Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
PLoS Pathog ; 19(5): e1011308, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37126534

RESUMEN

The global spread of the SARS-CoV-2 virus has resulted in emergence of lineages which impact the effectiveness of immunotherapies and vaccines that are based on the early Wuhan isolate. All currently approved vaccines employ the spike protein S, as it is the target for neutralizing antibodies. Here we describe two SARS-CoV-2 isolates with unusually large deletions in the N-terminal domain (NTD) of the spike. Cryo-EM structural analysis shows that the deletions result in complete reshaping of the NTD supersite, an antigenically important region of the NTD. For both spike variants the remodeling of the NTD negatively affects binding of all tested NTD-specific antibodies in and outside of the NTD supersite. For one of the variants, we observed a P9L mediated shift of the signal peptide cleavage site resulting in the loss of a disulfide-bridge; a unique escape mechanism with high antigenic impact. Although the observed deletions and disulfide mutations are rare, similar modifications have become independently established in several other lineages, indicating a possibility to become more dominant in the future. The observed plasticity of the NTD foreshadows its broad potential for immune escape with the continued spread of SARS-CoV-2.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2/genética , Anticuerpos Neutralizantes , Disulfuros , Inmunoterapia , Glicoproteína de la Espiga del Coronavirus/genética , Anticuerpos Antivirales
2.
Cell ; 132(2): 233-46, 2008 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-18243099

RESUMEN

Maintenance of chromosomal stability relies on coordination between various processes that are critical for proper chromosome segregation in mitosis. Here we show that monopolar spindle 1 (Mps1) kinase, which is essential for the mitotic checkpoint, also controls correction of improper chromosome attachments. We report that Borealin/DasraB, a member of the complex that regulates the Aurora B kinase, is directly phosphorylated by Mps1 on residues that are crucial for Aurora B activity and chromosome alignment. As a result, cells lacking Mps1 kinase activity fail to efficiently align chromosomes due to impaired Aurora B function at centromeres, leaving improper attachments uncorrected. Strikingly, Borealin/DasraB bearing phosphomimetic mutations restores Aurora B activity and alignment in Mps1-depleted cells. Mps1 thus coordinates attachment error correction and checkpoint signaling, two crucial responses to unproductive chromosome attachments.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiología , Cromosomas Humanos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/fisiología , Alelos , Aurora Quinasa B , Aurora Quinasas , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Activación Enzimática , Células HeLa , Humanos , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Mutación , Fosforilación , Plásmidos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes/metabolismo , Huso Acromático/metabolismo , Transfección
4.
Nature ; 544(7650): 372-376, 2017 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-28425994

RESUMEN

The non-essential amino acids serine and glycine are used in multiple anabolic processes that support cancer cell growth and proliferation (reviewed in ref. 1). While some cancer cells upregulate de novo serine synthesis, many others rely on exogenous serine for optimal growth. Restriction of dietary serine and glycine can reduce tumour growth in xenograft and allograft models. Here we show that this observation translates into more clinically relevant autochthonous tumours in genetically engineered mouse models of intestinal cancer (driven by Apc inactivation) or lymphoma (driven by Myc activation). The increased survival following dietary restriction of serine and glycine in these models was further improved by antagonizing the anti-oxidant response. Disruption of mitochondrial oxidative phosphorylation (using biguanides) led to a complex response that could improve or impede the anti-tumour effect of serine and glycine starvation. Notably, Kras-driven mouse models of pancreatic and intestinal cancers were less responsive to depletion of serine and glycine, reflecting an ability of activated Kras to increase the expression of enzymes that are part of the serine synthesis pathway and thus promote de novo serine synthesis.


Asunto(s)
Glicina/deficiencia , Neoplasias Intestinales/dietoterapia , Neoplasias Intestinales/metabolismo , Linfoma/dietoterapia , Linfoma/metabolismo , Serina/deficiencia , Animales , Antioxidantes/metabolismo , Biguanidas/farmacología , Línea Celular Tumoral , Dieta , Modelos Animales de Enfermedad , Femenino , Privación de Alimentos , Glicina/metabolismo , Humanos , Neoplasias Intestinales/genética , Neoplasias Intestinales/patología , Linfoma/patología , Masculino , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Estado Nutricional , Fosforilación Oxidativa/efectos de los fármacos , Neoplasias Pancreáticas/dietoterapia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Serina/biosíntesis , Serina/metabolismo , Serina/farmacología , Tasa de Supervivencia
5.
Nat Chem Biol ; 14(8): 794-800, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29942079

RESUMEN

Carbapenems, a family of ß-lactam antibiotics, are among the most powerful bactericidal compounds in clinical use. However, as rational engineering of native carbapenem-producing microbes is not currently possible, the present carbapenem supply relies upon total chemical synthesis of artificial carbapenem derivatives. To enable access to the full diversity of natural carbapenems, we have engineered production of a simple carbapenem antibiotic within Escherichia coli. By increasing concentrations of precursor metabolites and identifying a reducing cofactor of a bottleneck enzyme, we improved productivity by 60-fold over the minimal pathway and surpassed reported titers obtained from carbapenem-producing Streptomyces species. We stabilized E. coli metabolism against antibacterial effects of the carbapenem product by artificially inhibiting membrane synthesis, which further increased antibiotic productivity. As all known naturally occurring carbapenems are derived from a common intermediate, our engineered strain provides a platform for biosynthesis of tailored carbapenem derivatives in a genetically tractable and fast-growing species.


Asunto(s)
Carbapenémicos/biosíntesis , Escherichia coli/metabolismo , Ingeniería Metabólica , Carbapenémicos/química
6.
Mol Syst Biol ; 9: 679, 2013 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-23820781

RESUMEN

Mutations in the daf-2 gene of the conserved Insulin/Insulin-like Growth Factor (IGF-1) pathway double the lifespan of the nematode Caenorhabditis elegans. This phenotype is completely suppressed by deletion of Forkhead transcription factor daf-16. To uncover regulatory mechanisms coordinating this extension of life, we employed a quantitative proteomics strategy with daf-2 mutants in comparison with N2 and daf-16; daf-2 double mutants. This revealed a remarkable longevity-specific decrease in proteins involved in mRNA processing and transport, the translational machinery, and protein metabolism. Correspondingly, the daf-2 mutants display lower amounts of mRNA and 20S proteasome activity, despite maintaining total protein levels equal to that observed in wild types. Polyribosome profiling in the daf-2 and daf-16;daf-2 double mutants confirmed a daf-16-dependent reduction in overall translation, a phenotype reminiscent of Dietary Restriction-mediated longevity, which was independent of germline activity. RNA interference (RNAi)-mediated knockdown of proteins identified by our approach resulted in modified C. elegans lifespan confirming the importance of these processes in Insulin/IGF-1-mediated longevity. Together, the results demonstrate a role for the metabolism of proteins in the Insulin/IGF-1-mediated extension of life.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Factor I del Crecimiento Similar a la Insulina/genética , Insulina/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Receptor de Insulina/genética , Factores de Transcripción/genética , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/antagonistas & inhibidores , Proteínas de Caenorhabditis elegans/metabolismo , Factores de Transcripción Forkhead , Regulación de la Expresión Génica , Genotipo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Longevidad/genética , Mutación , Fenotipo , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Receptor de Insulina/antagonistas & inhibidores , Receptor de Insulina/metabolismo , Transducción de Señal , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismo
7.
Biochem J ; 451(1): 45-53, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23320500

RESUMEN

Reversible phosphorylation is a widespread molecular mechanism to regulate the function of cellular proteins, including transcription factors. Phosphorylation of the nuclear receptor PPARγ (peroxisome-proliferator-activated receptor γ) at two conserved serine residue (Ser(112) and Ser(273)) results in an altered transcriptional activity of this transcription factor. So far, only a very limited number of cellular enzymatic activities has been described which can dephosphorylate nuclear receptors. In the present study we used immunoprecipitation assays coupled to tandem MS analysis to identify novel PPARγ-regulating proteins. We identified the serine/threonine phosphatase PPM1B [PP (protein phosphatase), Mg(2+)/Mn(2+) dependent, 1B; also known as PP2Cß] as a novel PPARγ-interacting protein. Endogenous PPM1B protein is localized in the nucleus of mature 3T3-L1 adipocytes where it can bind to PPARγ. Furthermore we show that PPM1B can directly dephosphorylate PPARγ, both in intact cells and in vitro. In addition PPM1B increases PPARγ-mediated transcription via dephosphorylation of Ser(112). Finally, we show that knockdown of PPM1B in 3T3-L1 adipocytes blunts the expression of some PPARγ target genes while leaving others unaltered. These findings qualify the phosphatase PPM1B as a novel selective modulator of PPARγ activity.


Asunto(s)
Adipocitos/metabolismo , Núcleo Celular/metabolismo , PPAR gamma/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Transcripción Genética/fisiología , Células 3T3-L1 , Transporte Activo de Núcleo Celular/fisiología , Adipocitos/citología , Animales , Línea Celular Tumoral , Núcleo Celular/genética , Humanos , Magnesio/metabolismo , Manganeso/metabolismo , Ratones , PPAR gamma/genética , Fosfoproteínas Fosfatasas/genética , Fosforilación/fisiología , Proteína Fosfatasa 2C
8.
Nat Cell Biol ; 8(10): 1064-73, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16964248

RESUMEN

FOXO (Forkhead box O) transcription factors are important regulators of cellular metabolism, cell-cycle progression and cell death. FOXO activity is regulated by multiple post-translational modifications, including phosphorylation, acetylation and polyubiquitination. Here, we show that FOXO becomes monoubiquitinated in response to increased cellular oxidative stress, resulting in its re-localization to the nucleus and an increase in its transcriptional activity. Deubiquitination of FOXO requires the deubiquitinating enzyme USP7/HAUSP (herpesvirus-associated ubiquitin-specific protease), which interacts with and deubiquitinates FOXO in response to oxidative stress. Oxidative stress-induced ubiquitination and deubiquitination by USP7 do not influence FOXO protein half-life. However, USP7 does negatively regulate FOXO transcriptional activity towards endogenous promoters. Our results demonstrate a novel mechanism of FOXO regulation and indicate that USP7 has an important role in regulating FOXO-mediated stress responses.


Asunto(s)
Endopeptidasas/metabolismo , Regulación de la Expresión Génica/fisiología , Factores de Transcripción/genética , Ubiquitina/metabolismo , Animales , Proteínas de Ciclo Celular , Células Cultivadas , Factores de Transcripción Forkhead , Humanos , Peróxido de Hidrógeno/farmacología , Riñón/metabolismo , Neoplasias Pulmonares/metabolismo , Ratones , Células 3T3 NIH , Oxidantes/farmacología , Estrés Oxidativo , Procesamiento Proteico-Postraduccional , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Transfección , Ubiquitina Tiolesterasa , Peptidasa Específica de Ubiquitina 7 , Proteasas Ubiquitina-Específicas
9.
iScience ; 25(4): 104056, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35345457

RESUMEN

Castration-resistant prostate cancer (CRPC) is incurable and remains a significant worldwide challenge (Oakes and Papa, 2015). Matched untargeted multi-level omic datasets may reveal biological changes driving CRPC, identifying novel biomarkers and/or therapeutic targets. Untargeted RNA sequencing, proteomics, and metabolomics were performed on xenografts derived from three independent sets of hormone naive and matched CRPC human cell line models of local, lymph node, and bone metastasis grown as murine orthografts. Collectively, we tested the feasibility of muti-omics analysis on models of CRPC in revealing pathways of interest for future validation investigation. Untargeted metabolomics revealed NAA and NAAG commonly accumulating in CRPC across three independent models and proteomics showed upregulation of related enzymes, namely N-acetylated alpha-linked acidic dipeptidases (FOLH1/NAALADL2). Based on pathway analysis integrating multiple omic levels, we hypothesize that increased NAA in CRPC may be due to upregulation of NAAG hydrolysis via NAALADLases providing a pool of acetyl Co-A for upregulated sphingolipid metabolism and a pool of glutamate and aspartate for nucleotide synthesis during tumor growth.

10.
Elife ; 112022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35244541

RESUMEN

Iron-sulfur (Fe-S) clusters are ancient and ubiquitous protein cofactors and play irreplaceable roles in many metabolic and regulatory processes. Fe-S clusters are built and distributed to Fe-S enzymes by dedicated protein networks. The core components of these networks are widely conserved and highly versatile. However, Fe-S proteins and enzymes are often inactive outside their native host species. We sought to systematically investigate the compatibility of Fe-S networks with non-native Fe-S enzymes. By using collections of Fe-S enzyme orthologs representative of the entire range of prokaryotic diversity, we uncovered a striking correlation between phylogenetic distance and probability of functional expression. Moreover, coexpression of a heterologous Fe-S biogenesis pathway increases the phylogenetic range of orthologs that can be supported by the foreign host. We also find that Fe-S enzymes that require specific electron carrier proteins are rarely functionally expressed unless their taxon-specific reducing partners are identified and co-expressed. We demonstrate how these principles can be applied to improve the activity of a radical S-adenosyl methionine(rSAM) enzyme from a Streptomyces antibiotic biosynthesis pathway in Escherichia coli. Our results clarify how oxygen sensitivity and incompatibilities with foreign Fe-S and electron transfer networks each impede heterologous activity. In particular, identifying compatible electron transfer proteins and heterologous Fe-S biogenesis pathways may prove essential for engineering functional Fe-S enzyme-dependent pathways.


Asunto(s)
Proteínas de Escherichia coli , Proteínas Hierro-Azufre , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Hierro/metabolismo , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/metabolismo , Filogenia , Azufre/metabolismo
11.
FASEB J ; 24(11): 4271-80, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20570964

RESUMEN

In this study, we searched for proteins regulating the tumor suppressor and life-span regulator FOXO4. Through an unbiased tandem-affinity purification strategy combined with mass spectrometry, we identified the heterodimer Ku70/Ku80 (Ku), a DNA double-strand break repair component. Using biochemical interaction studies, we found Ku70 to be necessary and sufficient for the interaction. FOXO4 mediates its tumor-suppressive function in part through transcriptional regulation of the cell cycle arrest p27(kip1) gene. Immunoblotting, luciferase reporter assays, and flow cytometry showed that Ku70 inhibited FOXO4-mediated p27(kip1) transcription and cell cycle arrest induction by >40%. In contrast, Ku70 RNAi but not control RNAi significantly increased p27(kip1) transcription. In addition, in contrast to wild-type mouse embryonic stem (ES) cells, Ku70(-/-) ES cells showed significantly increased FOXO activity, which was rescued by Ku70 reexpression. Immunofluorescence studies demonstrated that Ku70 sequestered FOXO4 in the nucleus. Interestingly, the Ku70-FOXO4 interaction stoichiometry followed a nonlinear dose-response curve by hydrogen peroxide-generated oxidative stress. Low levels of oxidative stress increased interaction stoichiometry up to 75%, peaking at 50 µM, after which dissociation occurred. Because the Ku70 ortholog in the roundworm Caenorhabditis elegans was shown to regulate life span involving C. elegans FOXO, our findings suggest a conserved critical Ku70 role for FOXO function toward coordination of a survival program, regulated by the magnitude of oxidative damage.


Asunto(s)
Antígenos Nucleares/metabolismo , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción Forkhead/metabolismo , Complejos Multiproteicos , Estrés Fisiológico , Factores de Transcripción/metabolismo , Animales , Antígenos Nucleares/genética , Ciclo Celular/fisiología , Proteínas de Ciclo Celular , Línea Celular , Proteínas de Unión al ADN/genética , Factores de Transcripción Forkhead/genética , Técnicas de Inactivación de Genes , Células HEK293 , Células HeLa , Humanos , Autoantígeno Ku , Ratones , Complejos Multiproteicos/farmacología , Estrés Oxidativo/efectos de los fármacos , Espectrometría de Masas en Tándem
12.
mBio ; 11(4)2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32817111

RESUMEN

Every cell must produce enough membrane to contain itself. However, the mechanisms by which the rate of membrane synthesis is coupled with the rate of cell growth remain unresolved. By comparing substrate and enzyme concentrations of the fatty acid and phospholipid synthesis pathways of Escherichia coli across a 3-fold range of carbon-limited growth rates, we show that the rate of membrane phospholipid synthesis during steady-state growth is determined principally through allosteric control of a single enzyme, PlsB. Due to feedback regulation of the fatty acid pathway, PlsB activity also indirectly controls synthesis of lipopolysaccharide, a major component of the outer membrane synthesized from a fatty acid synthesis intermediate. Surprisingly, concentrations of the enzyme that catalyzes the committed step of lipopolysaccharide synthesis (LpxC) do not differ across steady-state growth conditions, suggesting that steady-state lipopolysaccharide synthesis is modulated primarily via indirect control by PlsB. In contrast to steady-state regulation, we found that responses to environmental perturbations are triggered directly via changes in acetyl coenzyme A (acetyl-CoA) concentrations, which enable rapid adaptation. Adaptations are further modulated by ppGpp, which regulates PlsB activity during slow growth and growth arrest. The strong reliance of the membrane synthesis pathway upon posttranslational regulation ensures both the reliability and the responsiveness of membrane synthesis.IMPORTANCE How do bacterial cells grow without breaking their membranes? Although the biochemistry of fatty acid and membrane synthesis is well known, how membrane synthesis is balanced with growth and metabolism has remained unclear. This is partly due to the many control points that have been discovered within the membrane synthesis pathways. By precisely establishing the contributions of individual pathway enzymes, our results simplify the model of membrane biogenesis in the model bacterial species Escherichia coli Specifically, we found that allosteric control of a single enzyme, PlsB, is sufficient to balance growth with membrane synthesis and to ensure that growing E. coli cells produce sufficient membrane. Identifying the signals that activate and deactivate PlsB will resolve the issue of how membrane synthesis is synchronized with growth.


Asunto(s)
Acetiltransferasas/metabolismo , Membrana Celular/metabolismo , Escherichia coli/crecimiento & desarrollo , Escherichia coli/genética , Fosfolípidos/biosíntesis , Acetiltransferasas/genética , Vías Biosintéticas , Lipopolisacáridos/biosíntesis , Espectrometría de Masas , Procesamiento Proteico-Postraduccional
13.
Front Microbiol ; 11: 574872, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33042085

RESUMEN

The molecule guanosine tetraphophosphate (ppGpp) is most commonly considered an alarmone produced during acute stress. However, ppGpp is also present at low concentrations during steady-state growth. Whether ppGpp controls the same cellular targets at both low and high concentrations remains an open question and is vital for understanding growth rate regulation. It is widely assumed that basal ppGpp concentrations vary inversely with growth rate, and that the main function of basal ppGpp is to regulate transcription of ribosomal RNA in response to environmental conditions. Unfortunately, studies to confirm this relationship and to define regulatory targets of basal ppGpp are limited by difficulties in quantifying basal ppGpp. In this Perspective we compare reported concentrations of basal ppGpp in E. coli and quantify ppGpp within several strains using a recently developed analytical method. We find that although the inverse correlation between ppGpp and growth rate is robust across strains and analytical methods, absolute ppGpp concentrations do not absolutely determine RNA synthesis rates. In addition, we investigated the consequences of two separate RNA polymerase mutations that each individually reduce (but do not abolish) sensitivity to ppGpp and find that the relationship between ppGpp, growth rate, and RNA content of single-site mutants remains unaffected. Both literature and our new data suggest that environmental conditions may be communicated to RNA polymerase via an additional regulator. We conclude that basal ppGpp is one of potentially several agents controlling ribosome abundance and DNA replication initiation, but that evidence for additional roles in controlling macromolecular synthesis requires further study.

14.
Nucleic Acids Res ; 35(7): 2428-39, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17392337

RESUMEN

Efficient transcription is linked to modification of chromatin. For instance, tri-methylation of lysine 4 on histone H3 (H3K4) strongly correlates with transcriptional activity and is regulated by the Bur1/2 kinase complex. We found that the evolutionarily conserved Ccr4-Not complex is involved in establishing H3K4 tri-methylation in Saccharomyces cerevisiae. We observed synthetic lethal interactions of Ccr4-Not components with BUR1 and BUR2. Further analysis indicated that the genes encoding the Not-proteins are essential for efficient regulation of H3K4me3, but not H3K4me1/2, H3K36me2 or H3K79me2/3 levels. Moreover, regulation of H3K4me3 levels by NOT4 is independent of defects in RNA polymerase II loading. We found NOT4 to be important for ubiquitylation of histone H2B via recruitment of the PAF complex, but not for recruitment or activation of the Bur1/2 complex. These results suggest a mechanism in which the Ccr4-Not complex functions parallel to or downstream of the Bur1/2 kinase to facilitate H3K4me3 via PAF complex recruitment.


Asunto(s)
Histonas/metabolismo , Ribonucleasas/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/enzimología , Ubiquitina-Proteína Ligasas/fisiología , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Ciclinas/genética , Ciclinas/metabolismo , Proteínas de Unión al ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/química , Lisina/metabolismo , Metilación , Proteínas Nucleares/metabolismo , Proteínas Represoras , Ribonucleasas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética
15.
Endocrinology ; 149(4): 1840-9, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18096664

RESUMEN

The transcription factor peroxisome proliferator-activated receptor gamma (PPARgamma) plays a key role in the regulation of lipid and glucose metabolism in adipocytes, by regulating their differentiation, maintenance, and function. The transcriptional activity of PPARgamma is dictated by the set of proteins with which this nuclear receptor interacts under specific conditions. Here we identify the HIV-1 Tat-interacting protein 60 (Tip60) as a novel positive regulator of PPARgamma transcriptional activity. Using tandem mass spectrometry, we found that PPARgamma and the acetyltransferase Tip60 interact in cells, and through use of chimeric proteins, we established that coactivation by Tip60 critically depends on the N-terminal activation function 1 of PPARgamma, a domain involved in isotype-specific gene expression and adipogenesis. Chromatin immunoprecipitation experiments showed that the endogenous Tip60 protein is recruited to PPARgamma target genes in mature 3T3-L1 adipocytes but not in preadipocytes, indicating that Tip60 requires PPARgamma for its recruitment to PPARgamma target genes. Importantly, we show that in common with disruption of PPARgamma function, small interfering RNA-mediated reduction of Tip60 protein impairs differentiation of 3T3-L1 preadipocytes. Taken together, these findings qualify the acetyltransferase Tip60 as a novel adipogenic factor.


Asunto(s)
Adipogénesis , Histona Acetiltransferasas/fisiología , PPAR gamma/fisiología , Células 3T3-L1 , Secuencia de Aminoácidos , Animales , Línea Celular Tumoral , Humanos , Lisina Acetiltransferasa 5 , Ratones , Datos de Secuencia Molecular , PPAR gamma/química , Estructura Terciaria de Proteína , Transcripción Genética
16.
EMBO Mol Med ; 10(4)2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29540470

RESUMEN

Metastatic castration-resistant prostate cancer (mCRPC) is a lethal form of treatment-resistant prostate cancer and poses significant therapeutic challenges. Deregulated receptor tyrosine kinase (RTK) signalling mediated by loss of tumour suppressor Sprouty2 (SPRY2) is associated with treatment resistance. Using pre-clinical human and murine mCRPC models, we show that SPRY2 deficiency leads to an androgen self-sufficient form of CRPC Mechanistically, HER2-IL6 signalling axis enhances the expression of androgen biosynthetic enzyme HSD3B1 and increases SRB1-mediated cholesterol uptake in SPRY2-deficient tumours. Systemically, IL6 elevated the levels of circulating cholesterol by inducing host adipose lipolysis and hepatic cholesterol biosynthesis. SPRY2-deficient CRPC is dependent on cholesterol bioavailability and SRB1-mediated tumoral cholesterol uptake for androgen biosynthesis. Importantly, treatment with ITX5061, a clinically safe SRB1 antagonist, decreased treatment resistance. Our results indicate that cholesterol transport blockade may be effective against SPRY2-deficient CRPC.


Asunto(s)
Interleucina-6/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Receptores Depuradores/metabolismo , Animales , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Proteínas de la Membrana/genética , Ratones Desnudos , Fenilendiaminas/uso terapéutico , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Proteínas Serina-Treonina Quinasas , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Receptores Depuradores de Clase B/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Sulfonamidas/uso terapéutico
17.
Cell Rep ; 18(3): 647-658, 2017 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-28099844

RESUMEN

Acetyl-CoA is a key metabolic intermediate with an important role in transcriptional regulation. The nuclear-cytosolic acetyl-CoA synthetase 2 (ACSS2) was found to sustain the growth of hypoxic tumor cells. It generates acetyl-CoA from acetate, but exactly which pathways it supports is not fully understood. Here, quantitative analysis of acetate metabolism reveals that ACSS2 fulfills distinct functions depending on its cellular location. Exogenous acetate uptake is controlled by expression of both ACSS2 and the mitochondrial ACSS1, and ACSS2 supports lipogenesis. The mitochondrial and lipogenic demand for two-carbon acetyl units considerably exceeds the uptake of exogenous acetate, leaving it to only sparingly contribute to histone acetylation. Surprisingly, oxygen and serum limitation increase nuclear localization of ACSS2. We find that nuclear ACSS2 recaptures acetate released from histone deacetylation for recycling by histone acetyltransferases. Our work provides evidence for limited equilibration between nuclear and cytosolic acetyl-CoA and demonstrates that ACSS2 retains acetate to maintain histone acetylation.


Asunto(s)
Acetato CoA Ligasa/metabolismo , Acetatos/metabolismo , Hipoxia de la Célula , Histonas/metabolismo , Acetato CoA Ligasa/antagonistas & inhibidores , Acetato CoA Ligasa/genética , Acetatos/química , Acetilcoenzima A/metabolismo , Acetilación , Isótopos de Carbono/química , Línea Celular Tumoral , Núcleo Celular/enzimología , Cromatografía Líquida de Alta Presión , Medios de Cultivo/química , Humanos , Espectrometría de Masas , Metaboloma , Microscopía Fluorescente , Mitocondrias/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Suero/química
18.
Fertil Steril ; 107(3): 699-706.e6, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28259259

RESUMEN

OBJECTIVE: To identify metabolites that are associated with and predict the presence of endometriosis. DESIGN: Metabolomics study using state-of-the-art mass spectrometry approaches. SETTING: University hospital and universities. PATIENT(S): Twenty-five women with laparoscopically confirmed endometriosis (cases) and 19 women with laparoscopically documented absence of endometriosis (controls). None of the women included in this study had received oral contraception or GnRH agonists for a minimum of 1 month before blood collection. INTERVENTION(S): Plasma collection. MAIN OUTCOME MEASURE(S): Metabolite profiles were generated and interrogated using multiple mass spectrometry methods, that is, high performance liquid chromatography coupled with negative mode electrospray ionization tandem mass spectrometry, UPLC-MS/MS, and ultra performance liquid chromatography-electroSpray ionization-quadrupole time-of-flight (UPLC-ESI-Q-TOF). Metabolite groups investigated included phospholipids, glycerophospholipids, ether-phospholipids, cholesterol-esters, triacylglycerol, sphingolipids, free fatty acids, steroids, eicosanoids, and acylcarnitines. RESULT(S): A panel of acylcarnitines predicted the presence of endometriosis with 88.9% specificity and 81.5% sensitivity in human plasma, with a positive predictive value of 75%. However, due to data limitations the outcome of the receiver operating characteristic curve analysis was not significant. CONCLUSION(S): A diagnostic model based on acylcarnitines has the potential to predict the presence and stage of endometriosis.


Asunto(s)
Carnitina/análogos & derivados , Endometriosis/sangre , Lípidos/sangre , Metabolómica , Adulto , Área Bajo la Curva , Bélgica , Biomarcadores/sangre , Carnitina/sangre , Estudios de Casos y Controles , Cromatografía Líquida de Alta Presión , Endometriosis/diagnóstico , Femenino , Hospitales Universitarios , Humanos , Laparoscopía , Metabolómica/métodos , Proyectos Piloto , Valor Predictivo de las Pruebas , Curva ROC , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem
19.
Mol Oncol ; 10(1): 73-84, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26365896

RESUMEN

BRAF inhibitors can extend progression-free and overall survival in melanoma patients whose tumors harbor mutations in BRAF. However, the majority of patients eventually develop resistance to these drugs. Here we show that BRAF mutant melanoma cells that have developed acquired resistance to BRAF inhibitors display increased oxidative metabolism and increased dependency on mitochondria for survival. Intriguingly, the increased oxidative metabolism is associated with a switch from glucose to glutamine metabolism and an increased dependence on glutamine over glucose for proliferation. We show that the resistant cells are more sensitive to mitochondrial poisons and to inhibitors of glutaminolysis, suggesting that targeting specific metabolic pathways may offer exciting therapeutic opportunities to treat resistant tumors, or to delay emergence of resistance in the first-line setting.


Asunto(s)
Glutamina/metabolismo , Melanoma/metabolismo , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Animales , Línea Celular Tumoral , Xenoinjertos , Humanos , Ratones , Proteínas Proto-Oncogénicas B-raf/genética
20.
Sci Adv ; 2(10): e1601273, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27819051

RESUMEN

Serine catabolism to glycine and a one-carbon unit has been linked to the anabolic requirements of proliferating mammalian cells. However, genome-scale modeling predicts a catabolic role with one-carbon release as formate. We experimentally prove that in cultured cancer cells and nontransformed fibroblasts, most of the serine-derived one-carbon units are released from cells as formate, and that formate release is dependent on mitochondrial reverse 10-CHO-THF synthetase activity. We also show that in cancer cells, formate release is coupled to mitochondrial complex I activity, whereas in nontransformed fibroblasts, it is partially insensitive to inhibition of complex I activity. We demonstrate that in mice, about 50% of plasma formate is derived from serine and that serine starvation or complex I inhibition reduces formate synthesis in vivo. These observations transform our understanding of one-carbon metabolism and have implications for the treatment of diabetes and cancer with complex I inhibitors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA