Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Clin Infect Dis ; 78(2): 445-452, 2024 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-38019958

RESUMEN

BACKGROUND: Recent cases of clinical failure in malaria patients in the United Kingdom (UK) treated with artemether-lumefantrine have implications for malaria chemotherapy worldwide. METHODS: Parasites were isolated from an index case of confirmed Plasmodium falciparum treatment failure after standard treatment, and from comparable travel-acquired UK malaria cases. Drug susceptibility in vitro and genotypes at 6 resistance-associated loci were determined for all parasite isolates and compared with clinical outcomes for each parasite donor. RESULTS: A traveler, who returned to the UK from Uganda in 2022 with Plasmodium falciparum malaria, twice failed treatment with full courses of artemether-lumefantrine. Parasites from the patient exhibited significantly reduced susceptibility to artemisinin (ring-stage survival, 17.3% [95% confidence interval {CI}, 13.6%-21.1%]; P < .0001) and lumefantrine (effective concentration preventing 50% of growth = 259.4 nM [95% CI, 130.6-388.2 nM]; P = .001). Parasite genotyping identified an allele of pfk13 encoding both the A675V variant in the Pfk13 propeller domain and a novel L145V nonpropeller variant. In vitro susceptibility testing of 6 other P. falciparum lines of Ugandan origin identified reduced susceptibility to artemisinin and lumefantrine in 1 additional line, also from a 2022 treatment failure case. These parasites did not harbor a pfk13 propeller domain variant but rather the novel nonpropeller variant T349I. Variant alleles of pfubp1, pfap2mu, and pfcoronin were also identified among the 7 parasite lines. CONCLUSIONS: We confirm, in a documented case of artemether-lumefantrine treatment failure imported from Uganda, the presence of pfk13 mutations encoding L145V and A675V. Parasites with reduced susceptibility to both artemisinin and lumefantrine may be emerging in Uganda.


Asunto(s)
Antimaláricos , Artemisininas , Malaria Falciparum , Malaria , Humanos , Lumefantrina/farmacología , Lumefantrina/uso terapéutico , Plasmodium falciparum , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Combinación Arteméter y Lumefantrina/farmacología , Combinación Arteméter y Lumefantrina/uso terapéutico , Uganda , Resistencia a Medicamentos , Arteméter/farmacología , Arteméter/uso terapéutico , Artemisininas/farmacología , Artemisininas/uso terapéutico , Malaria/tratamiento farmacológico , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Insuficiencia del Tratamiento , Reino Unido , Proteínas Protozoarias/genética
2.
Artículo en Inglés | MEDLINE | ID: mdl-32094134

RESUMEN

Quinolones, such as the antimalarial atovaquone, are inhibitors of the malarial mitochondrial cytochrome bc1 complex, a target critical to the survival of both liver- and blood-stage parasites, making these drugs useful as both prophylaxis and treatment. Recently, several derivatives of endochin have been optimized to produce novel quinolones that are active in vitro and in animal models. While these quinolones exhibit potent ex vivo activity against Plasmodium falciparum and Plasmodium vivax, their activity against the zoonotic agent Plasmodium knowlesi is unknown. We screened several of these novel endochin-like quinolones (ELQs) for their activity against P. knowlesiin vitro and compared this with their activity against P. falciparum tested under identical conditions. We demonstrated that ELQs are potent against P. knowlesi (50% effective concentration, <117 nM) and equally effective against P. falciparum We then screened selected quinolones and partner drugs using a longer exposure (2.5 life cycles) and found that proguanil is 10-fold less potent against P. knowlesi than P. falciparum, while the quinolones demonstrate similar potency. Finally, we used isobologram analysis to compare combinations of the ELQs with either proguanil or atovaquone. We show that all quinolone combinations with proguanil are synergistic against P. falciparum However, against P. knowlesi, no evidence of synergy between proguanil and the quinolones was found. Importantly, the combination of the novel quinolone ELQ-300 with atovaquone was synergistic against both species. Our data identify potentially important species differences in proguanil susceptibility and in the interaction of proguanil with quinolones and support the ongoing development of novel quinolones as potent antimalarials that target multiple species.


Asunto(s)
Antimaláricos/farmacología , Plasmodium knowlesi/efectos de los fármacos , Proguanil/farmacología , Quinolonas/farmacología , Animales , Atovacuona/farmacología , Interacciones Farmacológicas , Sinergismo Farmacológico , Pruebas de Sensibilidad Microbiana , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium knowlesi/crecimiento & desarrollo
3.
Artículo en Inglés | MEDLINE | ID: mdl-31636063

RESUMEN

Management of uncomplicated malaria worldwide is threatened by the emergence in Asia of Plasmodium falciparum carrying variants of the pfk13 locus and exhibiting reduced susceptibility to artemisinin. Mutations in two other genes, ubp1 and ap2µ, are associated with artemisinin resistance in rodent malaria and with clinical failure of combination therapy in African malaria patients. Transgenic P. falciparum clones, each carrying orthologues of mutations in pfap2µ and pfubp1 associated with artemisinin resistance in Plasmodium chabaudi, were derived by Cas9 gene editing. Susceptibility to artemisinin and other antimalarial drugs was determined. Following exposure to 700 nM dihydroartemisinin in the ring-stage survival assay, we found strong evidence that transgenic parasites expressing the I592T variant (11% survival), but not the S160N variant (1% survival), of the AP2µ adaptin subunit were significantly less susceptible than the parental wild-type parasite population. The V3275F variant of UBP1, but not the V3306F variant, also displayed reduced susceptibility to dihydroartemisinin (8.5% survival versus 0.5% survival). AP2µ and UBP1 variants did not elicit reduced susceptibility to 48 h of exposure to artemisinin or to other antimalarial drugs. Therefore, variants of the AP2 adaptor complex µ-subunit and of the ubiquitin hydrolase UBP1 reduce in vitro artemisinin susceptibility at the early ring stage in P. falciparum These findings confirm the existence of multiple pathways to perturbation of either the mode of action of artemisinin, the parasite's adaptive mechanisms of resistance, or both. The cellular role of UBP1 and AP2µ in Plasmodium parasites should now be elucidated.


Asunto(s)
Antimaláricos/farmacología , Artemisininas/farmacología , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/metabolismo , Edición Génica , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
4.
Artículo en Inglés | MEDLINE | ID: mdl-28137810

RESUMEN

We present case histories of four patients treated with artemether-lumefantrine for falciparum malaria in UK hospitals in 2015 to 2016. Each subsequently presented with recurrent symptoms and Plasmodium falciparum parasitemia within 6 weeks of treatment with no intervening travel to countries where malaria is endemic. Parasite isolates, all of African origin, harbored variants at some candidate resistance loci. No evidence of pfk13-mediated artemisinin resistance was found. Vigilance for signs of unsatisfactory antimalarial efficacy among imported cases of malaria is recommended.


Asunto(s)
Antimaláricos/uso terapéutico , Artemisininas/uso terapéutico , Resistencia a Medicamentos/genética , Etanolaminas/uso terapéutico , Fluorenos/uso terapéutico , Malaria Falciparum/tratamiento farmacológico , Parasitemia/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos , Proteínas Protozoarias/genética , África , Anciano , Combinación Arteméter y Lumefantrina , Combinación de Medicamentos , Femenino , Expresión Génica , Sitios Genéticos , Humanos , Malaria Falciparum/parasitología , Malaria Falciparum/patología , Masculino , Parasitemia/parasitología , Parasitemia/patología , Plasmodium falciparum/genética , Plasmodium falciparum/crecimiento & desarrollo , Recurrencia , Viaje , Insuficiencia del Tratamiento , Reino Unido , Adulto Joven
5.
J Antimicrob Chemother ; 72(11): 3051-3058, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28961865

RESUMEN

BACKGROUND: The simian malaria parasite Plasmodium knowlesi is now a well-recognized pathogen of humans in South-East Asia. Clinical infections appear adequately treated with existing drug regimens, but the evidence base for this practice remains weak. The availability of P. knowlesi cultures adapted to continuous propagation in human erythrocytes enables specific studies of in vitro susceptibility of the species to antimalarial agents, and could provide a surrogate system for testing investigational compounds against Plasmodium vivax and other non-Plasmodium falciparum infections that cannot currently be propagated in vitro. OBJECTIVES: We sought to optimize protocols for in vitro susceptibility testing of P. knowlesi and to contrast outputs with those obtained for P. falciparum under comparable test conditions. METHODS: Growth monitoring of P. knowlesi in vitro was by DNA quantification using a SYBR Green fluorescent assay or by colorimetric detection of the lactate dehydrogenase enzyme. For comparison, P. falciparum was tested under conditions identical to those used for P. knowlesi. RESULTS: The SYBR Green I assay proved the most robust format over one (27 h) or two (54 h) P. knowlesi life cycles. Unexpectedly, P. knowlesi displays significantly greater susceptibility to the dihydrofolate reductase inhibitors pyrimethamine, cycloguanil and trimethoprim than does P. falciparum, but is less susceptible to the selective agents blasticidin and DSM1 used in parasite transfections. Inhibitors of dihydroorotate dehydrogenase also demonstrate lower activity against P. knowlesi. CONCLUSIONS: The fluorescent assay system validated here identified species-specific P. knowlesi drug susceptibility profiles and can be used for testing investigational compounds for activity against non-P. falciparum malaria.


Asunto(s)
Antimaláricos/farmacología , Plasmodium falciparum/efectos de los fármacos , Plasmodium knowlesi/efectos de los fármacos , Benzotiazoles , Colorimetría , Diaminas , Dihidroorotato Deshidrogenasa , Eritrocitos/parasitología , Fluorescencia , Humanos , L-Lactato Deshidrogenasa/genética , Malaria/parasitología , Compuestos Orgánicos , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/antagonistas & inhibidores , Pruebas de Sensibilidad Parasitaria , Plasmodium falciparum/enzimología , Plasmodium falciparum/genética , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium knowlesi/enzimología , Plasmodium knowlesi/genética , Plasmodium knowlesi/crecimiento & desarrollo , Proguanil/farmacología , Pirimetamina/farmacología , Quinolinas , Sensibilidad y Especificidad , Triazinas/farmacología
6.
J Infect Dis ; 213(5): 800-10, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26503982

RESUMEN

BACKGROUND: It is becoming increasingly apparent that certain mutations in the Plasmodium falciparum chloroquine resistance transporter (PfCRT) alter the parasite's susceptibility to diverse compounds. Here we investigated the interaction of PfCRT with 3 tricyclic compounds that have been used to treat malaria (quinacrine [QC] and methylene blue [MB]) or to study P. falciparum (acridine orange [AO]). METHODS: We measured the antiplasmodial activities of QC, MB, and AO against chloroquine-resistant and chloroquine-sensitive P. falciparum and determined whether QC and AO affect the accumulation and activity of chloroquine in these parasites. We also assessed the ability of mutant (PfCRT(Dd2)) and wild-type (PfCRT(D10)) variants of the protein to transport QC, MB, and AO when expressed at the surface of Xenopus laevis oocytes. RESULTS: Chloroquine resistance-conferring isoforms of PfCRT reduced the susceptibility of the parasite to QC, MB, and AO. In chloroquine-resistant (but not chloroquine-sensitive) parasites, AO and QC increased the parasite's accumulation of, and susceptibility to, chloroquine. All 3 compounds were shown to bind to PfCRT(Dd2), and the transport of QC and MB via this protein was saturable and inhibited by the chloroquine resistance-reverser verapamil. CONCLUSIONS: Our findings reveal that the PfCRT(Dd2)-mediated transport of tricyclic antimalarials reduces the parasite's susceptibility to these drugs.


Asunto(s)
Proteínas de Transporte de Membrana/metabolismo , Azul de Metileno/metabolismo , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Quinacrina/metabolismo , Verapamilo/farmacología , Animales , Antimaláricos/farmacología , Transporte Biológico/efectos de los fármacos , Resistencia a Medicamentos , Regulación de la Expresión Génica/fisiología , Variación Genética , Oocitos/metabolismo , Xenopus laevis
7.
Angew Chem Int Ed Engl ; 55(49): 15250-15253, 2016 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-27554333

RESUMEN

We demonstrate, for the first time, the multiplexed determination of microbial species from whole blood using the paper-folding technique of origami to enable the sequential steps of DNA extraction, loop-mediated isothermal amplification (LAMP), and array-based fluorescence detection. A low-cost handheld flashlight reveals the presence of the final DNA amplicon to the naked eye, providing a "sample-to-answer" diagnosis from a finger-prick volume of human blood, within 45 min, with minimal user intervention. To demonstrate the method, we showed the identification of three species of Plasmodium, analyzing 80 patient samples benchmarked against the gold-standard polymerase chain reaction (PCR) assay in an operator-blinded study. We also show that the test retains its diagnostic accuracy when using stored or fixed reference samples.


Asunto(s)
Malaria/diagnóstico , Técnicas de Amplificación de Ácido Nucleico , Papel , Plasmodium/aislamiento & purificación , Humanos , Malaria/sangre , Reacción en Cadena de la Polimerasa , Sensibilidad y Especificidad
8.
Antimicrob Agents Chemother ; 59(5): 2540-7, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25691625

RESUMEN

The emergence of drug-resistant parasites is a serious threat faced by malaria control programs. Understanding the genetic basis of resistance is critical to the success of treatment and intervention strategies. A novel locus associated with antimalarial resistance, ap2-mu (encoding the mu chain of the adaptor protein 2 [AP2] complex), was recently identified in studies on the rodent malaria parasite Plasmodium chabaudi (pcap2-mu). Furthermore, analysis in Kenyan malaria patients of polymorphisms in the Plasmodium falciparum ap2-mu homologue, pfap2-mu, found evidence that differences in the amino acid encoded by codon 160 are associated with enhanced parasite survival in vivo following combination treatments which included artemisinin derivatives. Here, we characterize the role of pfap2-mu in mediating the in vitro antimalarial drug response of P. falciparum by generating transgenic parasites constitutively expressing codon 160 encoding either the wild-type Ser (Ser160) or the Asn mutant (160Asn) form of pfap2-mu. Transgenic parasites carrying the pfap2-mu 160Asn allele were significantly less sensitive to dihydroartemisinin using a standard 48-h in vitro test, providing direct evidence of an altered parasite response to artemisinin. Our data also provide evidence that pfap2-mu variants can modulate parasite sensitivity to quinine. No evidence was found that pfap2-mu variants contribute to the slow-clearance phenotype exhibited by P. falciparum in Cambodian patients treated with artesunate monotherapy. These findings provide compelling evidence that pfap2-mu can modulate P. falciparum responses to multiple drugs. We propose that this gene should be evaluated further as a potential molecular marker of antimalarial resistance.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Artemisininas/farmacología , Plasmodium falciparum/efectos de los fármacos , Subunidades de Proteína/metabolismo , Quinina/farmacología , Proteínas Adaptadoras del Transporte Vesicular/química , Proteínas Adaptadoras del Transporte Vesicular/genética , ADN Complementario , Sistemas de Lectura Abierta/genética , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Subunidades de Proteína/química , Subunidades de Proteína/genética , Reacción en Cadena en Tiempo Real de la Polimerasa
9.
Antimicrob Agents Chemother ; 59(2): 1110-8, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25487796

RESUMEN

Plasmodium falciparum, the most deadly agent of malaria, displays a wide variety of resistance mechanisms in the field. The ability of antimalarial compounds in development to overcome these must therefore be carefully evaluated to ensure uncompromised activity against real-life parasites. We report here on the selection and phenotypic as well as genotypic characterization of a panel of sensitive and multidrug-resistant P. falciparum strains that can be used to optimally identify and deconvolute the cross-resistance signals from an extended panel of investigational antimalarials. As a case study, the effectiveness of the selected panel of strains was demonstrated using the 1,2,4-oxadiazole series, a newly identified antimalarial series of compounds with in vitro activity against P. falciparum at nanomolar concentrations. This series of compounds was to be found inactive against several multidrug-resistant strains, and the deconvolution of this signal implicated pfcrt, the genetic determinant of chloroquine resistance. Targeted mode-of-action studies further suggested that this new chemical series might act as falcipain 2 inhibitors, substantiating the suggestion that these compounds have a site of action similar to that of chloroquine but a distinct mode of action. New antimalarials must overcome existing resistance and, ideally, prevent its de novo appearance. The panel of strains reported here, which includes recently collected as well as standard laboratory-adapted field isolates, is able to efficiently detect and precisely characterize cross-resistance and, as such, can contribute to the faster development of new, effective antimalarial drugs.


Asunto(s)
Antimaláricos/farmacología , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/metabolismo , Antimaláricos/química , Resistencia a Medicamentos/fisiología , Pruebas de Sensibilidad Parasitaria
10.
J Infect Dis ; 210(12): 2001-8, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-24994911

RESUMEN

BACKGROUND: The efficacy of artemisinin-based combination therapy (ACT) for Plasmodium falciparum malaria may be threatened by parasites with reduced responsiveness to artemisinins. Among 298 ACT-treated children from Mbita, Kenya, submicroscopic persistence of P. falciparum on day 3 posttreatment was associated with subsequent microscopically detected parasitemia at days 28 or 42. METHODS: DNA sequences of resistance-associated parasite loci pfcrt, pfmdr1, pfubp1, and pfap2mu were determined in the Mbita cohort before treatment, on days 2 and 3 after initiation of treatment, and on the day of treatment failure. RESULTS: Parasites surviving ACT on day 2 or day 3 posttreatment were significantly more likely than the baseline population to carry the wild-type haplotypes of pfcrt (CVMNK at codons 72-76; P < .001) and pfmdr1 (NFD at codons 86, 184, 1246; P < .001). In contrast, variant alleles of the novel candidate resistance genes pfap2mu (S160N/T; P = .006) and pfubp-1 (E1528D; P < .001) were significantly more prevalent posttreatment. No genetic similarities were found to artemisinin-tolerant parasites recently described in Cambodia. CONCLUSIONS: Among treated children in western Kenya, certain P. falciparum genotypes defined at pfcrt, pfmdr1, pfap2mu, and pfubp1 more often survive ACT at the submicroscopic level, and contribute to onward transmission and subsequent patent recrudescence.


Asunto(s)
Antimaláricos/uso terapéutico , Artemisininas/uso terapéutico , Malaria Falciparum/tratamiento farmacológico , Proteínas de Transporte de Membrana/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Selección Genética , Cambodia , Niño , Preescolar , Resistencia a Medicamentos , Quimioterapia Combinada , Femenino , Genotipo , Humanos , Lactante , Kenia , Masculino , Plasmodium falciparum/aislamiento & purificación
11.
Malar J ; 12: 320, 2013 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-24028570

RESUMEN

BACKGROUND: The screening of lead compounds against in vitro parasite cultures is an essential step in the development of novel anti-malarial drugs, but currently relies on laboratory parasite lines established in vitro during the last century. This study sought to establish in continuous culture a series of recent Plasmodium falciparum isolates to represent the current parasite populations in Africa, all of which are now exposed to artemisinin combination therapy. METHODS: Pre-treatment P. falciparum isolates were obtained in EDTA, and placed into continuous culture after sampling of DNA. One post-treatment blood sample was also collected for each donor to monitor parasite clonality during clearance in vivo. IC50 estimates were obtained for 11 anti-malarial compounds for each established parasite line, clonal multiplicity measured in vivo and in vitro, and polymorphic sites implicated in parasite sensitivity to drugs were investigated at the pfmdr1, pfcrt, pfdhfr, pfdhps and pfap2mu loci before and after treatment, and in the cultured lines. RESULTS: Plasmodium falciparum isolates from seven malaria patients with recent travel to three West African and two East African countries were successfully established in long-term culture. One of these, HL1211, was from a patient with recrudescent parasitaemia 14 days after a full course of artemether-lumefantrine. All established culture lines were shown to be polyclonal, reflecting the in vivo isolates from which they were derived, and at least two lines reliably produce gametocytes in vitro. Two lines displayed high chloroquine IC50 estimates, and carried the CVIET haplotype at codons 72-76, whereas the remaining five lines carried the CVMNK haplotype and were sensitive in vitro. All were sensitive to the endoperoxides dihydroartemisinin and OZ277, but IC50 estimates for lumefantrine varied, with the least sensitive parasites carrying pfmdr1 alleles encoding Asn at codon 86. CONCLUSIONS: This study describes the establishment in continuous culture, in vitro drug sensitivity testing and molecular characterization of a series of multiclonal P. falciparum isolates taken directly from UK malaria patients following recent travel to various malaria-endemic countries in Africa. These "HL" isolates are available as an open resource for studies of drug response, antigenic diversity and other aspects of parasite biology.


Asunto(s)
Antimaláricos/farmacología , Resistencia a Medicamentos , Malaria Falciparum/parasitología , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/crecimiento & desarrollo , Adulto , África , Femenino , Humanos , Concentración 50 Inhibidora , Masculino , Pruebas de Sensibilidad Parasitaria , Plasmodium falciparum/aislamiento & purificación , Polimorfismo Genético , Proteínas Protozoarias/genética , Viaje , Reino Unido
12.
mBio ; 13(5): e0117822, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36190127

RESUMEN

Several unrelated classes of antimalarial compounds developed against Plasmodium falciparum target a parasite-specific P-type ATP-dependent Na+ pump, PfATP4. We have previously shown that other malaria parasite species infecting humans are less susceptible to these compounds. Here, we generated a series of transgenic Plasmodium knowlesi orthologue replacement (OR) lines in which the endogenous pkatp4 locus was replaced by a recodonized P. knowlesi atp4 (pkatp4) coding region or the orthologous coding region from P. falciparum, Plasmodium malariae, Plasmodium ovale subsp. curtisi, or Plasmodium vivax. Each OR transgenic line displayed a similar growth pattern to the parental P. knowlesi line. We found significant orthologue-specific differences in parasite susceptibility to three chemically unrelated ATP4 inhibitors, but not to comparator drugs, among the P. knowlesi OR lines. The PfATP4OR transgenic line of P. knowlesi was significantly more susceptible than our control PkATP4OR line to three ATP4 inhibitors: cipargamin, PA21A092, and SJ733. The PvATP4OR and PmATP4OR lines were similarly susceptible to the control PkATP4OR line, but the PocATP4OR line was significantly less susceptible to all ATP4 inhibitors than the PkATP4OR line. Cipargamin-induced inhibition of Na+ efflux was also significantly greater with the P. falciparum orthologue of ATP4. This confirms that species-specific susceptibility differences previously observed in ex vivo studies of human isolates are partly or wholly enshrined in the primary amino acid sequences of the respective ATP4 orthologues and highlights the need to monitor efficacy of investigational malaria drugs against multiple species. P. knowlesi is now established as an important in vitro model for studying drug susceptibility in non-falciparum malaria parasites. IMPORTANCE Effective drugs are vital to minimize the illness and death caused by malaria. Development of new drugs becomes ever more urgent as drug resistance emerges. Among promising compounds now being developed to treat malaria are several unrelated molecules that each inhibit the same protein in the malaria parasite-ATP4. Here, we exploited the genetic tractability of P. knowlesi to replace its own ATP4 genes with orthologues from five human-infective species to understand the drug susceptibility differences among these parasites. We previously estimated the susceptibility to ATP4-targeting drugs of each species using clinical samples from malaria patients. These estimates closely matched those of the corresponding "hybrid" P. knowlesi parasites carrying introduced ATP4 genes. Thus, species-specific ATP4 inhibitor efficacy is directly determined by the sequence of the gene. Our novel approach to understanding cross-species susceptibility/resistance can strongly support the effort to develop antimalarials that effectively target all human malaria parasite species.


Asunto(s)
Antimaláricos , Malaria Falciparum , Malaria , Parásitos , Plasmodium knowlesi , Animales , Humanos , Plasmodium knowlesi/genética , Antimaláricos/farmacología , Adenosina Trifosfatasas/metabolismo , Plasmodium falciparum , Malaria Falciparum/parasitología , Malaria/parasitología , Cationes/metabolismo , Adenosina Trifosfato/metabolismo
13.
Front Cell Infect Microbiol ; 12: 1023219, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36325471

RESUMEN

Background: Plasmodium knowlesi causes zoonotic malaria across Southeast Asia. First-line diagnostic microscopy cannot reliably differentiate P. knowlesi from other human malaria species. Rapid diagnostic tests (RDTs) designed for P. falciparum and P. vivax are used routinely in P. knowlesi co-endemic areas despite potential cross-reactivity for species-specific antibody targets. Methods: Ten RDTs were evaluated: nine to detect clinical P. knowlesi infections from Malaysia, and nine assessing limit of detection (LoD) for P. knowlesi (PkA1-H.1) and P. falciparum (Pf3D7) cultures. Targets included Plasmodium-genus parasite lactate dehydrogenase (pan-pLDH) and P. vivax (Pv)-pLDH. Results: Samples were collected prior to antimalarial treatment from 127 patients with microscopy-positive PCR-confirmed P. knowlesi mono-infections. Median parasitaemia was 788/µL (IQR 247-5,565/µL). Pan-pLDH sensitivities ranged from 50.6% (95% CI 39.6-61.5) (SD BIOLINE) to 87.0% (95% CI 75.1-94.6) (First Response® and CareStart™ PAN) compared to reference PCR. Pv-pLDH RDTs detected P. knowlesi with up to 92.0% (95% CI 84.3-96.7%) sensitivity (Biocredit™). For parasite counts ≥200/µL, pan-pLDH (Standard Q) and Pv-pLDH RDTs exceeded 95% sensitivity. Specificity of RDTs against 26 PCR-confirmed negative controls was 100%. Sensitivity of six highest performing RDTs were not significantly different when comparing samples taken before and after (median 3 hours) antimalarial treatment. Parasite ring stages were present in 30% of pre-treatment samples, with ring stage proportions (mean 1.9%) demonstrating inverse correlation with test positivity of Biocredit™ and two CareStart™ RDTs.For cultured P. knowlesi, CareStart™ PAN demonstrated the lowest LoD at 25 parasites/µL; LoDs of other pan-pLDH ranged from 98 to >2000 parasites/µL. Pv-pLDH LoD for P. knowlesi was 49 parasites/µL. No false-positive results were observed in either P. falciparum-pLDH or histidine-rich-protein-2 channels. Conclusion: Selected RDTs demonstrate sufficient performance for detection of major human malaria species including P. knowlesi in co-endemic areas where microscopy is not available, particularly for higher parasite counts, although cannot reliably differentiate among non-falciparum malaria.


Asunto(s)
Antimaláricos , Malaria Falciparum , Malaria Vivax , Malaria , Parásitos , Plasmodium knowlesi , Animales , Humanos , L-Lactato Deshidrogenasa/análisis , Plasmodium vivax , Límite de Detección , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Plasmodium falciparum , Sensibilidad y Especificidad , Malaria Falciparum/parasitología , Malaria/diagnóstico , Malaria/parasitología , Malaria Vivax/parasitología , Pruebas Diagnósticas de Rutina/métodos , Antígenos de Protozoos , Proteínas Protozoarias/análisis
14.
Front Pharmacol ; 13: 875647, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35600849

RESUMEN

The prospect of eradicating malaria continues to be challenging in the face of increasing parasite resistance to antimalarial drugs so that novel antimalarials active against asexual, sexual, and liver-stage malaria parasites are urgently needed. In addition, new antimalarials need to be affordable and available to those most in need and, bearing in mind climate change, should ideally be sustainable. The West African climbing shrub Cryptolepis sanguinolenta is used traditionally for the treatment of malaria; its principal alkaloid, cryptolepine (1), has been shown to have antimalarial properties, and the synthetic analogue 2,7-dibromocryptolepine (2) is of interest as a lead toward new antimalarial agents. Cryptolepine (1) was isolated using a two-step Soxhlet extraction of C. sanguinolenta roots, followed by crystallization (yield 0.8% calculated as a base with respect to the dried roots). Semi-synthetic 7-bromo- (3), 7, 9-dibromo- (4), 7-iodo- (5), and 7, 9-dibromocryptolepine (6) were obtained in excellent yields by reaction of 1 with N-bromo- or N-iodosuccinimide in trifluoroacetic acid as a solvent. All compounds were active against Plasmodia in vitro, but 6 showed the most selective profile with respect to Hep G2 cells: P. falciparum (chloroquine-resistant strain K1), IC50 = 0.25 µM, SI = 113; late stage, gametocytes, IC50 = 2.2 µM, SI = 13; liver stage, P. berghei sporozoites IC50 = 6.13 µM, SI = 4.6. Compounds 3-6 were also active against the emerging zoonotic species P. knowlesi with 5 being the most potent (IC50 = 0.11 µM). In addition, 3-6 potently inhibited T. brucei in vitro at nM concentrations and good selectivity with 6 again being the most selective (IC50 = 59 nM, SI = 478). These compounds were also cytotoxic to wild-type ovarian cancer cells as well as adriamycin-resistant and, except for 5, cisplatin-resistant ovarian cancer cells. In an acute oral toxicity test in mice, 3-6 did not exhibit toxic effects at doses of up to 100 mg/kg/dose × 3 consecutive days. This study demonstrates that C. sanguinolenta may be utilized as a sustainable source of novel compounds that may lead to the development of novel agents for the treatment of malaria, African trypanosomiasis, and cancer.

15.
Antimicrob Agents Chemother ; 55(5): 2310-8, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21343459

RESUMEN

Mutant forms of the Plasmodium falciparum chloroquine resistance transporter (PfCRT) mediate chloroquine resistance by effluxing the drug from the parasite's digestive vacuole, the acidic organelle in which chloroquine exerts its parasiticidal effect. However, different parasites bearing the same mutant form of PfCRT can vary substantially in their chloroquine susceptibility. Here, we have investigated the biochemical basis for the difference in chloroquine response among transfectant parasite lines having different genetic backgrounds but bearing the same mutant form of PfCRT. Despite showing significant differences in their chloroquine susceptibility, all lines with the mutant PfCRT showed a similar chloroquine-induced H+ leak from the digestive vacuole, indicative of similar rates of PfCRT-mediated chloroquine efflux. Furthermore, all lines showed similarly reduced levels of drug accumulation. Factors other than chloroquine efflux and accumulation therefore influence the susceptibility to this drug in parasites expressing mutant PfCRT. Furthermore, in some but not all strains bearing mutant PfCRT, the 50% inhibitory concentration (IC50) for chloroquine and the degree of resistance compared to that of recombinant control parasites varied with the length of the parasite growth assays. In these parasites, the 50% inhibitory concentration for chloroquine measured in 72- or 96-h assays was significantly lower than that measured in 48-h assays. This highlights the importance of considering the first- and second-cycle activities of chloroquine in future studies of parasite susceptibility to this drug.


Asunto(s)
Cloroquina/farmacología , Proteínas de Transporte de Membrana/metabolismo , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas Protozoarias/metabolismo , Proteínas de Transporte de Membrana/genética , Plasmodium falciparum/aislamiento & purificación , Isoformas de Proteínas/genética , Proteínas Protozoarias/genética
16.
Artículo en Inglés | MEDLINE | ID: mdl-34315108

RESUMEN

Several promising antimalarial drugs are currently being tested in human trials, such as artefenomel, cipargamin, ferroquine and ganaplacide. Many of these compounds were identified using high throughput screens against a single species of human malaria, Plasmodium falciparum, under the assumption that effectiveness against all malaria species will be similar, as has been observed for other antimalarial drugs. However, using our in vitro adapted line, we demonstrated recently that P. knowlesi is significantly less susceptible than P. falciparum to some new antimalarial drugs (e.g., cipargamin and DSM265), and more susceptible to others (e.g., ganaplacide). There is, therefore, an urgent need to determine the susceptibility profile of all human malaria species to the current generation of antimalarial compounds. We obtained ex vivo malaria samples from travellers returning to the United Kingdom and, using the [3H]hypoxanthine incorporation method, compared susceptibility to select established and experimental antimalarial agents among all major human infective Plasmodium species. We demonstrate that P. malariae and P. ovale spp. are significantly less susceptible than P. falciparum to cipargamin, DSM265 and AN13762, but are more susceptible to ganaplacide. Preliminary ex vivo data from single isolates of P. knowlesi and P. vivax demonstrate a similar profile. Our findings highlight the need to ensure cross species susceptibility profiles are determined early in the drug development pipeline. Our data can also be used to inform further drug development, and illustrate the utility of the P. knowlesi in vitro model as a scalable approach for predicting the drug susceptibility of non-falciparum malaria species in general.


Asunto(s)
Antimaláricos , Malaria Falciparum , Malaria Vivax , Plasmodium knowlesi , Plasmodium , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Humanos , Malaria Falciparum/tratamiento farmacológico , Malaria Vivax/tratamiento farmacológico , Plasmodium falciparum/genética , Plasmodium vivax
17.
Adv Parasitol ; 113: 45-76, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34620385

RESUMEN

The zoonotic parasite Plasmodium knowlesi has emerged as an important cause of human malaria in parts of Southeast Asia. The parasite is indistinguishable by microscopy from the more benign P. malariae, but can result in high parasitaemias with multiorgan failure, and deaths have been reported. Recognition of severe knowlesi malaria, and prompt initiation of effective therapy is therefore essential to prevent adverse outcomes. Here we review all studies reporting treatment of uncomplicated and severe knowlesi malaria. We report that although chloroquine is effective for the treatment of uncomplicated knowlesi malaria, artemisinin combination treatment is associated with faster parasite clearance times and lower rates of anaemia during follow-up, and should be considered the treatment of choice, particularly given the risk of administering chloroquine to drug-resistant P. vivax or P. falciparum misdiagnosed as P. knowlesi malaria in co-endemic areas. For severe knowlesi malaria, intravenous artesunate has been shown to be highly effective and associated with reduced case-fatality rates, and should be commenced without delay. Regular paracetamol may also be considered for patients with severe knowlesi malaria or for those with acute kidney injury, to attenuate the renal damage resulting from haemolysis-induced lipid peroxidation.


Asunto(s)
Antimaláricos , Malaria Falciparum , Malaria , Plasmodium knowlesi , Antimaláricos/uso terapéutico , Artesunato/uso terapéutico , Humanos , Malaria/complicaciones , Malaria/diagnóstico , Malaria/tratamiento farmacológico , Malaria Falciparum/tratamiento farmacológico
18.
Sci Rep ; 11(1): 1888, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33479319

RESUMEN

New antimalarial therapeutics are needed to ensure that malaria cases continue to be driven down, as both emerging parasite resistance to frontline chemotherapies and mosquito resistance to current insecticides threaten control programmes. Plasmodium, the apicomplexan parasite responsible for malaria, causes disease pathology through repeated cycles of invasion and replication within host erythrocytes (the asexual cycle). Antimalarial drugs primarily target this cycle, seeking to reduce parasite burden within the host as fast as possible and to supress recrudescence for as long as possible. Intense phenotypic drug screening efforts have identified a number of promising new antimalarial molecules. Particularly important is the identification of compounds with new modes of action within the parasite to combat existing drug resistance and suitable for formulation of efficacious combination therapies. Here we detail the antimalarial properties of DDD01034957-a novel antimalarial molecule which is fast-acting and potent against drug resistant strains in vitro, shows activity in vivo, and possesses a resistance mechanism linked to the membrane transporter PfABCI3. These data support further medicinal chemistry lead-optimization of DDD01034957 as a novel antimalarial chemical class and provide new insights to further reduce in vivo metabolic clearance.


Asunto(s)
Antimaláricos/farmacología , Resistencia a Medicamentos/efectos de los fármacos , Malaria/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos , Animales , Antimaláricos/química , Eritrocitos/parasitología , Interacciones Huésped-Parásitos/efectos de los fármacos , Humanos , Concentración 50 Inhibidora , Malaria/parasitología , Ratones , Estructura Molecular , Plasmodium/efectos de los fármacos , Plasmodium/parasitología , Plasmodium berghei/efectos de los fármacos , Plasmodium berghei/parasitología , Plasmodium falciparum/fisiología , Especificidad de la Especie
19.
mBio ; 11(1)2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-32098816

RESUMEN

The efficacy of current antimalarial drugs is threatened by reduced susceptibility of Plasmodium falciparum to artemisinin, associated with mutations in pfkelch13 Another gene with variants known to modulate the response to artemisinin encodes the µ subunit of the AP-2 adaptin trafficking complex. To elucidate the cellular role of AP-2µ in P. falciparum, we performed a conditional gene knockout, which severely disrupted schizont organization and maturation, leading to mislocalization of key merozoite proteins. AP-2µ is thus essential for blood-stage replication. We generated transgenic P. falciparum parasites expressing hemagglutinin-tagged AP-2µ and examined cellular localization by fluorescence and electron microscopy. Together with mass spectrometry analysis of coimmunoprecipitating proteins, these studies identified AP-2µ-interacting partners, including other AP-2 subunits, the K10 kelch-domain protein, and PfEHD, an effector of endocytosis and lipid mobilization, but no evidence was found of interaction with clathrin, the expected coat protein for AP-2 vesicles. In reverse immunoprecipitation experiments with a clathrin nanobody, other heterotetrameric AP-complexes were shown to interact with clathrin, but AP-2 complex subunits were absent.IMPORTANCE We examine in detail the AP-2 adaptin complex from the malaria parasite Plasmodium falciparum In most studied organisms, AP-2 is involved in bringing material into the cell from outside, a process called endocytosis. Previous work shows that changes to the µ subunit of AP-2 can contribute to drug resistance. Our experiments show that AP-2 is essential for parasite development in blood but does not have any role in clathrin-mediated endocytosis. This suggests that a specialized function for AP-2 has developed in malaria parasites, and this may be important for understanding its impact on drug resistance.


Asunto(s)
Antimaláricos/farmacología , Artemisininas/metabolismo , Clatrina/metabolismo , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/metabolismo , Esquizontes/efectos de los fármacos , Esquizontes/metabolismo , Complejo 2 de Proteína Adaptadora/genética , Complejo 2 de Proteína Adaptadora/metabolismo , Resistencia a Medicamentos , Endocitosis/fisiología , Técnicas de Inactivación de Genes , Proteínas de la Membrana/metabolismo , Organismos Modificados Genéticamente , Plasmodium falciparum/genética , Transporte de Proteínas , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Esquizontes/genética
20.
EBioMedicine ; 55: 102757, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32403083

RESUMEN

BACKGROUND: Many health facilities in malaria endemic countries are dependent on Rapid diagnostic tests (RDTs) for diagnosis and some National Health Service (NHS) hospitals without expert microscopists rely on them for diagnosis out of hours. The emergence of P. falciparum lacking the gene encoding histidine-rich protein 2 and 3 (HRP2 and HRP3) and escaping RDT detection threatens progress in malaria control and elimination. Currently, confirmation of RDT negative due to the deletion of pfhrp2 and pfhrp3, which encodes a cross-reactive protein isoform, requires a series of PCR assays. These tests have different limits of detection and many laboratories have reported difficulty in confirming the absence of the deletions with certainty. METHODS: We developed and validated a novel and rapid multiplex real time quantitative (qPCR) assay to detect pfhrp2, pfhrp3, confirmatory parasite and human reference genes simultaneously. We also applied the assay to detect pfhrp2 and pfhrp3 deletion in 462 field samples from different endemic countries and UK travellers. RESULTS: The qPCR assay demonstrated diagnostic sensitivity of 100% (n = 19, 95% CI= (82.3%; 100%)) and diagnostic specificity of 100% (n = 31; 95% CI= (88.8%; 100%)) in detecting pfhrp2 and pfhrp3 deletions. In addition, the assay estimates P. falciparum parasite density and accurately detects pfhrp2 and pfhrp3 deletions masked in polyclonal infections. We report pfhrp2 and pfhrp3 deletions in parasite isolates from Kenya, Tanzania and in UK travellers. INTERPRETATION: The new qPCR is easily scalable to routine surveillance studies in countries where P. falciparum parasites lacking pfhrp2 and pfhrp3 are a threat to malaria control.


Asunto(s)
Antígenos de Protozoos/genética , ADN Protozoario/genética , Eliminación de Gen , Malaria Falciparum/diagnóstico , Reacción en Cadena de la Polimerasa Multiplex/métodos , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Pruebas Diagnósticas de Rutina , Expresión Génica , Humanos , Kenia/epidemiología , Malaria Falciparum/epidemiología , Malaria Falciparum/parasitología , Reacción en Cadena de la Polimerasa Multiplex/normas , Plasmodium falciparum/patogenicidad , Tanzanía/epidemiología , Viaje , Reino Unido/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA