. Collectively, these centres have cryopreserved testicular tissue from patients under the age of 18 years. Data are presented using descriptive analysis. MAIN RESULTS AND THE ROLE OF CHANCE: Since the establishment of the first formal fertility preservation programme for pre-pubertal males in 2002, these 16 centres have cryopreserved tissue from 3118 patients under the age of 18 years, with both malignant (60.4%) and non-malignant (39.6%) diagnoses. All centres perform unilateral biopsies, while 6/16 sometimes perform bilateral biopsies. When cryopreserving tissue, 9/16 centres preserve fragments sized ≤5 mm3 with the remainder preserving fragments sized 6-20 mm3. Dimethylsulphoxide is commonly used as a cryoprotectant, with medium supplements varying across centres. There are variations in funding source, storage duration, and follow-up practice. Research, with consent, is conducted on stored tissue in 13/16 centres. LIMITATIONS REASONS FOR CAUTION: While this is a multi-national study, it will not encompass every centre worldwide that is cryopreserving testicular tissue from males under 18 years of age. As such, it is likely that the actual number of patients is even higher than we report. Whilst the study is likely to reflect global practice overall, it will not provide a complete picture of practices in every centre. WIDER IMPLICATIONS OF THE FINDINGS: Given the research advances, it is reasonable to suggest that cryopreserved immature testicular tissue will in the future be used clinically to restore fertility. The growing number of patients undergoing this procedure necessitates collaboration between centres to better harmonize clinical and research protocols evaluating tissue function and clinical outcomes in these patients. STUDY FUNDING/COMPETING INTERESTS: K.D. is supported by a CRUK grant (C157/A25193). R.T.M. is supported by an UK Research and Innovation (UKRI) Future Leaders Fellowship (MR/S017151/1). The MRC Centre for Reproductive Health at the University of Edinburgh is supported by MRC (MR/N022556/1). C.L.M. is funded by Kika86 and ZonMW TAS 116003002. A.M.M.v.P. is supported by ZonMW TAS 116003002. E.G. was supported by the Research Program of the Research Foundation-Flanders (G.0109.18N), Kom op tegen Kanker, the Strategic Research Program (VUB_SRP89), and the Scientific Fund Willy Gepts. J.-B.S. is supported by the Swedish Childhood Cancer Foundation (TJ2020-0026). The work of NORDFERTIL is supported by the Swedish Childhood Cancer Foundation (PR2019-0123; PR2022-0115), the Swedish Research Council (2018-03094; 2021-02107), and the Birgitta and Carl-Axel Rydbeck's Research Grant for Paediatric Research (2020-00348; 2021-00073; 2022-00317; 2023-00353). C.E is supported by the Health Department of the Basque Government (Grants 2019111068 and 2022111067) and Inocente Inocente Foundation (FII22/001). M.P.R. is funded by a Medical Research Council Centre for Reproductive Health Grant No: MR/N022556/1. A.F. and N.R. received support from a French national research grant PHRC No. 2008/071/HP obtained by the French Institute of Cancer and the French Healthcare Organization. K.E.O. is funded by the University of Pittsburgh Medical Center and the US National Institutes of Health HD100197. V.B-L is supported by the French National Institute of Cancer (Grant Seq21-026). Y.J. is supported by the Royal Children's Hospital Foundation and a Medical Research Future Fund MRFAR000308. E.G., N.N., S.S., C.L.M., A.M.M.v.P., C.E., R.T.M., K.D., M.P.R. are members of COST Action CA20119 (ANDRONET) supported by COST (European Cooperation in Science and Technology). The Danish Child Cancer Foundation is also thanked for financial support (C.Y.A.). The authors declare no competing interests. TRIAL REGISTRATION NUMBER: N/A.

19.
Biochim Biophys Acta ; 1822(12): 1838-50, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22366765

RESUMEN

Spermatogenesis is a complex developmental process that ultimately generates mature spermatozoa. This process involves a phase of proliferative expansion, meiosis, and cytodifferentiation. Mouse models have been widely used to study spermatogenesis and have revealed many genes and molecular mechanisms that are crucial in this process. Although meiosis is generally considered as the most crucial phase of spermatogenesis, mouse models have shown that pre-meiotic and post-meiotic phases are equally important. Using knowledge generated from mouse models and in vitro studies, the current review provides an overview of the molecular control of rodent spermatogenesis. Finally, we briefly relate this knowledge to fertility problems in humans and discuss implications for future research. This article is part of a Special Issue entitled: Molecular Genetics of Human Reproductive Failure.


Asunto(s)
Roedores/fisiología , Espermatogénesis/genética , Animales , Masculino
20.
Hum Mol Genet ; 20(12): 2457-63, 2011 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-21429917

RESUMEN

The azoospermia factor c (AZFc) region harbors multi-copy genes that are expressed in the testis. Deletions of the AZFc region lead to reduced copy numbers of these genes. Four (partial) AZFc deletions have been described of which the b2/b4 and gr/gr deletions affect semen quality. In most studies, (partial) AZFc deletions are identified and characterized using plus/minus sequence site tag (STS) polymerase chain reaction (PCR). However, secondary duplications increase the gene copy number without re-introducing the STS boundary marker. Consequently, the actual copy number of AZFc genes cannot be determined via STS PCR. In the current study, we first set out to determine by quantitative real-time PCR the actual copy number of all AZFc genes in men with (partial) AZFc deletions based on STS PCR. We then analyzed whether reduced gene copy numbers of each AZFc gene family were associated with reduced total motile sperm count (TMC), regardless of the type of deletion. We screened 840 men and identified 31 unrelated men with (partial) deletions of AZFc based on STS PCR. Of these 31 men, 6 men (19%) had one or more secondary duplications. For all AZFc genes, we found an association between a reduction in the copy number of each individual AZFc gene and reduced TMC. In gr/gr-deleted men, restoration of reduced gene copy numbers restored their TMC to normal values. Our findings suggest that the gene content of the AZFc region has been preserved throughout evolution through a dosage effect of the AZFc genes on TMC safeguarding male fertility.


Asunto(s)
Dosificación de Gen/fisiología , Fenotipo , Proteínas de Plasma Seminal/genética , Motilidad Espermática/genética , Dosificación de Gen/genética , Sitios Genéticos , Humanos , Masculino , Reacción en Cadena de la Polimerasa , Proteínas de Plasma Seminal/metabolismo , Recuento de Espermatozoides , Estadísticas no Paramétricas , Testículo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA