Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38866210

RESUMEN

BACKGROUND: Human tapasin deficiency is reported to cause an autosomal-recessive inborn error of immunity characterized by substantially reduced cell surface expression of major histocompatibility complex class I (MHC-I). OBJECTIVE: We evaluated the immunologic and clinical consequences of tapasin deficiency. METHODS: A novel homozygous variant in TAPBP was identified by means of whole genome sequencing. The expression of tapasin and both subunits of the transporter associated with antigen presentation (TAP) were evaluated by Western blot analysis. Cell surface and intracellular expression of MHC-I were evaluated by flow cytometry. Small interfering RNAs were used for silencing TAPBP expression in HEK293T cells. RESULTS: We identified a deletion in TAPBP (c.312del, p.(K104Nfs∗6)) causing tapasin deficiency in a patient with bronchiectasis and recurrent respiratory tract infections as well as herpes zoster. Besides substantial reduction in TAP1 and TAP2 expression, peripheral blood mononuclear cells from this patient and TAPBP-knockdown HEK293T cells, displayed reduced cell surface expression of MHC-I, while reduction in intracellular expression of MHC-I was less prominent, suggesting a defect in MHC-I trafficking to the plasma membrane. IFN-α improved cell surface expression of MHC-I in tapasin deficient lymphocytes and TAPBP-knockdown HEK293T cells, representing a possible therapeutic approach for tapasin deficiency. CONCLUSION: Tapasin deficiency is a very rare inborn error of immunity, the pathomechanism and clinical spectrum of which overlaps with TAP deficiencies.

2.
Genet Med ; 26(4): 101057, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38158856

RESUMEN

PURPOSE: We established the genetic etiology of a syndromic neurodevelopmental condition characterized by variable cognitive impairment, recognizable facial dysmorphism, and a constellation of extra-neurological manifestations. METHODS: We performed phenotypic characterization of 6 participants from 4 unrelated families presenting with a neurodevelopmental syndrome and used exome sequencing to investigate the underlying genetic cause. To probe relevance to the neurodevelopmental phenotype and craniofacial dysmorphism, we established two- and three-dimensional human stem cell-derived neural models and generated a stable cachd1 zebrafish mutant on a transgenic cartilage reporter line. RESULTS: Affected individuals showed mild cognitive impairment, dysmorphism featuring oculo-auriculo abnormalities, and developmental defects involving genitourinary and digestive tracts. Exome sequencing revealed biallelic putative loss-of-function variants in CACHD1 segregating with disease in all pedigrees. RNA sequencing in CACHD1-depleted neural progenitors revealed abnormal expression of genes with key roles in Wnt signaling, neurodevelopment, and organ morphogenesis. CACHD1 depletion in neural progenitors resulted in reduced percentages of post-mitotic neurons and enlargement of 3D neurospheres. Homozygous cachd1 mutant larvae showed mandibular patterning defects mimicking human facial dysmorphism. CONCLUSION: Our findings support the role of loss-of-function variants in CACHD1 as the cause of a rare neurodevelopmental syndrome with facial dysmorphism and multisystem abnormalities.


Asunto(s)
Anomalías Múltiples , Anomalías Craneofaciales , Anomalías Musculoesqueléticas , Trastornos del Neurodesarrollo , Animales , Humanos , Anomalías Múltiples/genética , Anomalías Craneofaciales/genética , Discapacidad Intelectual/genética , Anomalías Musculoesqueléticas/genética , Trastornos del Neurodesarrollo/genética , Fenotipo , Síndrome , Pez Cebra/genética
3.
Front Pediatr ; 12: 1279112, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38659694

RESUMEN

New technologies in genetic diagnostics have revolutionized the understanding and management of rare diseases. This review highlights the significant advances and latest developments in genetic diagnostics in inborn errors of immunity (IEI), which encompass a diverse group of disorders characterized by defects in the immune system, leading to increased susceptibility to infections, autoimmunity, autoinflammatory diseases, allergies, and malignancies. Various diagnostic approaches, including targeted gene sequencing panels, whole exome sequencing, whole genome sequencing, RNA sequencing, or proteomics, have enabled the identification of causative genetic variants of rare diseases. These technologies not only facilitated the accurate diagnosis of IEI but also provided valuable insights into the underlying molecular mechanisms. Emerging technologies, currently mainly used in research, such as optical genome mapping, single cell sequencing or the application of artificial intelligence will allow even more insights in the aetiology of hereditary immune defects in the near future. The integration of genetic diagnostics into clinical practice significantly impacts patient care. Genetic testing enables early diagnosis, facilitating timely interventions and personalized treatment strategies. Additionally, establishing a genetic diagnosis is necessary for genetic counselling and prognostic assessments. Identifying specific genetic variants associated with inborn errors of immunity also paved the way for the development of targeted therapies and novel therapeutic approaches. This review emphasizes the challenges related with genetic diagnosis of rare diseases and provides future directions, specifically focusing on IEI. Despite the tremendous progress achieved over the last years, several obstacles remain or have become even more important due to the increasing amount of genetic data produced for each patient. This includes, first and foremost, the interpretation of variants of unknown significance (VUS) in known IEI genes and of variants in genes of unknown significance (GUS). Although genetic diagnostics have significantly contributed to the understanding and management of IEI and other rare diseases, further research, exchange between experts from different clinical disciplines, data integration and the establishment of comprehensive guidelines are crucial to tackle the remaining challenges and maximize the potential of genetic diagnostics in the field of rare diseases, such as IEI.

4.
Nat Commun ; 15(1): 1758, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38413582

RESUMEN

SNURPORTIN-1, encoded by SNUPN, plays a central role in the nuclear import of spliceosomal small nuclear ribonucleoproteins. However, its physiological function remains unexplored. In this study, we investigate 18 children from 15 unrelated families who present with atypical muscular dystrophy and neurological defects. Nine hypomorphic SNUPN biallelic variants, predominantly clustered in the last coding exon, are ascertained to segregate with the disease. We demonstrate that mutant SPN1 failed to oligomerize leading to cytoplasmic aggregation in patients' primary fibroblasts and CRISPR/Cas9-mediated mutant cell lines. Additionally, mutant nuclei exhibit defective spliceosomal maturation and breakdown of Cajal bodies. Transcriptome analyses reveal splicing and mRNA expression dysregulation, particularly in sarcolemmal components, causing disruption of cytoskeletal organization in mutant cells and patient muscle tissues. Our findings establish SNUPN deficiency as the genetic etiology of a previously unrecognized subtype of muscular dystrophy and provide robust evidence of the role of SPN1 for muscle homeostasis.


Asunto(s)
Distrofias Musculares , Niño , Humanos , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , ARN/metabolismo , Empalme del ARN/genética , Empalmosomas/genética , Empalmosomas/metabolismo
5.
Med Genet ; 35(2): 105-112, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38840860

RESUMEN

Rare genetic diseases are a major cause of severe illnesses and deaths in new-borns and infants. Disease manifestation in critically ill children may be atypical or incomplete, making a monogenetic disease difficult to diagnose clinically. Rapid exome or genome ("genomic") sequencing in critically ill children demonstrated profound diagnostic and clinical value, and there is growing evidence that the faster a molecular diagnosis is established in such children, the more likely clinical management is influenced positively. An early molecular diagnosis enables treatment of critically ill children with precision medicine, has the potential to improve patient outcome and leads to healthcare cost savings. In this review, we outline the status quo of rapid genomic sequencing and possible future implications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA