Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Immunity ; 55(4): 606-622.e6, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35358427

RESUMEN

Lymph node (LN) stromal cells play a crucial role in LN development and in supporting adaptive immune responses. However, their origin, differentiation pathways, and transcriptional programs are still elusive. Here, we used lineage-tracing approaches and single-cell transcriptome analyses to determine origin, transcriptional profile, and composition of LN stromal and endothelial progenitors. Our results showed that all major stromal cell subsets and a large proportion of blood endothelial cells originate from embryonic Hoxb6+ progenitors of the lateral plate mesoderm (LPM), whereas lymphatic endothelial cells arise from Pax3+ progenitors of the paraxial mesoderm (PXM). Single-cell RNA sequencing revealed the existence of different Cd34+ and Cxcl13+ stromal cell subsets and showed that embryonic LNs contain proliferating progenitors possibly representing the amplifying populations for terminally differentiated cells. Taken together, our work identifies the earliest embryonic sources of LN stromal and endothelial cells and demonstrates that stromal diversity begins already during LN development.


Asunto(s)
Células Endoteliales , Células Endoteliales/metabolismo , Ganglios Linfáticos , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Células del Estroma , Factores de Transcripción/metabolismo
2.
Nat Immunol ; 17(7): 790-4, 2016 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-27328009

RESUMEN

Innate lymphoid cells (ILCs) are the most recently discovered group of immune cells. Understanding their biology poses many challenges. We discuss here the current knowledge on the appearance of ILC subsets during evolution and propose how the connection between ILCs and T cells contributes to the robustness of immunity and hence to the fitness of the hosts.


Asunto(s)
Evolución Biológica , Inmunidad Innata , Subgrupos Linfocitarios/inmunología , Linfocitos/inmunología , Linfocitos T/inmunología , Animales , Diferenciación Celular , Interacciones Huésped-Patógeno , Humanos
3.
Immunol Rev ; 315(1): 71-78, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36705244

RESUMEN

The Innate Lymphoid Cell (ILC) family is a relatively recently described immune cell family involved in innate immune responses and tissue homeostasis. Lymphoid Tissue Inducer (LTi) cells are part of the type 3 (ILC3) family. The ILC3 family is the main ILC population within the embryo, in which the LTi cells are critically associated with embryonic lymph node formation. Recent studies have shown more insights in ILC origin and residency from local embryonic and tissue resident precursors. Embryonic LTi cells originating from a different hemogenic endothelial source were shown to be replaced by HSC derived progenitors in adult. This review will discuss the layered origin of the ILC3 family with an emphasis on the LTi cell lineage.


Asunto(s)
Inmunidad Innata , Linfocitos , Humanos , Linfocitos T Colaboradores-Inductores , Tejido Linfoide , Linaje de la Célula
4.
J Neuroinflammation ; 20(1): 8, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36631780

RESUMEN

BACKGROUND: The innate lymphoid cell (ILC) family consists of NK cells, ILC type 1, 2, 3 and lymphoid tissue inducer cells. They have been shown to play important roles in homeostasis and immune responses and are generally considered tissue resident. Not much is known about the presence of ILC members within the central nervous system and whether they are tissue resident in this organ too. Therefore, we studied the presence of all ILC members within the central nervous system and after ischemic brain insult. METHODS: We used the photothrombotic ischemic lesion method to induce ischemic lesions within the mouse brain. Using whole-mount immunofluorescence imaging, we established that the ILCs were present at the rim of the lesion. We quantified the increase of all ILC members at different time-points after the ischemic lesion induction by flow cytometry. Their migration route via chemokine CXCL12 was studied by using different genetic mouse models, in which we induced deletion of Cxcl12 within the blood-brain barrier endothelium, or its receptor, Cxcr4, in the ILCs. The functional role of the ILCs was subsequently established using the beam-walk sensorimotor test. RESULTS: Here, we report that ILCs are not resident within the mouse brain parenchyma during steady-state conditions, but are attracted towards the ischemic stroke. Specifically, we identify NK cells, ILC1s, ILC2s and ILC3s within the lesion, the highest influx being observed for NK cells and ILC1s. We further show that CXCL12 expressed at the blood-brain barrier is essential for NK cells and NKp46+ ILC3s to migrate toward the lesion. Complementary, Cxcr4-deficiency in NK cells prevents NK cells from entering the infarct area. Lack of NK cell migration results in a higher neurological deficit in the beam-walk sensorimotor test. CONCLUSIONS: This study establishes the lack of ILCs in the mouse central nervous system at steady-state and their migration towards an ischemic brain lesion. Our data show a role for blood-brain barrier-derived CXCL12 in attracting protective NK cells to ischemic brain lesions and identifies a new CXCL12/CXCR4-mediated component of the innate immune response to stroke.


Asunto(s)
Quimiocina CXCL12 , Accidente Cerebrovascular Isquémico , Células Asesinas Naturales , Animales , Ratones , Encéfalo/metabolismo , Encéfalo/patología , Quimiocina CXCL12/metabolismo , Células Endoteliales , Inmunidad Innata , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/patología , Células Asesinas Naturales/metabolismo , Linfocitos
5.
Nat Immunol ; 10(11): 1193-9, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19783990

RESUMEN

The location of embryonic lymph node development is determined by the initial clustering of lymphoid tissue-inducer (LTi) cells. Here we demonstrate that both the chemokine CXCL13 and the chemokine CCL21 attracted LTi cells at embryonic days 12.5-14.5 and that initial clustering depended exclusively on CXCL13. Retinoic acid (RA) induced early CXCL13 expression in stromal organizer cells independently of lymphotoxin signaling. Notably, neurons adjacent to the lymph node anlagen expressed enzymes essential for RA synthesis. Furthermore, stimulation of parasymphathetic neural output in adults led to RA receptor (RAR)-dependent induction of CXCL13 in the gut. Therefore, our data show that the initiation of lymph node development is controlled by RA-mediated expression of CXCL13 and suggest that RA may be provided by adjacent neurons.


Asunto(s)
Quimiocina CXCL13/metabolismo , Ganglios Linfáticos/embriología , Neuronas/metabolismo , Tretinoina/metabolismo , Aldehído Deshidrogenasa/metabolismo , Familia de Aldehído Deshidrogenasa 1 , Animales , Diferenciación Celular , Movimiento Celular , Células Cultivadas , Quimiocina CCL21/metabolismo , Embrión de Mamíferos/embriología , Femenino , Isoenzimas/metabolismo , Tejido Linfoide/embriología , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Retinal-Deshidrogenasa , Células del Estroma/metabolismo , Estimulación del Nervio Vago
6.
J Cell Sci ; 131(10)2018 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-29700204

RESUMEN

The rate at which ribosomes translate mRNAs regulates protein expression by controlling co-translational protein folding and mRNA stability. Many factors regulate translation elongation, including tRNA levels, codon usage and phosphorylation of eukaryotic elongation factor 2 (eEF2). Current methods to measure translation elongation lack single-cell resolution, require expression of multiple transgenes and have never been successfully applied ex vivo Here, we show, by using a combination of puromycilation detection and flow cytometry (a method we call 'SunRiSE'), that translation elongation can be measured accurately in primary cells in pure or heterogenous populations isolated from blood or tissues. This method allows for the simultaneous monitoring of multiple parameters, such as mTOR or S6K1/2 signaling activity, the cell cycle stage and phosphorylation of translation factors in single cells, without elaborated, costly and lengthy purification procedures. We took advantage of SunRiSE to demonstrate that, in mouse embryonic fibroblasts, eEF2 phosphorylation by eEF2 kinase (eEF2K) mostly affects translation engagement, but has a surprisingly small effect on elongation, except after proteotoxic stress induction.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Fibroblastos/citología , Citometría de Flujo/métodos , Extensión de la Cadena Peptídica de Translación , Análisis de la Célula Individual/métodos , Animales , Quinasa del Factor 2 de Elongación/genética , Quinasa del Factor 2 de Elongación/metabolismo , Fibroblastos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Biosíntesis de Proteínas , Proteínas/genética , Proteínas/metabolismo , Ribosomas/genética , Ribosomas/metabolismo
7.
J Immunol ; 201(1): 215-229, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29760193

RESUMEN

Atypical chemokine receptors (ACKRs) are expressed by discrete populations of stromal cells at specific anatomical locations where they control leukocyte migration by scavenging or transporting chemokines. ACKR4 is an atypical receptor for CCL19, CCL21, and CCL25. In skin, ACKR4 plays indispensable roles in regulating CCR7-dependent APC migration, and there is a paucity of migratory APCs in the skin-draining lymph nodes of Ackr4-deficient mice under steady-state and inflammatory conditions. This is caused by loss of ACKR4-mediated CCL19/21 scavenging by keratinocytes and lymphatic endothelial cells. In contrast, we show in this study that Ackr4 deficiency does not affect dendritic cell abundance in the small intestine and mesenteric lymph nodes, at steady state or after R848-induced mobilization. Moreover, Ackr4 expression is largely restricted to mesenchymal cells in the intestine, where it identifies a previously uncharacterized population of fibroblasts residing exclusively in the submucosa. Compared with related Ackr4- mesenchymal cells, these Ackr4+ fibroblasts have elevated expression of genes encoding endothelial cell regulators and lie in close proximity to submucosal blood and lymphatic vessels. We also provide evidence that Ackr4+ fibroblasts form physical interactions with lymphatic endothelial cells, and engage in molecular interactions with these cells via the VEGFD/VEGFR3 and CCL21/ACKR4 pathways. Thus, intestinal submucosal fibroblasts in mice are a distinct population of intestinal mesenchymal cells that can be identified by their expression of Ackr4 and have transcriptional and anatomical properties that strongly suggest roles in endothelial cell regulation.


Asunto(s)
Células Endoteliales/metabolismo , Fibroblastos/metabolismo , Mucosa Intestinal/metabolismo , Receptores CCR/metabolismo , Animales , Movimiento Celular/fisiología , Quimiocina CCL21/metabolismo , Colitis/inducido químicamente , Colitis/patología , Células Dendríticas/citología , Sulfato de Dextran/toxicidad , Femenino , Mucosa Intestinal/citología , Leucocitos/fisiología , Mesodermo/citología , Mesodermo/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores CCR/genética , Factor D de Crecimiento Endotelial Vascular/metabolismo , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo
8.
Nature ; 508(7494): 123-7, 2014 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-24670648

RESUMEN

The impact of nutritional status during fetal life on the overall health of adults has been recognized; however, dietary effects on the developing immune system are largely unknown. Development of secondary lymphoid organs occurs during embryogenesis and is considered to be developmentally programmed. Secondary lymphoid organ formation depends on a subset of type 3 innate lymphoid cells (ILC3) named lymphoid tissue inducer (LTi) cells. Here we show that mouse fetal ILC3s are controlled by cell-autonomous retinoic acid (RA) signalling in utero, which pre-sets the immune fitness in adulthood. We found that embryonic lymphoid organs contain ILC progenitors that differentiate locally into mature LTi cells. Local LTi cell differentiation was controlled by maternal retinoid intake and fetal RA signalling acting in a haematopoietic cell-autonomous manner. RA controlled LTi cell maturation upstream of the transcription factor RORγt. Accordingly, enforced expression of Rorgt restored maturation of LTi cells with impaired RA signalling, whereas RA receptors directly regulated the Rorgt locus. Finally, we established that maternal levels of dietary retinoids control the size of secondary lymphoid organs and the efficiency of immune responses in the adult offspring. Our results reveal a molecular link between maternal nutrients and the formation of immune structures required for resistance to infection in the offspring.


Asunto(s)
Feto/inmunología , Inmunidad Innata/inmunología , Efectos Tardíos de la Exposición Prenatal/inmunología , Tretinoina/inmunología , Tretinoina/farmacología , Animales , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/inmunología , Dieta , Femenino , Feto/efectos de los fármacos , Inmunidad Innata/efectos de los fármacos , Tejido Linfoide/citología , Tejido Linfoide/efectos de los fármacos , Tejido Linfoide/embriología , Tejido Linfoide/inmunología , Ratones , Ratones Endogámicos C57BL , Embarazo , Receptores de Ácido Retinoico/metabolismo , Transducción de Señal/efectos de los fármacos , Células Madre/citología , Células Madre/efectos de los fármacos , Células Madre/inmunología , Tretinoina/administración & dosificación , Tretinoina/metabolismo
9.
Circ Res ; 120(8): 1263-1275, 2017 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-28179432

RESUMEN

RATIONALE: Lymphatic vessel formation and function constitutes a physiologically and pathophysiologically important process, but its genetic control is not well understood. OBJECTIVE: Here, we identify the secreted Polydom/Svep1 protein as essential for the formation of the lymphatic vasculature. We analyzed mutants in mice and zebrafish to gain insight into the role of Polydom/Svep1 in the lymphangiogenic process. METHODS AND RESULTS: Phenotypic analysis of zebrafish polydom/svep1 mutants showed a decrease in venous and lymphovenous sprouting, which leads to an increased number of intersegmental arteries. A reduced number of primordial lymphatic cells populated the horizontal myoseptum region but failed to migrate dorsally or ventrally, resulting in severe reduction of the lymphatic trunk vasculature. Corresponding mutants in the mouse Polydom/Svep1 gene showed normal egression of Prox-1+ cells from the cardinal vein at E10.5, but at E12.5, the tight association between the cardinal vein and lymphatic endothelial cells at the first lymphovenous contact site was abnormal. Furthermore, mesenteric lymphatic structures at E18.5 failed to undergo remodeling events in mutants and lacked lymphatic valves. In both fish and mouse embryos, the expression of the gene suggests a nonendothelial and noncell autonomous mechanism. CONCLUSIONS: Our data identify zebrafish and mouse Polydom/Svep1 as essential extracellular factors for lymphangiogenesis. Expression of the respective genes by mesenchymal cells in intimate proximity with venous and lymphatic endothelial cells is required for sprouting and migratory events in zebrafish and for remodeling events of the lymphatic intraluminal valves in mouse embryos.


Asunto(s)
Células Endoteliales/metabolismo , Evolución Molecular , Linfangiogénesis , Vasos Linfáticos/metabolismo , Proteínas/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas de Unión al Calcio , Moléculas de Adhesión Celular , Comunicación Celular , Movimiento Celular , Células Endoteliales/patología , Endotelio Linfático/anomalías , Endotelio Linfático/metabolismo , Endotelio Linfático/fisiopatología , Regulación del Desarrollo de la Expresión Génica , Genotipo , Vasos Linfáticos/anomalías , Vasos Linfáticos/fisiopatología , Mesodermo/metabolismo , Mutación , Fenotipo , Proteínas/genética , Transducción de Señal , Factores de Tiempo , Pez Cebra/genética , Proteínas de Pez Cebra/genética
10.
Glia ; 66(8): 1566-1576, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29537098

RESUMEN

Adult hippocampal neurogenesis is implicated in learning and memory processing. It is tightly controlled at several levels including progenitor proliferation as well as migration, differentiation and integration of new neurons. Hippocampal progenitors and immature neurons reside in the subgranular zone (SGZ) and are equipped with the CXCL12-receptor CXCR4 which contributes to defining the SGZ as neurogenic niche. The atypical CXCL12-receptor CXCR7 functions primarily by sequestering extracellular CXCL12 but whether CXCR7 is involved in adult neurogenesis has not been assessed. We report that granule neurons (GN) upregulate CXCL12 and CXCR7 during dentate gyrus maturation in the second postnatal week. To test whether GN-derived CXCL12 regulates neurogenesis and if neuronal CXCR7 receptors influence this process, we conditionally deleted Cxcl12 and Cxcr7 from the granule cell layer. Cxcl12 deletion resulted in lower numbers, increased dispersion and abnormal dendritic growth of immature GN and reduced neurogenesis. Cxcr7 ablation caused an increase in progenitor proliferation and progenitor numbers and reduced dispersion of immature GN. Thus, we provide a new mechanism where CXCL12-signals from GN prevent dispersion and support maturation of newborn GN. CXCR7 receptors of GN modulate the CXCL12-mediated feedback from GN to the neurogenic niche.


Asunto(s)
Quimiocina CXCL12/metabolismo , Giro Dentado/metabolismo , Neurogénesis/fisiología , Neuronas/metabolismo , Animales , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Dendritas/metabolismo , Hipocampo/metabolismo , Ratones Transgénicos , Células-Madre Neurales/metabolismo
11.
Int Immunol ; 28(1): 35-42, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26374472

RESUMEN

Group 3 innate lymphoid cells (ILC3) represent a heterogeneous population of cells that share the nuclear hormone receptor RORγt (retinoic acid receptor-related orphan receptor γt) as a master regulator for differentiation and function. ILC3 can be divided into two major subsets based on the cell surface expression of the natural cytotoxicity receptor (NCR), NKp46. A subset of NCR(-) ILC3 includes the previously known lymphoid-tissue inducer cells that are essential for the embryonic formation of peripheral lymph nodes and Peyer's patches. After birth, the NCR(-) and NCR(+) ILC3 contribute to the maintenance of health but also to inflammation in mucosal tissues. This review will describe the differentiation pathways of ILC3, their involvement in the development of the adaptive immune system and their role in the establishment and maintenance of gut immunity.


Asunto(s)
Inflamación/inmunología , Mucosa Intestinal/inmunología , Ganglios Linfáticos/inmunología , Linfocitos/inmunología , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Ganglios Linfáticos Agregados/inmunología , Adulto , Animales , Diferenciación Celular , Embrión de Mamíferos , Homeostasis , Humanos , Inmunidad Innata , Ganglios Linfáticos/embriología , Receptor 1 Gatillante de la Citotoxidad Natural/metabolismo , Ganglios Linfáticos Agregados/embriología
12.
Adv Anat Embryol Cell Biol ; 214: 81-91, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24276888

RESUMEN

Although the initial event in lymphatic endothelial specification occurs slightly before the initiation of lymph node formation in mice, the development of lymphatic vessels and lymph nodes occurs within the same embryonic time frame. Specification of lymphatic endothelial cells starts around embryonic day 10 (E10), followed by endothelial cell budding and formation of the first lymphatic structures. Through lymphatic endothelial cell sprouting these lymph sacs give rise to the lymphatic vasculature which is complete by E15.5 in mice. It is within this time frame that lymph node formation is initiated and the first structure is secured in place. As lymphatic vessels are crucially involved in the functionality of the lymph nodes, the recent insight that both structures depend on common developmental signals for their initiation provides a molecular mechanism for their coordinated formation. Here, we will describe the common developmental signals needed to properly start the formation of lymphatic vessels and lymph nodes and their interdependence in adult life.


Asunto(s)
Ganglios Linfáticos/embriología , Linfangiogénesis , Vasos Linfáticos/embriología , Animales , Diferenciación Celular , Células Endoteliales/citología , Tretinoina/metabolismo
13.
Prenat Diagn ; 34(13): 1312-9, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25088217

RESUMEN

OBJECTIVE: Increased nuchal translucency originates from disturbed lymphatic development. Abnormal neural crest cell (NCC) migration may be involved in lymphatic development. Because both neuronal and lymphatic development share retinoic acid (RA) as a common factor, this study investigated the involvement of NCCs and RA in specific steps in lymphatic endothelial cell (LEC) differentiation and nuchal edema, which is the morphological equivalent of increased nuchal translucency. METHODS: Mouse embryos in which all NCCs were fluorescently labeled (Wnt1-Cre;Rosa26(eYfp) ), reporter embryos for in vivo RA activity (DR5-luciferase) and embryos with absent (Raldh2(-/-) ) or in utero inhibition of RA signaling (BMS493) were investigated. Immunofluorescence using markers for blood vessels, lymphatic endothelium and neurons was applied. Flow cytometry was performed to measure specific LEC populations. RESULTS: Cranial nerves were consistently close to the jugular lymph sac (JLS), in which NCCs were identified. In the absence of RA synthesis, enlarged JLS and nuchal edema were observed. Inhibiting RA signaling in utero resulted in a significantly higher amount of precursor-LECs at the expense of mature LECs and caused nuchal edema. CONCLUSIONS: Neural crest cells are involved in lymphatic development. RA is required for differentiation into mature LECs. Blocking RA signaling in mouse embryos results in abnormal lymphatic development and nuchal edema.


Asunto(s)
Vasos Linfáticos/embriología , Cresta Neural/fisiología , Tretinoina/metabolismo , Animales , Diferenciación Celular , Células Endoteliales/citología , Femenino , Vasos Linfáticos/citología , Vasos Linfáticos/metabolismo , Ratones , Medida de Translucencia Nucal , Embarazo
14.
Methods Mol Biol ; 2713: 297-306, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37639131

RESUMEN

The introduction of the light-sheet microscope has facilitated the analysis of complete tissues for the presence of all cells and their location in relation to their niche. This contributes to a better understanding of cellular locations and interactions in organs. In the last decade, many new and improved protocols have been published which are essential to improve staining and visualization of the immune-fluorescence within different tissues. In this article, we will discuss two main protocols we have used to visualize tissue-resident macrophages.


Asunto(s)
Imagenología Tridimensional , Macrófagos , Coloración y Etiquetado
15.
Front Immunol ; 13: 837250, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35185929

RESUMEN

Immune cells are present within the central nervous system and play important roles in neurological inflammation and disease. As relatively new described immune cell population, Innate Lymphoid Cells are now increasingly recognized within the central nervous system and associated diseases. Innate Lymphoid Cells are generally regarded as tissue resident and early responders, while conversely within the central nervous system at steady-state their presence is limited. This review describes the current understandings on Innate Lymphoid Cells in the central nervous system at steady-state and its borders plus their involvement in major neurological diseases like ischemic stroke, Alzheimer's disease and Multiple Sclerosis.


Asunto(s)
Enfermedad de Alzheimer/inmunología , Sistema Nervioso Central/inmunología , Accidente Cerebrovascular Isquémico/inmunología , Linfocitos/inmunología , Esclerosis Múltiple/inmunología , Animales , Humanos , Inmunidad Innata
16.
Front Cell Dev Biol ; 10: 949896, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36051444

RESUMEN

The liver is a major biosynthetic and detoxifying organ in vertebrates, but also generates 25%-50% of the lymph passing through the thoracic duct and is thereby the organ with the highest contribution to lymph flow. In contrast to its metabolic function, the role of the liver for lymph generation and composition is presently severely understudied. We took a rigorous, volume imaging-based approach to describe the microarchitecture and spatial composition of the hepatic lymphatic vasculature with cellular resolution in whole mount immune stained specimen ranging from thick sections up to entire mouse liver lobes. Here, we describe that in healthy adult livers, lymphatic vessels were exclusively located within the portal tracts, where they formed a unique, highly ramified tree. Ragged, spiky initials enmeshed the portal veins along their entire length and communicated with long lymphatic vessels that followed the path of the portal vein in close association with bile ducts. Together these lymphatic vessels formed a uniquely shaped vascular bed with a delicate architecture highly adapted to the histological structure of the liver. Unexpectedly, with the exception of short collector stretches at the porta hepatis, which we identified as exit point of the liver lymph vessels, the entire hepatic lymph vessel system was comprised of capillary lymphatic endothelial cells only. Functional experiments confirmed the space of Disse as the origin of the hepatic lymph and flow via the space of Mall to the portal lymph capillaries. After entry into the lymphatic initials, the lymph drained retrograde to the portal blood flow towards the exit at the liver hilum. Perinatally, the liver undergoes complex changes transforming from the main hematopoietic to the largest metabolic organ. We investigated the time course of lymphatic vessel development and identified the hepatic lymphatics to emerge postnatally in a process that relies on input from the VEGF-C/VERGFR-3 growth factor-receptor pair for formation of the fully articulate hepatic lymph vessel bed.

17.
Nat Commun ; 13(1): 1985, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35418199

RESUMEN

Neuronal nerve processes in the tumor microenvironment were highlighted recently. However, the origin of intra-tumoral nerves remains poorly known, in part because of technical difficulties in tracing nerve fibers via conventional histological preparations. Here, we employ three-dimensional (3D) imaging of cleared tissues for a comprehensive analysis of sympathetic innervation in a murine model of pancreatic ductal adenocarcinoma (PDAC). Our results support two independent, but coexisting, mechanisms: passive engulfment of pre-existing sympathetic nerves within tumors plus an active, localized sprouting of axon terminals into non-neoplastic lesions and tumor periphery. Ablation of the innervating sympathetic nerves increases tumor growth and spread. This effect is explained by the observation that sympathectomy increases intratumoral CD163+ macrophage numbers, which contribute to the worse outcome. Altogether, our findings provide insights into the mechanisms by which the sympathetic nervous system exerts cancer-protective properties in a mouse model of PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animales , Macrófagos , Ratones , Sistema Nervioso Simpático/fisiología , Microambiente Tumoral , Neoplasias Pancreáticas
18.
J Immunol ; 183(4): 2213-6, 2009 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-19620294

RESUMEN

The current model used to define T cell export from the thymus suggests that emigrating lymphocytes seed the peripheral organs as functionally mature cells. This model holds true for the majority of T cells exported from the thymus with the exception of invariant NK T (iNKT) cells. iNKT cells undergo lineage expansion after positive selection and acquire NK receptor expression once fully mature; yet, the majority of mature iNKT cells are retained in the thymus by an as of yet unidentified mechanism. In this study we demonstrate that mature iNKT cells are retained in the thymus by the chemokine receptor CXCR3. We propose that the expression of CXCR3 ligands in the thymic medullary epithelium promotes the chemotactic retention of mature iNKT thymocytes and prevents leakage of iNKT cells into the peripheral circulation.


Asunto(s)
Células T Asesinas Naturales/citología , Células T Asesinas Naturales/inmunología , Receptores CXCR3/fisiología , Timo/citología , Timo/inmunología , Animales , Antígenos Ly/biosíntesis , Diferenciación Celular/inmunología , Quimiotaxis de Leucocito/inmunología , Mediadores de Inflamación/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Subfamilia B de Receptores Similares a Lectina de Células NK/biosíntesis , Células T Asesinas Naturales/metabolismo , Receptores CXCR3/biosíntesis , Receptores CXCR3/deficiencia , Subgrupos de Linfocitos T/citología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Timo/metabolismo , Regulación hacia Arriba/inmunología
19.
Biomed J ; 44(2): 123-132, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33849806

RESUMEN

Innate Lymphoid Cells (ILC) are involved in homeostasis and immunity. Their dynamic differentiation and characterization depend on their tissue of residency and is adapted to their role within these tissues. Lymphoid Tissue inducer (LTi) cells are an ILC member and essential for embryonic lymph node (LN) formation. LNs are formed at pre-defined and strategic positions throughout the body and how LTi cells are initially attracted towards these areas is under debate. Besides their role in LN formation, LTi-like and the closely related ILC type 3 (ILC3) cells have been observed within the embryonic gut. New studies have now shown more information on their origin and differentiation within the embryo. This review will evaluate the embryonic LTi cell origin from a specific embryonic hemogenic wave, which has recently been described in mouse. Moreover, I will discuss their differentiation and similarities with the closely related ILC3 cells in embryo and adult.


Asunto(s)
Linfocitos T Colaboradores-Inductores , Animales , Diferenciación Celular , Inmunidad Innata , Tejido Linfoide , Ratones
20.
Dev Cell ; 56(22): 3128-3145.e15, 2021 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-34762852

RESUMEN

Identification of physiological modulators of nuclear hormone receptor (NHR) activity is paramount for understanding the link between metabolism and transcriptional networks that orchestrate development and cellular physiology. Using libraries of metabolic enzymes alongside their substrates and products, we identify 1-deoxysphingosines as modulators of the activity of NR2F1 and 2 (COUP-TFs), which are orphan NHRs that are critical for development of the nervous system, heart, veins, and lymphatic vessels. We show that these non-canonical alanine-based sphingolipids bind to the NR2F1/2 ligand-binding domains (LBDs) and modulate their transcriptional activity in cell-based assays at physiological concentrations. Furthermore, inhibition of sphingolipid biosynthesis phenocopies NR2F1/2 deficiency in endothelium and cardiomyocytes, and increases in 1-deoxysphingosine levels activate NR2F1/2-dependent differentiation programs. Our findings suggest that 1-deoxysphingosines are physiological regulators of NR2F1/2-mediated transcription.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Organogénesis/efectos de los fármacos , Esfingolípidos/farmacología , Animales , Diferenciación Celular/fisiología , Regulación de la Expresión Génica/fisiología , Humanos , Vasos Linfáticos/efectos de los fármacos , Ratones , Organogénesis/fisiología , Proteínas Represoras/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA