Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Biomed Opt Express ; 9(6): 2810-2824, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-30258692

RESUMEN

Emerging three-dimensional (3D) printing technology enables the fabrication of optically realistic and morphologically complex tissue-simulating phantoms for the development and evaluation of novel optical imaging products. In this study, we assess the potential to print image-defined neurovascular phantoms with patent channels for contrast-enhanced near-infrared fluorescence (NIRF) imaging. An anatomical map defined from clinical magnetic resonance imaging (MRI) was segmented and processed into files suitable for printing a forebrain vessel network in rectangular and curved-surface biomimetic phantoms. Methods for effectively cleaning samples with complex vasculature were determined. A final set of phantoms were imaged with a custom NIRF system at 785 nm excitation using two NIRF contrast agents. In addition to demonstrating the strong potential of 3D printing for creating highly realistic, patient-specific biophotonic phantoms, our work provides insight into optimal methods for accomplishing this goal and elucidates current limitations of this approach.

2.
Biomed Opt Express ; 9(4): 1852-1858, 2018 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-29675324

RESUMEN

A clinical trial on the autofluorescence imaging of skin lesions comprising 16 dermatologically confirmed pigmented nevi, 15 seborrheic keratosis, 2 dysplastic nevi, histologically confirmed 17 basal cell carcinomas and 1 melanoma was performed. The autofluorescence spatial properties of the skin lesions were acquired by smartphone RGB camera under 405 nm LED excitation. The diagnostic criterion is based on the calculation of the mean autofluorescence intensity of the examined lesion in the spectral range of 515 nm-700 nm. The proposed methodology is able to differentiate seborrheic keratosis from basal cell carcinoma, pigmented nevi and melanoma. The sensitivity and specificity of the proposed method was estimated as being close to 100%. The proposed methodology and potential clinical applications are discussed in this article.

3.
Biomed Opt Express ; 9(8): 3544-3558, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-30338139

RESUMEN

Due to an ill-posed and underestimated characteristic of bioluminescence tomography (BLT) reconstruction, a priori anatomical information obtained from computed tomography (CT) or magnetic resonance imaging (MRI), is usually incorporated to improve the reconstruction accuracy. The organs need to be segmented, which is time-consuming and challenging, especially for the low-contrast CT images. In this paper, we present a BLT reconstruction method based on a statistical mouse atlas to improve the efficiency of heterogeneous model generation and the accuracy of target localization. The low-contrast CT image of the mouse was first registered to the statistical mouse atlas model with the constraints of mouse surface and high-contrast organs (bone and lung). Then the other organs, such as the liver and kidney, were determined automatically through the statistical mouse atlas model. The estimated organs were then discretized into tetrahedral meshes for BLT reconstruction. The linearized Bregman method was used to solve the sparse inverse problem of BLT by minimizing the regularization function (L1 norm plus L2 norm with smooth factor). Both numerical simulations and in vivo experiments were conducted, and the results demonstrate that even though the localization of the estimated organs may not be exactly accurate, the proposed method is feasible to reconstruct the bioluminescent source effectively and accurately with the estimated organs. This method would greatly benefit the bioluminescent light source localization for hybrid BLT/CT systems.

4.
Biomed Opt Express ; 9(7): 3106-3121, 2018 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-29984086

RESUMEN

We present a reconstruction method involving maximum-likelihood expectation maximization (MLEM) to model Poisson noise as applied to fluorescence molecular tomography (FMT). MLEM is initialized with the output from a sparse reconstruction-based approach, which performs truncated singular value decomposition-based preconditioning followed by fast iterative shrinkage-thresholding algorithm (FISTA) to enforce sparsity. The motivation for this approach is that sparsity information could be accounted for within the initialization, while MLEM would accurately model Poisson noise in the FMT system. Simulation experiments show the proposed method significantly improves images qualitatively and quantitatively. The method results in over 20 times faster convergence compared to uniformly initialized MLEM and improves robustness to noise compared to pure sparse reconstruction. We also theoretically justify the ability of the proposed approach to reduce noise in the background region compared to pure sparse reconstruction. Overall, these results provide strong evidence to model Poisson noise in FMT reconstruction and for application of the proposed reconstruction framework to FMT imaging.

5.
Biomed Opt Express ; 9(9): 4163-4174, 2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-30615705

RESUMEN

Bioluminescence imaging (BLI) is a non-contact, optical imaging technique based on measurement of emitted light due to an internal source, which is then often directly related to cellular activity. It is widely used in pre-clinical small animal imaging studies to assess the progression of diseases such as cancer, aiding in the development of new treatments and therapies. For many applications, the quantitative assessment of accurate cellular activity and spatial distribution is desirable as it would enable direct monitoring for prognostic evaluation. This requires quantitative spatially-resolved measurements of bioluminescence source strength inside the animal to be obtained from BLI images. This is the goal of bioluminescence tomography (BLT) in which a model of light propagation through tissue is combined with an optimization algorithm to reconstruct a map of the underlying source distribution. As most models consider only the propagation of light from internal sources to the animal skin surface, an additional challenge is accounting for the light propagation from the skin to the optical detector (e.g. camera). Existing approaches typically use a model of the imaging system optics (e.g. ray-tracing, analytical optical models) or approximate corrections derived from calibration measurements. However, these approaches are typically computationally intensive or of limited accuracy. In this work, a new approach is presented in which, rather than directly using BLI images acquired at several wavelengths, the spectral derivative of that data (difference of BLI images at adjacent wavelengths) is used in BLT. As light at similar wavelengths encounters a near-identical system response (path through the optics etc.) this eliminates the need for additional corrections or system models. This approach is applied to BLT with simulated and experimental phantom data and shown that the error in reconstructed source intensity is reduced from 49% to 4%. Qualitatively, the accuracy of source localization is improved in both simulated and experimental data, as compared to reconstruction using the standard approach. The outlined algorithm can widely be adapted to all commercial systems without any further technological modifications.

6.
Biomed Opt Express ; 9(2): 518-528, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-29552390

RESUMEN

Pre-mRNA splicing is an essential step in gene expression in most eukaryote genes. Here we present the feasibility of a genetically encoded luciferase reporter to monitor the pre-mRNA splicing process in living cells and animals. We showed that the splicing activity change induced by isoginkgetin could be readily visualized in vitro both in a dose and time dependent manner. Moreover, the pre-mRNA splicing process could be also obviously detected in mice by bioluminescence imaging and confirmed by RT-PCR. Our work provided a reporter system that allows high-throughput screening of chemical libraries to identify potential compounds leading to aberrant patterns of splicing.

7.
Biomed Opt Express ; 9(8): 3559-3580, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-30338140

RESUMEN

Current clinical imaging modalities do not reliably identify brain tissue regions with necrosis following radiotherapy. This creates challenges for stereotaxic biopsies and surgical-decision making. Time-resolved fluorescence spectroscopy (TRFS) provides a means to rapidly identify necrotic tissue by its distinct autofluorescence signature resulting from tissue breakdown and altered metabolic profiles in regions with radiation damage. Studies conducted in a live animal model of radiation necrosis demonstrated that necrotic tissue is characterized by respective increases of 27% and 108% in average lifetime and redox ratio, when compared with healthy tissue. Moreover, radiation-damaged tissue not visible by MRI but confirmed by histopathology, was detected by TRFS. Current results demonstrate the ability of TRFS to identify radiation-damaged brain tissue in real-time and indicates its potential to assist with surgical guidance and MRI-guided biopsy procedures.

8.
Biomed Opt Express ; 9(7): 3193-3207, 2018 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-29984093

RESUMEN

Currently, there is no effective way to assess the therapeutic response of temozolomide (TMZ) for the glioma. In this study, the human U87MG-fLuc glioma animal models were set up and the antitumor efficacy of TMZ was evaluated using bioluminescence imaging (BLI) and MRI. Then, bioluminescence tomography (BLT) was reconstructed using an adaptive sparsity matching pursuit (ASMP) algorithm. Second, the expression level of the MMP-750 probe was examined with or without TMZ treatment using FMI. Third, the expression of MMP2 and MMP3 was specifically examined after treatment. The results showed that TMZ effectively inhibited glioma growth. The targeted imaging of MMP-750 was decreased during the treatment of glioma with TMZ. Moreover, the MMP2 and MMP3 expression was found to correlate with the inhibition effect of TMZ. Our study indicated that the therapeutic effects of TMZ can be effectively evaluated at an early stage using molecular imaging, and MMP targeting the fluorescence probe could be utilized for the prediction and assessment of the therapeutic effects of TMZ.

9.
Biomed Opt Express ; 9(7): 3399-3412, 2018 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-29984105

RESUMEN

The shifting metabolic landscape of aggressive tumors, with fluctuating oxygenation conditions and temporal changes in glycolysis and mitochondrial metabolism, is a critical phenomenon to study in order to understand negative treatment outcomes. Recently, we have demonstrated near-simultaneous optical imaging of mitochondrial membrane potential (MMP) and glucose uptake in non-tumor window chambers, using the fluorescent probes tetramethylrhodamine ethyl ester (TMRE) and 2-N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG). Here, we demonstrate a complementary technique to perform near-simultaneous in vivo optical spectroscopy of tissue vascular parameters, glucose uptake, and MMP in a solid tumor model that is most often used for therapeutic studies. Our study demonstrates the potential of optical spectroscopy as an effective tool to quantify the vascular and metabolic characteristics of a tumor, which is an important step towards understanding the mechanisms underlying cancer progression, metastasis, and resistance to therapies.

10.
Biomed Opt Express ; 9(9): 4401-4412, 2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-30615743

RESUMEN

Spinal cord tumors are complicated and infrequent, which poses a major challenge to surgeons during neurosurgery. Currently, the intraoperative identification of the tissues' pathological properties is usually difficult for surgeons. This issue influences the decision-making in treatment planning. Traditional pathological diagnoses can facilitate judging the tissues' properties, but the diagnosis process is complex and time-consuming. In this study, we evaluated the potential of autofluorescence spectroscopy for the fast pathological diagnosis of specific spinal cord tumors. The spectral properties of six types of spinal cord tumors were acquired ex vivo. Several peak intensity ratios were calculated for classification and then associated with the pathological immunohistochemical indexes. Our results revealed the spectral properties of three types of intramedullary tumors different from those of the other three types of extramedullary tumors. Furthermore, some peak intensity ratios revealed a high correlation with the immunohistochemical index of glial fibrillary acidic protein (GFAP). Thus, we believe that autofluorescence spectroscopy has the potential to provide real-time pathological information of spinal cord tumors and help surgeons validate tumor types and perform precise tumor resection.

11.
Biomed Opt Express ; 9(1): 131-141, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29359092

RESUMEN

Noninvasive, direct measurement of local muscle blood flow in humans remains limited. Diffuse correlation spectroscopy (DCS) is an emerging technique to measure regional blood flow at the microvascular level. In order to better understand the strengths and limitations of this novel technique, we performed a validation study by comparing muscle blood flow changes measured with DCS and Doppler ultrasound during exercise. Nine subjects were measured (all males, 27.4 ± 2.9 years of age) for a rhythmic handgrip exercise at 20% and 50% of individual maximum voluntary contraction (MVC), followed by a post-exercise recovery. The results from DCS and Doppler ultrasound were highly correlated (R = 0.99 ± 0.02). DCS was more reliable and less susceptible to motion artifact.

12.
Biomed Opt Express ; 9(6): 2844-2858, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-30258694

RESUMEN

Cone-beam X-ray luminescence computed tomography (CB-XLCT) has become a promising technique for its higher utilization of X-ray and shorter scanning time compared to the narrow-beam XLCT, but it suffers from the low-spatial resolution that results in the insufficiency to resolve the adjacent multiple probes. In multispectral CB-XLCT, multiple probes show different emission behaviors in the dimension of the spectrum. In this work, a spectral-resolved CB-XLCT method combining multispectral CB-XLCT with principle component analysis (PCA) was proposed to improve the imaging resolution. Results of digital simulation and the phantom experiment illustrated that the proposed method was capable of resolving adjacent multiple probes accurately and had better performance than the common multispectral CB-XLCT with spectrum information priori.

13.
Biomed Opt Express ; 8(3): 1390-1404, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28663836

RESUMEN

The chemical basis for the alteration of the refractive properties of an intraocular lens with a femtosecond laser was investigated. Three different microscope setups have been used for the study: Laser Induced Fluorescence (LIF) microscopy, Raman microscopy and coherent anti-Stokes Raman Scattering (CARS) microscopy. Photo-induced hydrolysis of polymeric material in aqueous media produces two hydrophilic functional groups: acid group and alcohol group. The spectral signatures identify two of the hydrophilic polar molecules as N-phenyl-4-(phenylazo)-benzenamine (C18H15N3) and phenazine-1-carboxylic acid (C13H8N2O2). The change in hydrophilicity results in a negative refractive index change in the laser-treated areas.

14.
Biomed Opt Express ; 8(8): 3749-3762, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28856047

RESUMEN

High-sensitivity cardiac troponin assay development enables determination of biological variation in healthy populations, more accurate interpretation of clinical results and points towards earlier diagnosis and rule-out of acute myocardial infarction. In this paper, we report on preliminary tests of an immunoassay analyzer employing an optimized LED excitation to measure on a standard troponin I and a novel research high-sensitivity troponin I assay. The limit of detection is improved by factor of 5 for standard troponin I and by factor of 3 for a research high-sensitivity troponin I assay, compared to the flash lamp excitation. The obtained limit of detection was 0.22 ng/L measured on plasma with the research high-sensitivity troponin I assay and 1.9 ng/L measured on tris-saline-azide buffer containing bovine serum albumin with the standard troponin I assay. We discuss the optimization of time-resolved detection of lanthanide fluorescence based on the time constants of the system and analyze the background and noise sources in a heterogeneous fluoroimmunoassay. We determine the limiting factors and their impact on the measurement performance. The suggested model can be generally applied to fluoroimmunoassays employing the dry-cup concept.

15.
Biomed Opt Express ; 8(7): 3232-3247, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28717564

RESUMEN

The addition of fluorescence guidance in laparoscopic procedures has gained significant interest in recent years, particularly through the use of near infrared (NIR) markers. In this work we present a novel laparoscope camera coupler based on an electrically tunable fluidic lens that permits programmable focus control and has desirable achromatic performance from the visible to the NIR. Its use extends the lower working distance limit and improves detection sensitivity, important for work with molecularly targeted fluorescence markers. We demonstrate its superior optical performance in laparoscopic fluorescence-guided surgery. In vivo results using a tumor specific molecular probe and a nonspecific NIR dye are presented.

16.
Biomed Opt Express ; 8(7): 3383-3394, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28717574

RESUMEN

In this study, a sensitive fluorescence sensor was developed for the detection of small, fluorescence-labeled particles dispersed in a solution. The prototype system comprises of a laser confocal optical system and a mechanical sample stage to detect photon bursting of fluorescence-labeled small particles in sample volumes less than 5 µL within 3 minutes. To examine the feasibility of the prototype system as a diagnostic tool, assemblages of rotavirus and fluorescence-labeled antibody were analyzed. The detection sensitivity for rotavirus was 1 × 104 pfu/mL. Rotavirus in stool samples from patients with acute gastroenteritis was also detected. The advantages and disadvantages of this immunosensor with respect to ELISA and RT-PCR, the current gold standards for virus detection, are discussed.

17.
Biomed Opt Express ; 8(10): 4419-4426, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-29082074

RESUMEN

Deterioration in mitochondrial function leads to hepatic ischemia and reperfusion injury (IRI) in liver surgery and transplantation. 3D optical cryoimaging was used to measure the levels of mitochondrial coenzymes NADH and FAD, and their redox ratio (NADH/FAD) gave a quantitative marker for hepatocyte oxidative stress during IRI. Using a rat model, five groups were compared: control, ischemia for 60 or 90 minutes (Isc60, Isc90), ischemia for 60 or 90 minutes followed by reperfusion of 24 hours (IRI60, IRI90). Ischemia alone did not cause a significant increase in the redox ratio; however, the redox ratio in both IRI60 and IRI90 groups was significantly decreased by 29% and 71%, respectively. A significant correlation was observed between the redox ratio and other markers of injury such as serum aminotransferase levels and the tissue ATP level. The mitochondrial redox state can be successfully measured using optical cryoimaging as a quantitative marker of hepatic IR injury.

18.
Biomed Opt Express ; 8(2): 570-578, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-28270968

RESUMEN

Fourier multiplexed FLIM (FmFLIM) tomography enables multiplexed 3D lifetime imaging of whole embryos. In our previous FmFLIM system, the spatial resolution was limited to 25 µm because of the trade-off between the spatial resolution and the imaging depth. In order to achieve cellular resolution imaging of thick specimens, we built a tomography system with dual-color Bessel beam. In combination with FmFLIM, the Bessel FmFLIM tomography system can perform parallel 3D lifetime imaging on multiple excitation-emission channels at a cellular resolution of 2.8 µm. The image capability of the Bessel FmFLIM tomography system was demonstrated by 3D lifetime imaging of dual-labeled transgenic zebrafish embryos.

19.
Biomed Opt Express ; 7(5): 1637-44, 2016 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-27280060

RESUMEN

Fluorescent properties of ICG depends on solvent. Fluorescent characteristics of ICG rubber rings and optimized detection system condition were identified. The fluorescent rubber rings are produced by drying mixture of ICG solution and liquid rubber. LED and laser light sources were used to test differences between them. Other variables are ICG molar concentration (100, 80, 60, 40, 20, 10µM), excitation light spectrum (740, 760, 785nm) and angle of view (0~80°). We observed that ICG ring emitted fluorescence at longer wavelength than in blood and aqueous state. Observation angle between 0 and 50 provided similar brightness of images, while others are significantly less luminous. Excitation light between 740~760nm ensured non-overlapping spectrums of excitation light and fluorescence emission.

20.
Biomed Opt Express ; 7(6): 2342-59, 2016 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-27375949

RESUMEN

Fluorescence molecular tomography (FMT) is a promising tomographic method in preclinical research, which enables noninvasive real-time three-dimensional (3-D) visualization for in vivo studies. The ill-posedness of the FMT reconstruction problem is one of the many challenges in the studies of FMT. In this paper, we propose a l 2,1-norm optimization method using a priori information, mainly the structured sparsity of the fluorescent regions for FMT reconstruction. Compared to standard sparsity methods, the structured sparsity methods are often superior in reconstruction accuracy since the structured sparsity utilizes correlations or structures of the reconstructed image. To solve the problem effectively, the Nesterov's method was used to accelerate the computation. To evaluate the performance of the proposed l 2,1-norm method, numerical phantom experiments and in vivo mouse experiments are conducted. The results show that the proposed method not only achieves accurate and desirable fluorescent source reconstruction, but also demonstrates enhanced robustness to noise.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA