Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Bioinformatics ; 38(18): 4403-4405, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35861394

RESUMEN

SUMMARY: The ever-increasing number of sequenced genomes necessitates the development of pangenomic approaches for comparative genomics. Introduced in 2016, PanTools is a platform that allows pangenome construction, homology grouping and pangenomic read mapping. The use of graph database technology makes PanTools versatile, applicable from small viral genomes like SARS-CoV-2 up to large plant or animal genomes like tomato or human. Here, we present our third major update to PanTools that enables the integration of functional annotations and provides both gene-level analyses and phylogenetics. AVAILABILITY AND IMPLEMENTATION: PanTools is implemented in Java 8 and released under the GNU GPLv3 license. Software and documentation are available at https://git.wur.nl/bioinformatics/pantools. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Filogenia , SARS-CoV-2/genética , Programas Informáticos , Genoma Viral
2.
Phytopathology ; 112(4): 741-751, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34491796

RESUMEN

Fusarium graminearum is ranked among the five most destructive fungal pathogens that affect agroecosystems. It causes floral diseases in small grain cereals including wheat, barley, and oats, as well as maize and rice. We conducted a systematic review of peer-reviewed studies reporting species within the F. graminearum species complex (FGSC) and created two main data tables. The first contained summarized data from the articles including bibliographic, geographic, methodological (ID methods), host of origin and species, while the second data table contains information about the described strains such as publication, isolate code(s), host/substrate, year of isolation, geographical coordinates, species and trichothecene genotype. Analyses of the bibliographic data obtained from 123 publications from 2000 to 2021 by 498 unique authors and published in 40 journals are summarized. We describe the frequency of species and chemotypes for 16,274 strains for which geographical information was available, either provided as raw data or extracted from the publications, and sampled across six continents and 32 countries. The database and interactive interface are publicly available, allowing for searches, summarization, and mapping of strains according to several criteria including article, country, host, species and trichothecene genotype. The database will be updated as new articles are published and should be useful for guiding future surveys and exploring factors associated with species distribution such as climate and land use. Authors are encouraged to submit data at the strain level to the database, which is accessible at https://fgsc.netlify.app.


Asunto(s)
Fusarium , Tricotecenos , Grano Comestible/microbiología , Fusarium/genética , Enfermedades de las Plantas/microbiología
3.
BMC Genomics ; 22(1): 265, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33849459

RESUMEN

BACKGROUND: Bacterial plant pathogens of the Pectobacterium genus are responsible for a wide spectrum of diseases in plants, including important crops such as potato, tomato, lettuce, and banana. Investigation of the genetic diversity underlying virulence and host specificity can be performed at genome level by using a comprehensive comparative approach called pangenomics. A pangenomic approach, using newly developed functionalities in PanTools, was applied to analyze the complex phylogeny of the Pectobacterium genus. We specifically used the pangenome to investigate genetic differences between virulent and avirulent strains of P. brasiliense, a potato blackleg causing species dominantly present in Western Europe. RESULTS: Here we generated a multilevel pangenome for Pectobacterium, comprising 197 strains across 19 species, including type strains, with a focus on P. brasiliense. The extensive phylogenetic analysis of the Pectobacterium genus showed robust distinct clades, with most detail provided by 452,388 parsimony-informative single-nucleotide polymorphisms identified in single-copy orthologs. The average Pectobacterium genome consists of 47% core genes, 1% unique genes, and 52% accessory genes. Using the pangenome, we zoomed in on differences between virulent and avirulent P. brasiliense strains and identified 86 genes associated to virulent strains. We found that the organization of genes is highly structured and linked with gene conservation, function, and transcriptional orientation. CONCLUSION: The pangenome analysis demonstrates that evolution in Pectobacteria is a highly dynamic process, including gene acquisitions partly in clusters, genome rearrangements, and loss of genes. Pectobacterium species are typically not characterized by a set of species-specific genes, but instead present themselves using new gene combinations from the shared gene pool. A multilevel pangenomic approach, fusing DNA, protein, biological function, taxonomic group, and phenotypes, facilitates studies in a flexible taxonomic context.


Asunto(s)
Pectobacterium , Solanum tuberosum , Europa (Continente) , Pool de Genes , Pectobacterium/genética , Filogenia , Enfermedades de las Plantas , Solanum tuberosum/genética
4.
Plant Dis ; 105(11): 3397-3406, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33944574

RESUMEN

Fusarium crown rot (FCR) is one of the most important wheat diseases in northern China. The main causal agent of FCR, Fusarium pseudograminearum, can produce mycotoxins such as type B trichothecenes. Therefore, FCR could be an additional source of mycotoxin contamination during wheat production. Field inoculation experiments demonstrated that FCR disease severity strongly impacts the distribution pattern of trichothecenes in different wheat tissues. Mycotoxins were mainly observed in lower internodes, and a low amount was detected in the upper parts above the fourth internode. However, high levels of trichothecene accumulation were detected in the upper segments of wheat plants under field conditions, which would threaten the feed production. The variation of mycotoxin content among sampling sites indicated that besides disease severity, other factors like climate, irrigation, and fungicide application may influence the mycotoxin accumulation in wheat. A comprehensive survey of deoxynivalenol (DON) and its derivatives in wheat heads with FCR symptoms in natural fields was conducted at 80 sites in seven provinces in northern China. Much higher levels of mycotoxin were observed compared with inoculation experiments. The mycotoxin content varied greatly among sampling sites, but no significant differences were observed if compared at province level, which indicated the variation is mainly caused by local conditions. Trace amounts of mycotoxin appeared to be translocated to grains, which revealed that FCR infection in natural fields poses a relatively small threat to contamination of grains but a larger one to plant parts that may be used as animal feed. To our knowledge, this is the first report of trichothecene accumulation in wheat stems and heads, as well as grains after FCR infection in natural field conditions. These investigations provide novel insights into food and feed safety risk caused by FCR in northern China.


Asunto(s)
Fusarium , Micotoxinas , Enfermedades de las Plantas , Tricotecenos , Triticum
5.
Plant Dis ; 104(9): 2338-2345, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32697657

RESUMEN

Grape production is increasing globally and so are problems with downy mildew, one of the main constraints in grape production. Downy mildew on grape is caused by Plasmopara viticola, an obligate biotrophic pathogen belonging to the oomycetes. Control of the disease is usually performed by fungicide applications, of which carboxylic acid amide (CAA) fungicides represent one of the most widely used groups of fungicides. Our previous research showed that the extensive application of CAA fungicides can result in fungicide resistance and in China, CAA-resistant isolates of P. viticola were collected from the field in 2014. To monitor the distribution and spread of CAA fungicide resistance, we developed a TaqMan-minor groove binder (MGB) real-time PCR-based method designed on a functional mutation in the PvCesA3 gene that allows efficient identification of CAA fungicide resistant and sensitive genotypes. The assay was validated on 50 isolates using Sanger sequencing and fungicide bioassays and exploited in a comprehensive survey comprising 2,227 single-sporangiophore isolates from eight major grapevine regions in China. We demonstrate that CAA fungicide resistance in P. viticola is widespread in China. On average, 53.3% of the isolates were found to be resistant, but marked differences were found between locations with percentages of resistant isolates varying from 0.3 to 96.6%. Furthermore, the frequency of CAA-resistant isolates was found to be significantly correlated with the exposure to CAA fungicides (P < 0.05). We further discussed the possibilities to apply the TaqMan-MGB real-time PCR assay to assess the frequency of fungicide-resistant P. viticola isolates in each region or vineyard, which would facilitate the correct choice of fungicide for grape downy mildew and resistance management strategies.


Asunto(s)
Farmacorresistencia Fúngica , Oomicetos/genética , Amidas , Ácidos Carboxílicos , China , Reacción en Cadena en Tiempo Real de la Polimerasa
6.
Mol Plant Microbe Interact ; 32(11): 1536-1546, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31246152

RESUMEN

Synchytrium endobioticum is an obligate biotrophic fungus of division Chytridiomycota. It causes potato wart disease, has a worldwide quarantine status and is included on the Health and Human Services and United States Department of Agriculture Select Agent list. S. endobioticum isolates are grouped in pathotypes based on their ability to evade host resistance in a set of differential potato varieties. Thus far, 39 pathotypes are reported. A single dominant gene (Sen1) governs pathotype 1 (D1) resistance and we anticipated that the underlying molecular model would involve a pathogen effector (AvrSen1) that is recognized by the host. The S. endobioticum-specific secretome of 14 isolates representing six different pathotypes was screened for effectors specifically present in pathotype 1 (D1) isolates but absent in others. We identified a single AvrSen1 candidate. Expression of this candidate in potato Sen1 plants showed a specific hypersensitive response (HR), which cosegregated with the Sen1 resistance in potato populations. No HR was obtained with truncated genes found in pathotypes that evaded recognition by Sen1. These findings established that our candidate gene was indeed Avrsen1. The S. endobioticum AvrSen1 is a single-copy gene and encodes a 376-amino-acid protein without predicted function or functional domains, and is the first effector gene identified in Chytridiomycota, an extremely diverse yet underrepresented basal lineage of fungi.


Asunto(s)
Quitridiomicetos , Genes Fúngicos , Solanum tuberosum , Quitridiomicetos/clasificación , Quitridiomicetos/genética , Quitridiomicetos/inmunología , Genes Fúngicos/inmunología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Solanum tuberosum/inmunología , Solanum tuberosum/microbiología
7.
PLoS Genet ; 12(8): e1005876, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27512984

RESUMEN

Black Sigatoka or black leaf streak disease, caused by the Dothideomycete fungus Pseudocercospora fijiensis (previously: Mycosphaerella fijiensis), is the most significant foliar disease of banana worldwide. Due to the lack of effective host resistance, management of this disease requires frequent fungicide applications, which greatly increase the economic and environmental costs to produce banana. Weekly applications in most banana plantations lead to rapid evolution of fungicide-resistant strains within populations causing disease-control failures throughout the world. Given its extremely high economic importance, two strains of P. fijiensis were sequenced and assembled with the aid of a new genetic linkage map. The 74-Mb genome of P. fijiensis is massively expanded by LTR retrotransposons, making it the largest genome within the Dothideomycetes. Melting-curve assays suggest that the genomes of two closely related members of the Sigatoka disease complex, P. eumusae and P. musae, also are expanded. Electrophoretic karyotyping and analyses of molecular markers in P. fijiensis field populations showed chromosome-length polymorphisms and high genetic diversity. Genetic differentiation was also detected using neutral markers, suggesting strong selection with limited gene flow at the studied geographic scale. Frequencies of fungicide resistance in fungicide-treated plantations were much higher than those in untreated wild-type P. fijiensis populations. A homologue of the Cladosporium fulvum Avr4 effector, PfAvr4, was identified in the P. fijiensis genome. Infiltration of the purified PfAVR4 protein into leaves of the resistant banana variety Calcutta 4 resulted in a hypersensitive-like response. This result suggests that Calcutta 4 could carry an unknown resistance gene recognizing PfAVR4. Besides adding to our understanding of the overall Dothideomycete genome structures, the P. fijiensis genome will aid in developing fungicide treatment schedules to combat this pathogen and in improving the efficiency of banana breeding programs.


Asunto(s)
Ascomicetos/genética , Resistencia a la Enfermedad/genética , Musa/genética , Enfermedades de las Plantas/genética , Hojas de la Planta/genética , Ascomicetos/patogenicidad , Cruzamiento , Cromosomas Fúngicos/genética , Variación Genética , Genoma Fúngico , Genotipo , Musa/crecimiento & desarrollo , Musa/microbiología , Enfermedades de las Plantas/microbiología , Hojas de la Planta/microbiología , Retroelementos/genética
8.
Plant Dis ; 103(4): 645-655, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30777801

RESUMEN

Xylella fastidiosa is a heterogenous gram-negative bacterial plant pathogen with a wide host range covering over 300 plant species. Since 2013, in Europe, the presence of the pathogen is increasing in a part of the Mediterranean area, but it causes in particular severe disease problems in olive orchards in the Southern part of Italy. Various subspecies of the pathogen were also diagnosed in natural outbreaks and intercepted ornamental plants in Europe, among them Olea europaea, Coffea arabica, and Nerium oleander. The host range of the pathogen can vary, depending on the subspecies and even the strain. The availability of fast and reliable diagnostic tools is indispensable in management strategies to control diseases caused by X. fastidiosa. To improve the reliability of the TaqMan assay, currently widely used in surveys, a triplex TaqMan assay was developed in which two specific and sensitive TaqMan assays, previously designed for X. fastidiosa, were combined with an internal control. The triplex assay exhibited the same diagnostic sensitivity as the simplex assays. In addition, the usefulness of a metagenomic approach using next-generation sequencing (NGS) was demonstrated, in which total DNA extracted from plant material was sequenced. DNA extracts from plant material free of X. fastidiosa, from artificially inoculated hosts plants or from naturally infected plants sampled in France, Spain, and Italy, or intercepted in Austria and the Netherlands, were analyzed for the presence of X. fastidiosa using the metagenomic approach. In all samples, even in samples with a low infection level, but not in the pathogen-free samples, DNA reads were detected specific for X. fastidiosa. In most cases, the pathogen could be identified to the subspecies level, and for one sample even the whole genome could be assembled and the sequence type could be determined. All results of NGS-analyzed samples were confirmed with the triplex TaqMan polymerase chain reaction and loop-mediated isothermal amplification.


Asunto(s)
Técnicas de Amplificación de Ácido Nucleico , Enfermedades de las Plantas , Análisis de Secuencia , Xylella , Europa (Continente) , Enfermedades de las Plantas/microbiología , Plantas/microbiología , Reproducibilidad de los Resultados , Xylella/genética , Xylella/fisiología
9.
BMC Evol Biol ; 18(1): 136, 2018 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-30200892

RESUMEN

BACKGROUND: Chytridiomycota species (chytrids) belong to a basal lineage in the fungal kingdom. Inhabiting terrestrial and aquatic environments, most are free-living saprophytes but several species cause important diseases: e.g. Batrachochytrium dendrobatidis, responsible for worldwide amphibian decline; and Synchytrium endobioticum, causing potato wart disease. S. endobioticum has an obligate biotrophic lifestyle and isolates can be further characterized as pathotypes based on their virulence on a differential set of potato cultivars. Quarantine measures have been implemented globally to control the disease and prevent its spread. We used a comparative approach using chytrid mitogenomes to determine taxonomical relationships and to gain insights into the evolution and recent history of introductions of this plant pathogen. RESULTS: We assembled and annotated the complete mitochondrial genome of 30 S. endobioticum isolates and generated mitochondrial genomes for five additional chytrid species. The mitochondrial genome of S. endobioticum is linear with terminal inverted repeats which was validated by tailing and PCR amplifying the telomeric ends. Surprisingly, no conservation in organisation and orientation of mitochondrial genes was observed among the Chytridiomycota except for S. endobioticum and its sister species Synchytrium microbalum. However, the mitochondrial genome of S. microbalum is circular and comprises only a third of the 72.9 Kbp found for S. endobioticum suggesting recent linearization and expansion. Four mitochondrial lineages were identified in the S. endobioticum mitochondrial genomes. Several pathotypes occur in different lineages, suggesting that these have emerged independently. In addition, variations for polymorphic sites in the mitochondrial genome of individual isolates were observed demonstrating that S. endobioticum isolates represent a community of different genotypes. Such communities were shown to be complex and stable over time, but we also demonstrate that the use of semi-resistant potato cultivars triggers a rapid shift in the mitochondrial haplotype associated with increased virulence. CONCLUSIONS: Mitochondrial genomic variation shows that S. endobioticum has been introduced into Europe multiple times, that several pathotypes emerged multiple times, and that isolates represent communities of different genotypes. Our study represents the most comprehensive dataset of chytrid mitogenomes, which provides new insights into the extraordinary dynamics and evolution of mitochondrial genomes involving linearization, expansion and reshuffling.


Asunto(s)
Evolución Biológica , Quitridiomicetos/genética , Genoma Mitocondrial , Plantas/microbiología , Animales , Teorema de Bayes , Quitridiomicetos/patogenicidad , ADN Mitocondrial/genética , Europa (Continente) , Variación Genética , Haplotipos/genética , Anotación de Secuencia Molecular , Filogenia , Enfermedades de las Plantas/microbiología , Cuarentena , Reproducibilidad de los Resultados , Especificidad de la Especie , Virulencia/genética
10.
Mol Plant Microbe Interact ; 30(1): 45-52, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27957885

RESUMEN

The oomycete Phytophthora infestans was the causal agent of the Irish Great Famine and is a recurring threat to global food security. The pathogen can reproduce both sexually and asexually, with high potential to adapt to various environments and great risk to break disease resistance genes in potato. As are other oomycetes, P. infestans is regarded to be diploid during the vegetative phase of its life cycle, although some studies reported trisomy and polyploidy. Using microsatellite fingerprinting, genome-wide assessment of single nucleotide polymorphisms, nuclear DNA quantification, and microscopic counting of chromosome numbers, we assessed the ploidy level of a comprehensive selection of isolates. All progenies from sexual populations of P. infestans in nature were found to be diploid, in contrast nearly all dominant asexual lineages, including the most important pandemic clonal lineages US-1 and 13_A2 were triploid. Such triploids possess significantly more allelic variation than diploids. We observed that triploid genotype can change to a diploid genome constitution when exposed to artificial stress conditions. This study reveals that fluctuations in the ploidy level may be a key factor in the adaptation process of this notorious plant destroyer and imposes an extra challenge to control this disease.


Asunto(s)
Phytophthora infestans/genética , Enfermedades de las Plantas/microbiología , Ploidias , Solanum tuberosum/microbiología , Alelos , Citometría de Flujo , Genoma Fúngico , Repeticiones de Microsatélite/genética , Polimorfismo de Nucleótido Simple/genética , Poliploidía , Reproducción , Análisis de Secuencia de ADN , Estrés Fisiológico/genética
11.
BMC Genomics ; 18(1): 735, 2017 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-28923029

RESUMEN

BACKGROUND: The Fusarium oxysporum species complex (FOSC) contains several phylogenetic lineages. Phylogenetic studies identified two to three major clades within the FOSC. The mitochondrial sequences are highly informative phylogenetic markers, but have been mostly neglected due to technical difficulties. RESULTS: A total of 61 complete mitogenomes of FOSC strains were de novo assembled and annotated. Length variations and intron patterns support the separation of three phylogenetic species. The variable region of the mitogenome that is typical for the genus Fusarium shows two new variants in the FOSC. The variant typical for Fusarium is found in members of all three clades, while variant 2 is found in clades 2 and 3 and variant 3 only in clade 2. The extended set of loci analyzed using a new implementation of the genealogical concordance species recognition method support the identification of three phylogenetic species within the FOSC. Comparative analysis of the mitogenomes in the FOSC revealed ongoing mitochondrial recombination within, but not between phylogenetic species. CONCLUSIONS: The recombination indicates the presence of a parasexual cycle in F. oxysporum. The obstacles hindering the usage of the mitogenomes are resolved by using next generation sequencing and selective genome assemblers, such as GRAbB. Complete mitogenome sequences offer a stable basis and reference point for phylogenetic and population genetic studies.


Asunto(s)
Fusarium/genética , Genoma Mitocondrial/genética , Recombinación Genética , Secuencia Conservada , Variación Genética , Genómica , Intrones/genética , Filogenia
12.
PLoS Comput Biol ; 12(6): e1004753, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27308864

RESUMEN

GRAbB (Genomic Region Assembly by Baiting) is a new program that is dedicated to assemble specific genomic regions from NGS data. This approach is especially useful when dealing with multi copy regions, such as mitochondrial genome and the rDNA repeat region, parts of the genome that are often neglected or poorly assembled, although they contain interesting information from phylogenetic or epidemiologic perspectives, but also single copy regions can be assembled. The program is capable of targeting multiple regions within a single run. Furthermore, GRAbB can be used to extract specific loci from NGS data, based on homology, like sequences that are used for barcoding. To make the assembly specific, a known part of the region, such as the sequence of a PCR amplicon or a homologous sequence from a related species must be specified. By assembling only the region of interest, the assembly process is computationally much less demanding and may lead to assemblies of better quality. In this study the different applications and functionalities of the program are demonstrated such as: exhaustive assembly (rDNA region and mitochondrial genome), extracting homologous regions or genes (IGS, RPB1, RPB2 and TEF1a), as well as extracting multiple regions within a single run. The program is also compared with MITObim, which is meant for the exhaustive assembly of a single target based on a similar query sequence. GRAbB is shown to be more efficient than MITObim in terms of speed, memory and disk usage. The other functionalities (handling multiple targets simultaneously and extracting homologous regions) of the new program are not matched by other programs. The program is available with explanatory documentation at https://github.com/b-brankovics/grabb. GRAbB has been tested on Ubuntu (12.04 and 14.04), Fedora (23), CentOS (7.1.1503) and Mac OS X (10.7). Furthermore, GRAbB is available as a docker repository: brankovics/grabb (https://hub.docker.com/r/brankovics/grabb/).


Asunto(s)
Genómica/métodos , Programas Informáticos , Algoritmos , Biología Computacional , Simulación por Computador , ADN de Hongos/genética , ADN Ribosómico/genética , Fusarium/genética , Genoma Fúngico , Genoma Mitocondrial , Genómica/estadística & datos numéricos , Secuenciación de Nucleótidos de Alto Rendimiento/estadística & datos numéricos
13.
BMC Genomics ; 17: 670, 2016 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-27552804

RESUMEN

BACKGROUND: Eukaryotes display remarkable genome plasticity, which can include supernumerary chromosomes that differ markedly from the core chromosomes. Despite the widespread occurrence of supernumerary chromosomes in fungi, their origin, relation to the core genome and the reason for their divergent characteristics are still largely unknown. The complexity of genome assembly due to the presence of repetitive DNA partially accounts for this. RESULTS: Here we use single-molecule real-time (SMRT) sequencing to assemble the genome of a prominent fungal wheat pathogen, Fusarium poae, including at least one supernumerary chromosome. The core genome contains limited transposable elements (TEs) and no gene duplications, while the supernumerary genome holds up to 25 % TEs and multiple gene duplications. The core genome shows all hallmarks of repeat-induced point mutation (RIP), a defense mechanism against TEs, specific for fungi. The absence of RIP on the supernumerary genome accounts for the differences between the two (sub)genomes, and results in a functional crosstalk between them. The supernumerary genome is a reservoir for TEs that migrate to the core genome, and even large blocks of supernumerary sequence (>200 kb) have recently translocated to the core. Vice versa, the supernumerary genome acts as a refuge for genes that are duplicated from the core genome. CONCLUSIONS: For the first time, a mechanism was determined that explains the differences that exist between the core and supernumerary genome in fungi. Different biology rather than origin was shown to be responsible. A "living apart together" crosstalk exists between the core and supernumerary genome, accelerating chromosomal and organismal evolution.


Asunto(s)
Cromosomas Fúngicos/genética , Hongos/genética , Análisis de Secuencia de ADN/métodos , Triticum/microbiología , Composición de Base , Elementos Transponibles de ADN , Evolución Molecular , Duplicación de Gen , Tamaño del Genoma , Mutación Puntual , Reacción en Cadena en Tiempo Real de la Polimerasa
14.
Fungal Genet Biol ; 89: 29-36, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26775250

RESUMEN

Fungal natural products possess biological activities that are of great value to medicine, agriculture and manufacturing. Recent metagenomic studies accentuate the vastness of fungal taxonomic diversity, and the accompanying specialized metabolic diversity offers a great and still largely untapped resource for natural product discovery. Although fungal natural products show an impressive variation in chemical structures and biological activities, their biosynthetic pathways share a number of key characteristics. First, genes encoding successive steps of a biosynthetic pathway tend to be located adjacently on the chromosome in biosynthetic gene clusters (BGCs). Second, these BGCs are often are located on specific regions of the genome and show a discontinuous distribution among evolutionarily related species and isolates. Third, the same enzyme (super)families are often involved in the production of widely different compounds. Fourth, genes that function in the same pathway are often co-regulated, and therefore co-expressed across various growth conditions. In this mini-review, we describe how these partly interlinked characteristics can be exploited to computationally identify BGCs in fungal genomes and to connect them to their products. Particular attention will be given to novel algorithms to identify unusual classes of BGCs, as well as integrative pan-genomic approaches that use a combination of genomic and metabolomic data for parallelized natural product discovery across multiple strains. Such novel technologies will not only expedite the natural product discovery process, but will also allow the assembly of a high-quality toolbox for the re-design or even de novo design of biosynthetic pathways using synthetic biology approaches.


Asunto(s)
Productos Biológicos , Biología Computacional , Hongos/genética , Ingeniería Genética , Genoma Fúngico , Productos Biológicos/aislamiento & purificación , Vías Biosintéticas/genética , Hongos/metabolismo , Ingeniería Genética/métodos , Genómica , Familia de Multigenes
15.
Phytopathology ; 106(6): 636-44, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26828229

RESUMEN

Synchytrium endobioticum is the fungal agent causing potato wart disease. Because of its severity and persistence, quarantine measures are enforced worldwide to avoid the spread of this disease. Molecular markers exist for species-specific detection of this pathogen, yet markers to study the intraspecific genetic diversity of S. endobioticum were not available. Whole-genome sequence data from Dutch pathotype 1 isolate MB42 of S. endobioticum were mined for perfect microsatellite motifs. Of the 62 selected microsatellites, 21 could be amplified successfully and displayed moderate levels of polymorphism in 22 S. endobioticum isolates from different countries. Nineteen multilocus genotypes were observed, with only three isolates from Canada displaying identical profiles. The majority of isolates from Canada clustered genetically. In contrast, most isolates collected in Europe show no genetic clustering associated with their geographic origin. S. endobioticum isolates with the same pathotype displayed highly variable genotypes and none of the microsatellite markers correlated with a specific pathotype. The markers developed in this study can be used to assess intraspecific genetic diversity of S. endobioticum and allow track and trace of genotypes that will generate a better understanding of the migration and spread of this important fungal pathogen and support management of this disease.


Asunto(s)
Quitridiomicetos/genética , Repeticiones de Microsatélite , Enfermedades de las Plantas/microbiología , Polimorfismo Genético , Solanum tuberosum/microbiología , ADN de Hongos , Genoma Fúngico , Genotipo , Filogenia
16.
Fungal Genet Biol ; 79: 42-53, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26092789

RESUMEN

Zymoseptoria tritici is an economically important pathogen of wheat. However, the molecular basis of pathogenicity on wheat is still poorly understood. Here, we present a global survey of the proteins secreted by this fungus in the apoplast of resistant (cv. Shafir) and susceptible (cv. Obelisk) wheat cultivars after inoculation with reference Z. tritici strain IPO323. The fungal proteins present in apoplastic fluids were analyzed by gel electrophoresis and by data-independent acquisition liquid chromatography/mass spectrometry (LC/MS(E)) combined with data-dependent acquisition LC-MS/MS. Subsequent mapping mass spectrometry-derived peptide sequence data against the genome sequence of strain IPO323 identified 665 peptides in the MS(E) and 93 in the LC-MS/MS mode that matched to 85 proteins. The identified fungal proteins, including cell-wall degrading enzymes and proteases, might function in pathogenicity, but the functions of many remain unknown. Most fungal proteins accumulated in cv. Obelisk at the onset of necrotrophy. This inventory provides an excellent basis for future detailed studies on the role of these genes and their encoded proteins during pathogenesis in wheat.


Asunto(s)
Ascomicetos/química , Proteínas Fúngicas/análisis , Enfermedades de las Plantas/microbiología , Proteoma/análisis , Triticum/microbiología , Ascomicetos/aislamiento & purificación , Cromatografía Liquida , Electroforesis , Espectrometría de Masas , Espectrometría de Masas en Tándem
17.
Fungal Genet Biol ; 79: 54-62, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26092790

RESUMEN

Culture filtrates (CFs) of the fungal wheat pathogen Zymoseptoria tritici were assayed for necrosis-inducing activity after infiltration in leaves of various wheat cultivars. Active fractions were partially purified and characterized. The necrosis-inducing factors in CFs are proteinaceous, heat stable and their necrosis-inducing activity is temperature and light dependent. The in planta activity of CFs was tested by a time series of proteinase K (PK) co-infiltrations, which was unable to affect activity 30min after CF infiltrations. This suggests that the necrosis inducing proteins (NIPs) are either absent from the apoplast and likely actively transported into mesophyll cells or protected from the protease by association with a receptor. Alternatively, plant cell death signaling pathways might be fully engaged during the first 30min and cannot be reversed even after PK treatment. Further fractionation of the CFs with the highest necrosis-inducing activity involved fast performance liquid chromatography, SDS-PAGE and mass spectrometry. This revealed that most of the proteins present in the fractions have not been described before. The two most prominent ZtNIP encoding candidates were heterologously expressed in Pichia pastoris and subsequent infiltration assays showed their differential activity in a range of wheat cultivars.


Asunto(s)
Ascomicetos/química , Proteínas Fúngicas/análisis , Necrosis/microbiología , Enfermedades de las Plantas/microbiología , Triticum/microbiología , Factores de Virulencia/análisis , Cromatografía Liquida , Electroforesis en Gel de Poliacrilamida , Proteínas Fúngicas/química , Luz , Espectrometría de Masas , Estabilidad Proteica , Temperatura , Factores de Virulencia/química
18.
BMC Genomics ; 15: 191, 2014 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-24625133

RESUMEN

BACKGROUND: Genome comparisons between closely related species often show non-conserved regions across chromosomes. Some of them are located in specific regions of chromosomes and some are even confined to one or more entire chromosomes. The origin and biological relevance of these non-conserved regions are still largely unknown. Here we used the genome of Fusarium graminearum to elucidate the significance of non-conserved regions. RESULTS: The genome of F. graminearum harbours thirteen non-conserved regions dispersed over all of the four chromosomes. Using RNA-Seq data from the mycelium of F. graminearum, we found weakly expressed regions on all of the four chromosomes that exactly matched with non-conserved regions. Comparison of gene expression between two different developmental stages (conidia and mycelium) showed that the expression of genes in conserved regions is stable, while gene expression in non-conserved regions is much more influenced by developmental stage. In addition, genes involved in the production of secondary metabolites and secreted proteins are enriched in non-conserved regions, suggesting that these regions could also be important for adaptations to new environments, including adaptation to new hosts. Finally, we found evidence that non-conserved regions are generated by sequestration of genes from multiple locations. Gene relocations may lead to clustering of genes with similar expression patterns or similar biological functions, which was clearly exemplified by the PKS2 gene cluster. CONCLUSIONS: Our results showed that chromosomes can be functionally divided into conserved and non-conserved regions, and both could have specific and distinct roles in genome evolution and regulation of gene expression.


Asunto(s)
Cromosomas Fúngicos , Fusarium/genética , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Evolución Molecular , Fusarium/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Familia de Multigenes , Análisis de Secuencia de ARN , Sintenía
19.
Mol Microbiol ; 90(2): 290-306, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23937442

RESUMEN

Fumonisins are a family of carcinogenic secondary metabolites produced by members of the Fusarium fujikuroi species complex (FFSC) and rare strains of Fusarium oxysporum. In Fusarium, fumonisin biosynthetic genes (FUM) are clustered, and the cluster is uniform in gene organization. Here, sequence analyses indicated that the cluster exists in five different genomic contexts, defining five cluster types. In FUM gene genealogies, evolutionary relationships between fusaria with different cluster types were largely incongruent with species relationships inferred from primary-metabolism (PM) gene genealogies, and FUM cluster types are not trans-specific. In addition, synonymous site divergence analyses indicated that three FUM cluster types predate diversification of FFSC. The data are not consistent with balancing selection or interspecific hybridization, but they are consistent with two competing hypotheses: (i) multiple horizontal transfers of the cluster from unknown donors to FFSC recipients and (ii) cluster duplication and loss (birth and death). Furthermore, low levels of FUM gene divergence in F. bulbicola, an FFSC species, and F. oxysporum provide evidence for horizontal transfer of the cluster from the former, or a closely related species, to the latter. Thus, uniform gene organization within the FUM cluster belies a complex evolutionary history that has not always paralleled the evolution of Fusarium.


Asunto(s)
Evolución Molecular , Fumonisinas/metabolismo , Fusarium/genética , Transferencia de Gen Horizontal , Genes Fúngicos , Secuencia de Aminoácidos , Fumonisinas/química , Fusarium/clasificación , Fusarium/metabolismo , Duplicación de Gen , Regulación Fúngica de la Expresión Génica , Familia de Multigenes , Filogenia
20.
PLoS Genet ; 7(6): e1002070, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21695235

RESUMEN

The plant-pathogenic fungus Mycosphaerella graminicola (asexual stage: Septoria tritici) causes septoria tritici blotch, a disease that greatly reduces the yield and quality of wheat. This disease is economically important in most wheat-growing areas worldwide and threatens global food production. Control of the disease has been hampered by a limited understanding of the genetic and biochemical bases of pathogenicity, including mechanisms of infection and of resistance in the host. Unlike most other plant pathogens, M. graminicola has a long latent period during which it evades host defenses. Although this type of stealth pathogenicity occurs commonly in Mycosphaerella and other Dothideomycetes, the largest class of plant-pathogenic fungi, its genetic basis is not known. To address this problem, the genome of M. graminicola was sequenced completely. The finished genome contains 21 chromosomes, eight of which could be lost with no visible effect on the fungus and thus are dispensable. This eight-chromosome dispensome is dynamic in field and progeny isolates, is different from the core genome in gene and repeat content, and appears to have originated by ancient horizontal transfer from an unknown donor. Synteny plots of the M. graminicola chromosomes versus those of the only other sequenced Dothideomycete, Stagonospora nodorum, revealed conservation of gene content but not order or orientation, suggesting a high rate of intra-chromosomal rearrangement in one or both species. This observed "mesosynteny" is very different from synteny seen between other organisms. A surprising feature of the M. graminicola genome compared to other sequenced plant pathogens was that it contained very few genes for enzymes that break down plant cell walls, which was more similar to endophytes than to pathogens. The stealth pathogenesis of M. graminicola probably involves degradation of proteins rather than carbohydrates to evade host defenses during the biotrophic stage of infection and may have evolved from endophytic ancestors.


Asunto(s)
Ascomicetos/genética , Cromosomas Fúngicos/genética , Genoma Fúngico/genética , Ascomicetos/metabolismo , Ascomicetos/patogenicidad , Reordenamiento Génico , Enfermedades de las Plantas/microbiología , Sintenía , Triticum/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA