Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Drug Chem Toxicol ; 46(2): 380-391, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35188013

RESUMEN

Androgen deprivation therapy is commonly used for the treatment of prostate cancer. Enzalutamide is a next-generation androgen receptor inhibitor, initially approved to treat castration-resistance prostate cancer. Lupeol, a triterpene present in various fruits, vegetables, has anti-oxidant and anti-proliferative activity. The present study aimed to evaluate the Enzalutamide-induced toxicity and its possible amelioration by Lupeol. We performed multiple in vitro and in vivo experiments to conclude our hypothesis. The results revealed that both Enzalutamide and Lupeol interact with DNA through electrostatic interactions. Enzalutamide (5-20 µM) caused cytotoxicity in both normal (PNT2) and cancer cells (LNCaP and 22Rv1). However, Lupeol (10-50 µM) specifically killed the cancer cells while sparing normal cells. The study further revealed that Lupeol could attenuate Enzalutamide-induced cytotoxicity and genotoxicity (chromosomal aberrations and micronucleus formation) to normal cells and potentially induce cytotoxicity to transformed cells. We further observed that Lupeol (40 mg/kg) mediated attenuation of the Enzalutamide (10 mg/kg) induced oxidative and DNA damages. Our study also revealed that Lupeol reverses the Enzalutamide-induced hepatic and renal damages. In conclusion, our study indicates that Lupeol can be used as an adjuvant for reducing the toxic effects and enhancing the effectiveness of Enzalutamide.


Asunto(s)
Neoplasias de la Próstata , Triterpenos , Masculino , Humanos , Triterpenos/farmacología , Antagonistas de Andrógenos/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Triterpenos Pentacíclicos , Nitrilos/farmacología , Receptores Androgénicos/genética , Línea Celular Tumoral
2.
Bioorg Med Chem Lett ; 55: 128448, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34767914

RESUMEN

Multiple Splice variants of AR have been reported in the past few years. These splice variants are upregulated in most cases of CRPC resulting in poor prognosis. Most of these variants lack the ligand binding domain (LBD) but still bind to DNA resulting in constitutive activation of downstream targets. The AR-V7 splice variant has been characterized extensively and current clinical trials in CRPC are exploring the use of AR-V7 as a biomarker. New therapeutic molecules that selectively target AR-V7 are also being explored. However, there is a dearth of information available on the selectivity, phenotypic responses in AR-V7 dependent cell lines and pharmacokinetic properties of such molecules. Using our proprietary computational algorithms and rational SAR optimization, we have developed a potent and selective AR-V7 degrader from a known AR DNA binding domain (DBD) binder. This molecule effectively degraded AR-V7 in a CRPC cell line and demonstrated good oral bioavailability in mouse PK studies. This tool compound can be used to evaluate the pharmacological effects of AR-V7 degraders. Further exploration of SAR can be pursued to develop more optimized lead compounds.


Asunto(s)
Diseño de Fármacos , Receptores Androgénicos/metabolismo , Tiazoles/farmacología , Administración Oral , Animales , Disponibilidad Biológica , Relación Dosis-Respuesta a Droga , Humanos , Masculino , Ratones , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad , Tiazoles/administración & dosificación , Tiazoles/química
3.
Int J Mol Sci ; 22(14)2021 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-34299051

RESUMEN

Prostate-specific membrane antigen (PSMA)-directed radioligand therapy (RLT) prolongs overall survival in men with metastatic castration-resistant prostate cancer (mCRPC). However, men with low PSMA expression are excluded from RLT. We explored the effect of androgen receptor blockade with enzalutamide on PSMA expression. Assessment of PSMA and androgen receptor (AR) expression on the human PC cell lines 22Rv1, C4-2, and LNCaP by immunohistochemistry and flow cytometry revealed low (22Rv1) and high (C4-2 and LNCaP) PSMA expression, and high, comparable AR positivity. Treatment with enzalutamide increased PSMA levels in 22Rv1, C4-2, and LNCaP (2.2/2.3/2.6-fold, p = 0.0005/0.03/0.046) after one week compared to DMSO-treated controls as assessed by flow cytometry. NOD/Scid mice bearing 22Rv1 tumors were treated with enzalutamide for two weeks. Positron emission tomography/computed tomography (PET/CT) demonstrated higher tumor uptake of 68Ga-PSMA after enzalutamide treatment (p = 0.004). Similarly, a clinical case with low baseline PSMA avidity demonstrated increased uptake of 68Ga-PSMA after enzalutamide on PET/CT and post-therapeutic 177Lu-PSMA scintigraphy in a patient with mCRPC. Enzalutamide induced PSMA expression in the 22Rv1 xenograft model and in an mCRPC patient, both with low baseline tumoral PSMA levels. Therefore, enzalutamide pre-treatment might render patients with low PSMA expression eligible for 177Lu-PSMA RLT.


Asunto(s)
Antígenos de Superficie/metabolismo , Benzamidas/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glutamato Carboxipeptidasa II/metabolismo , Nitrilos/farmacología , Feniltiohidantoína/farmacología , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Receptores Androgénicos/metabolismo , Anciano de 80 o más Años , Animales , Apoptosis , Proliferación Celular , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Tomografía Computarizada por Tomografía de Emisión de Positrones , Neoplasias de la Próstata Resistentes a la Castración/diagnóstico por imagen , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/patología , Radiofármacos , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Environ Res ; 171: 437-443, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30735951

RESUMEN

Endocrine-disrupting chemicals (EDCs) interfere with the biological activity of hormones. Among EDC's, (anti-)androgenic compounds potentially cause several androgen-related diseases. To improve the accuracy of an in vitro transactivation assay (TA) for detection of (anti-)androgenic compounds, We established the glucocorticoid receptor (GR) knockout 22Rv1/MMTV cell line by using an RNA-guided engineered nuclease (RGEN)-derived CRISPR/Cas system. The 22Rv1/MMTV GRKO cell line was characterized and validated by androgen receptor (AR)-mediated TA assay compared with the AR-TA assay using 22Rv1/MMTV. In conclusion, the AR-TA assay with the 22Rv1/MMTV GRKO cell line was more accurate, excluding the misleading signals derived from glucocorticoids or equivalent chemicals, and might be an effective method for screening potential (anti-)androgenic compounds.


Asunto(s)
Andrógenos/toxicidad , Glucocorticoides/metabolismo , Antagonistas de Andrógenos , Línea Celular Tumoral , Humanos , Masculino , Neoplasias de la Próstata , Activación Transcripcional
5.
BMC Complement Altern Med ; 18(1): 188, 2018 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-29914450

RESUMEN

BACKGROUND: Zyflamend, a blend of herbal extracts, effectively inhibits tumor growth using preclinical models of castrate-resistant prostate cancer mediated in part by 5'-adenosine monophosphate-activated protein kinase (AMPK), a master energy sensor of the cell. Clinically, treatment with Zyflamend and/or metformin (activators of AMPK) had benefits in castrate-resistant prostate cancer patients who no longer responded to treatment. Two predominant upstream kinases are known to activate AMPK: liver kinase B1 (LKB1), a tumor suppressor, and calcium-calmodulin kinase kinase-2 (CaMKK2), a tumor promotor over-expressed in many cancers. The objective was to interrogate how Zyflamend activates AMPK by determining the roles of LKB1 and CaMKK2. METHODS: AMPK activation was determined in CWR22Rv1 cells treated with a variety of inhibitors of LKB1 and CaMKK2 in the presence and absence of Zyflamend, and in LKB1-null HeLa cells that constitutively express CaMKK2, following transfection with wild type LKB1 or catalytically-dead mutants. Upstream regulation by Zyflamend of LKB1 and CaMKK2 was investigated targeting protein kinase C-zeta (PKCζ) and death-associated protein kinase (DAPK), respectively. RESULTS: Zyflamend's activation of AMPK appears to be LKB1 dependent, while simultaneously inhibiting CaMKK2 activity. Zyflamend failed to rescue the activation of AMPK in the presence of pharmacological and molecular inhibitors of LKB1, an effect not observed in the presence of inhibitors of CaMKK2. Using LKB1-null and catalytically-dead LKB1-transfected HeLa cells that constitutively express CaMKK2, ionomycin (activator of CaMKK2) increased phosphorylation of AMPK, but Zyflamend only had an effect in cells transfected with wild type LKB1. Zyflamend appears to inhibit CaMKK2 by DAPK-mediated phosphorylation of CaMKK2 at Ser511, an effect prevented by a DAPK inhibitor. Alternatively, Zyflamend mediates LKB1 activation via increased phosphorylation of PKCζ, where it induced translocation of PKCζ and LKB1 to their respective active compartments in HeLa cells following treatment. Altering the catalytic activity of LKB1 did not alter this translocation. DISCUSSION: Zyflamend's activation of AMPK is mediated by LKB1, possibly via PKCζ, but independent of CaMKK2 by a mechanism that appears to involve DAPK. CONCLUSIONS: Therefore, this is the first evidence that natural products simultaneously and antithetically regulate upstream kinases, known to be involved in cancer, via the activation of AMPK.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Antineoplásicos/farmacología , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Extractos Vegetales/farmacología , Neoplasias de la Próstata/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Línea Celular Tumoral , Células HeLa , Humanos , Masculino , Fosforilación/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
6.
Artículo en Inglés | MEDLINE | ID: mdl-37605406

RESUMEN

BACKGROUND: Dihydroartemisinin (DHA), a natural agent, exhibits potent anticancer activity. However, its biological activity on prostate cancer (PCa) 22Rv1 cells has not been previously investigated. OBJECTIVE: In this study, we demonstrate that DHA induces anticancer effects through the induction of apoptosis and autophagy. METHODS: Cell viability and proliferation rate were assessed using the CCK-8 assay and cell clone formation assay. The generation of reactive oxygen species (ROS) was detected by flow cytometry. The molecular mechanism of DHA-induced apoptosis and autophagy was examined using Western blot and RT-qPCR. The formation of autophagosomes and the changes in autophagy flux were observed using transmission electron microscopy (TEM) and confocal microscopy. The effect of DHA combined with Chloroquine (CQ) was assessed using the EdU assay and flow cytometry. The expressions of ROS/AMPK/mTOR-related proteins were detected using Western blot. The interaction between Beclin-1 and Bcl-2 was examined using Co-IP. RESULTS: DHA inhibited 22Rv1 cell proliferation and induced apoptosis. DHA exerted its anti-prostate cancer effects by increasing ROS levels. DHA promoted autophagy progression in 22Rv1 cells. Inhibition of autophagy enhanced the pro-apoptotic effect of DHA. DHA-induced autophagy initiation depended on the ROS/AMPK/mTOR pathway. After DHA treatment, the impact of Beclin-1 on Bcl-2 was weakened, and its binding with Vps34 was enhanced. CONCLUSION: DHA induces apoptosis and autophagy in 22Rv1 cells. The underlying mechanism may involve the regulation of ROS/AMPK/mTOR signaling pathways and the interaction between Beclin-1 and Bcl-2 proteins. Additionally, the combination of DHA and CQ may enhance the efficacy of DHA in inhibiting tumor cell activity.

7.
Tissue Cell ; 82: 102078, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37060745

RESUMEN

Prostate cancer (PCa) is a prevalent cause of morbidity and mortality. DHRS2-modified human umbilical cord mesenchymal stem cells-derived exosomes (hUC-MSCs-derived exos) function in PCa. We explored the mechanism of DHRS2-modified hUC-MSCs-derived exos in PCa cell malignant behaviors. DHRS2 expression levels in WPMY-1 cells and 4 PCa cell lines were detected by RT-qPCR and Western blot. 22Rv1/DU145 cells with high/low DHRS2 expression were selected to establish the low/high DHRS2 expression models by transfection. Cell proliferation and apoptosis were detected by CCK-8, colony formation assays, and flow cytometry. hUC-MSCs were identified by oil red O, alizarin staining, and flow cytometry. Exos were extracted from hUC-MSCs by ultracentrifugation and identified by transmission electron microscopy, Nano series-Nano-ZS, and Western blot. DU145 cells were selected for in vitro study to further study the effects of DHRS2-modified exos on cell proliferation and apoptosis. The effect of DHRS2-modified exos on cell cycle distribution was detected by flow cytometry. DHRS2 was repressed in PCa cells. DHRS2 overexpression suppressed PCa cell proliferation and promoted apoptosis. Exos were successfully isolated from hUC-MSC. DHRS2-modified hUC-MSCs-derived exos carried DHRS2 into PCa cells and blocked malignant behaviors. Briefly, DHRS2 was repressed in PCa cells. DHRS2-modified hUC-MSCs-derived exos blocked PCa cell proliferation and enhanced apoptosis.


Asunto(s)
Exosomas , Células Madre Mesenquimatosas , Neoplasias de la Próstata , Masculino , Humanos , Exosomas/metabolismo , Apoptosis/genética , Proliferación Celular/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Cordón Umbilical , Carbonil Reductasa (NADPH)/metabolismo
8.
Mol Nutr Food Res ; 67(24): e2300479, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37863824

RESUMEN

SCOPE: Resistance of castrate-resistant prostate cancer (CRPC) to enzalutamide (Enz) involves the expression of constitutively active androgen receptor splice variant (AR-V7). In addition to altered AR pathways, CRPC is characterized by "non-AR-driven" signaling, which includes an overexpression of metastasis-associated protein 1 (MTA1). Combining natural compounds with anticancer drugs may enhance drug effectiveness while reducing adverse effects. In this study, the in vitro and in vivo anticancer effects of Gnetin C (GnC) alone and in combination with Enz against CRPC are examined. METHODS AND RESULTS: The effects of GnC alone and in combination with Enz are assessed by cell viability, clonogenic survival, cell migration, and AR and MTA1 expression using 22Rv1 cells. The tumor growth in vivo is assessed by bioluminescent imaging, western blots, RT-PCR, and IHC. GnC alone and in combined treatment inhibit cell viability, clonogenic survival and migration, and AR and MTA1 expression in 22Rv1 cells. The underlying AR- and MTA1-targeted anticancer mechanisms of treatments in vivo involve inhibition of proliferation and angiogenesis, and induction of apoptosis. CONCLUSION: The findings demonstrate that GnC alone and GnC combined with Enz effectively inhibits AR- and MTA1-promoted tumor-progression in advanced CRPC, which indicates its potential as a novel therapeutic approach for CRPC.


Asunto(s)
Antineoplásicos , Benzofuranos , Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología , Línea Celular Tumoral , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Receptores Androgénicos/uso terapéutico , Antineoplásicos/farmacología , Nitrilos/farmacología , Proliferación Celular , Resistencia a Antineoplásicos
9.
Eur J Med Chem ; 255: 115423, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37130471

RESUMEN

Overexpression of both human murine double minute 2 (MDM2) and X-linked inhibitor of apoptosis protein (XIAP) is detected in tumor cells from several cancer types, including childhood acute leukemia lymphoma (ALL), neuroblastoma (NB), and prostate cancer, and is associated with disease progression and treatment resistance. In this report, we described the design and syntheses of a series of dual MDM2/XIAP inhibitors based on the tetrahydroquinoline scaffold from our previously reported lead compound JW-2-107 and tested their cytotoxicity in a panel of human cancer cell lines. The best compound identified in this study is compound 3e. Western blot analyses demonstrated that treatments with 3e decreased MDM2 and XIAP protein levels and increased expression of p53, resulting in cancer cell growth inhibition and cell death. Furthermore, compound 3e effectively inhibited tumor growth in vivo when tested using a human 22Rv1 prostate cancer xenograft model. Collectively, results in this study strongly suggest that the tetrahydroquinoline scaffold, represented by 3e and our earlier lead compound JW-2-107, has abilities to dual target MDM2 and XIAP and is promising for further preclinical development.


Asunto(s)
Leucemia Mieloide Aguda , Neoplasias de la Próstata , Masculino , Humanos , Animales , Ratones , Niño , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo , Proteína Inhibidora de la Apoptosis Ligada a X/farmacología , Apoptosis , Línea Celular Tumoral , Proteína p53 Supresora de Tumor/metabolismo
10.
Steroids ; 188: 109135, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36336105

RESUMEN

Synthesis of 21,22-cyclosteroids has been achieved starting from pregnenolone acetate. The key transformation was the Kulinkovich reaction of 17-vinyl steroids with esters. The resulting cyclopropanols were further subjected to three-membered ring-opening under various conditions including to base-, palladium or visible light-promoted isomerization and cross-coupling reaction. A number of steroidal Δ2-6-ketones and 3ß-hydroxy-Δ5-enes with functional groups at C-21 - C-23 have been synthesized via the 21,22-cyclosteroids. The antiproliferative and antihormonal activity of the obtained compounds on the cell lines of prostate (22Rv1) and breast (MCF-7) cancer was studied. The androgen receptor activity was assessed by reporter assay when the expression of signalling proteins was evaluated by immunoblotting. (20S,22R)-22-Acetoxy-21,22-cyclo-5α-cholest-5-ene with the moderate antiandrogenic potency revealed IC50 values of 18.4 ± 1.2 and 14.6 ± 1.4 µM against MCF-7 and 22Rv1 cells, respectively, and its effects on the expression of AR-V7, cyclin D1 and BCL2 were explored.


Asunto(s)
Antineoplásicos , Cicloesteroides , Humanos , Masculino , Línea Celular Tumoral , Proliferación Celular , Cicloesteroides/química , Cicloesteroides/farmacología , Imidazoles , Pregnenolona , Receptores Androgénicos/metabolismo , Esteroides , Neoplasias de la Mama/tratamiento farmacológico , Antineoplásicos/química , Antineoplásicos/farmacología
11.
Cancers (Basel) ; 14(23)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36497399

RESUMEN

BACKGROUND: Prostate cancer (PCa) remains the most common diagnosed tumor and is the second-leading cause of cancer-related death in men. If the cancer is organ-confined it can be treated by various ablative therapies such as RP (radical prostatectomy), RT (radiation therapy), brachytherapy, cryosurgery or HIFU (High-Intensity Focused Ultrasound). However, advanced or metastatic PCa treatment requires systemic therapy involving androgen deprivation, but such patients typically progress to refractory disease designated as castration-resistant prostate cancer (CRPC). Interleukin-6 (IL-6) has been established as a driver of prostate carcinogenesis and tumor progression while less is known about the role of ciliary neurotrophic factor (CNTF), a member of the IL-6 cytokine family in prostate cancer. Moreover, MAPK/ERK, AKT/PI3K and Jak/STAT pathways that regulate proliferative, invasive and glucose-uptake processes in cancer progression are triggered by CNTF. METHODS: We investigate CNTF and its receptor CNTFRα expressions in human androgen-responsive and castration-resistant prostate cancer (CRPC) by immunohistochemistry. Moreover, we investigated the role of CNTF in proliferative, invasive processes as well as glucose uptake using two cell models mimicking the PCa (LNCaP cell line) and CRPC (22Rv1 cell line). CONCLUSIONS: Our results showed that CNTF and CNTFRa were expressed in PCa and CRPC tissues and that CNTF has a pivotal role in prostate cancer environment remodeling and as a negative modulator of invasion processes of CRPC cell models.

12.
Oncol Lett ; 20(6): 289, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33029205

RESUMEN

Linalool is an unsaturated terpene that can be found in several plants and exhibits various biological activities. The aim of the present study was to investigate the anticancer activity of linalool using the human prostate cancer 22Rv1 cell line. Flow cytometry was employed to study the effects of linalool on the induction of apoptosis, cell cycle progression, loss of mitochondrial membrane potential and cytochrome c release, whereas the effects of linalool on apoptosis-associated proteins were investigated by western blot analysis. An efficacy study was conducted using 22Rv1 tumor-bearing mice. The expression of the cell proliferation markers Ki-67 and proliferating cell nuclear antigen (PCNA) in xenograft tumors was evaluated by immunohistochemistry. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay was used to study the induction of apoptosis in an in vivo model. Linalool exerted an inhibitory effect on 22Rv1 cell proliferation and induced apoptosis in both in vitro and in vivo models. Western blot analysis indicated that both the mitochondria-mediated intrinsic and death-receptor-mediated extrinsic pathways were involved in the induction of apoptosis. Furthermore, linalool significantly reduced the expression of Ki-67 and PCNA in the 22Rv1 ×enograft model. The findings of the present study provide evidence supporting the anti-proliferative effects of linalool on 22Rv1 human prostate cancer cells, and suggest that linalool may be an effective agent for prostate cancer treatment.

13.
J Cancer ; 9(11): 1915-1924, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29896275

RESUMEN

Mycophenolate Mofetil (MYC) is a transplant drug used to prevent rejection in heart and kidneys transplant patients. Inosine monophosphate dehydrogenase (IMPDH), an enzyme involved in de novo synthesis of guanosine nucleotides, was considered as a primary target for MYC. Recently, we described that MYC was activates aryl hydrocarbon receptor and it antagonizes glucocorticoid receptor. Here we describe an androgen receptor (AR) as another off-target for MYC. We found that MYC increased basal and dihydrotestosterone (DHT)-inducible AR-dependent luciferase activity in AIZ-AR cells. In the same manner it induced or augmented mRNA level of KLK3 (prostate specific antigen; PSA) in 22Rv1 cells. Herein it displayed a hormetic effect on proliferation activity, since it significantly stimulated proliferation in lower concentrations but inhibited in higher (>1 µg/ml) concentrations in the presence of DHT. In contrast, MYC suppressed DHT-inducible KLK3 mRNA expression and cell proliferation in androgen-dependent LNCaP cells. MYC augmented DHT-inducible nuclear translocation of AR and increased the expression of MAPK8/9 (JNK46/54) resulting in the drop of their phosphorylation status. Moreover, MYC sensitized DHT-treated 22Rv1 cells to JNK-IN-8 mediated growth inhibition with the drop of IC50 from 1425 nM to 84 nM within 24 hrs. In conclusion, we suggest that, castrate-resistant prostate cancers progression might be retarded with the combination of MYC and chemical JNK inhibitors, involving AR-dependent mechanism.

14.
Oncol Lett ; 15(2): 2218-2226, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29434928

RESUMEN

Prostate cancer (PCa) is one of the most common malignancies among men and is the second leading cause of cancer-associated mortality in the developed world. Androgen deprivation therapy (ADT) is the most common treatment for PCa. However, the majority of androgen-sensitive PCa patients will eventually develop resistance to ADT and the disease will become androgen-independent. There is, therefore, an immediate requirement to develop effective therapeutic techniques towards the treatment of recurrent PCa. Oxibendazole (OBZ) is an anthelmintic drug that has also shown promise in the treatment of malignancies. In the present study, the capability of OBZ to repress the growth of PCa cells was assessed in human androgen-independent PCa 22Rv1 and PC-3 cell lines. The growth of the 22Rv1 and PC-3 cell lines, as assessed with a trypan blue exclusion assay, was markedly inhibited by OBZ treatment in vitro, with half-maximal inhibitory concentration values of 0.25 and 0.64 µM, respectively. The mean size of 22Rv1 tumors in nude mice treated with OBZ (25 mg/kg/day) was 47.96% smaller than that of the control mice. Treatment with OBZ increased the expression of microRNA-204 (miR-204), as determined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and the level of p53 as determined with western blotting, two well-characterized tumor suppressor genes. When miR-204 expression was knocked down by introduction of an miR-204 inhibitor, the inhibitory effect of OBZ was markedly reduced; however, when it was overexpressed, the inhibitory efficiency of OBZ was markedly higher, indicating that upregulation of miR-204 is key for the efficacy of OBZ. Additionally, OBZ was demonstrated with RT-qPCR to repress the expression of the androgen receptor, and by western blotting to reduce prostate-specific androgen in 22Rv1 cells. The results suggest that OBZ has potential for clinical use in the treatment of recurrent PCa.

15.
Am J Clin Exp Urol ; 6(6): 234-244, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30697579

RESUMEN

Elongation factor for RNA polymerase II 2 (ELL2) and ELL-associated factor 2 (EAF2) are two functionally related androgen responsive gene-encoded proteins with prostate tumor suppressor characteristics. EAF2 and ELL2 have both been shown to be down-regulated in advanced prostate cancer, and mice with either Eaf2 or Ell2 deficiency developed murine prostatic intraepithelial neoplasia (mPIN), increased cellular proliferation and increased vascularity. Functional studies have revealed that EAF2 and ELL2 can bind to each other and have similar roles in regulating cell proliferation, angiogenesis and prostate homeostasis. Here, cell line experiments showed that knockdown of EAF2 or ELL2 induced an increase in proliferation and migration in C4-2 and 22Rv1 prostate cancer cells. Concurrent knockdown of EAF2 and ELL2 increased proliferation and migration similarly to the loss of EAF2 or ELL2 alone. Mice with homozygous deletion of Ell2 or heterozygous deletion of Eaf2 developed mPIN lesions characterized by increased epithelial proliferation, intraductal microvessel density, and infiltrating intraductal CD3-positive T-cells compared to wild-type controls. Mice with combined heterozygous deletion of Eaf2 and Ell2 developed mPIN lesions that were similar to those observed in mice with deficiency in Eaf2 or Ell2 alone. These results suggest that EAF2 and ELL2 have similar functions and are likely to require each other in their regulation of prostate epithelial cell proliferation and migration in prostate cancer cells as well as their tumor suppressive properties in the murine prostate.

16.
Cancers (Basel) ; 10(2)2018 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-29415418

RESUMEN

Prostate cancer (PCa) is the most frequently diagnosed cancer and the third highest cause of cancer-related deaths in men in the U.S. The development of chemotherapeutic agents that can bind PCa tumor cells with high specificity is critical in order to increase treatment effectiveness. Integrin receptors and their corresponding ligands have different expression patterns in PCa cells. They have been identified as promising targets to inhibit pathways involved in PCa progression. Currently, several compounds have proven to target specific integrins and their subunits in PCa cells. In this article, we review the role of integrins inhibitors in PCa and their potential as therapeutic targets for PCa treatments. We have discussed the following: natural compounds, monoclonal antibodies, statins, campothecins analog, aptamers, d-aminoacid, and snake venom. Recent studies have shown that their mechanisms of action result in decrease cell migration, cell invasion, cell proliferation, and metastasis of PCa cells.

17.
Pharmacogn Mag ; 13(49): 153-158, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28216900

RESUMEN

BACKGROUND: The androgen comprises a group of hormones that play roles in male reproductive activity as well as personal characteristics. OBJECTIVE: We investigated the androgenic activity of various herbal medicines in human prostate cancer 22Rv1 cells. MATERIALS AND METHODS: Herbal extracts of Trichosanthes kirilowii (TK), Asarum sieboldii (AS), Sanguisorba officinalis (SO), and Xanthium strumarium (XS) were selected to have androgenic effects based on a preliminary in vitro screening system. RESULTS: TK, AS, SO, and XS enhanced the proliferation of 22Rv1 cells without having cytotoxic effects. All tested herbal extracts increased androgen receptor (AR)-induced transcriptional activity in the absence or presence of dihydrotestosterone (DHT). In an AR-binding assay, TK, but not AS, SO, or XS, produced a significant inhibition of AR binding activity, indicating it has androgenic activity. Additionally, TK treatment positively regulated mRNA expression of the AR-related molecular targets prostate-specific antigen (PSA) and kallikrein 2 (KLK2) compared with untreated control. CONCLUSION: Taken together, TK-enhanced AR-mediated transcriptional activity might be an attractive candidate drug for treating androgen-related diseases. SUMMARY: Trichosantheskirilowii (TK), Asarumsieboldii (AS), Sanguisorbaofficinalis (SO), and Xanthium strumarium (XS) enhanced the proliferation of 22Rv1 cells without having cytotoxic effects.TK, AS, SO, and XS increased androgen receptor (AR)-induced transcriptional activity.TK, but not AS, SO, or XS, produced a significant inhibition against AR-binding activity.TK treatment positively regulated mRNA expression of the AR-related molecular targets prostate-specific antigen and kallikrein 2. Abbreviations used: BPH: benign prostatic hyperplasia; AR: androgen receptor; DHT: dihydrotestosterone; PSA: prostate-specific antigen; TK: Trichosanthes kirilowii; AS: Asarum sieboldii; SO: Sanguisorba officinalis; XS: Xanthium strumarium; ATCC: American Type Culture Collection; FBS: fetal bovine serum; PBS: phosphate-buffered saline; SD: standard deviation; ARE: androgenresponsive element; KLK: kallikrein.

18.
Oncotarget ; 8(51): 88501-88516, 2017 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-29179452

RESUMEN

The androgen receptor (AR) has long been the primary target for the treatment of prostate cancer (PC). Despite continuous efforts to block AR activity through ligand depletion, AR antagonism, AR depletion and combinations thereof, advanced PC tumors remain resilient. Herein, we evaluate two galeterone analogs, VNPT-178 and VNLG-74A, in PC cell models of diverse androgen and AR dependence attempting to delineate their mechanisms of action and potential clinical utility. Employing basic biochemical techniques, we determined that both analogs have improved antiproliferative and anti-AR activities compared to FDA-approved abiraterone and enzalutamide. However, induction of apoptosis in these models is independent of the AR and its truncated variant, AR-V7, and instead likely results from sustained endoplasmic reticulum stress and deregulated calcium homeostasis. Using in silico molecular docking, we predict VNPT-178 and VNLG-74A bind the ATPase domain of BiP/Grp78 and Hsp70-1A with greater affinity than the AR. Disruption of 70 kDa heat shock protein function may be the underlying mechanism of action for these galeterone analogs. Therefore, despite simultaneously antagonizing AR activity, AR and/or AR-V7 expression alone may inadequately predict a patient's response to treatment with VNPT-178 or VNLG-74A. Future studies evaluating the context-specific limitations of these compounds may provide clarity for their clinical application.

19.
Reprod Toxicol ; 60: 156-66, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-26867867

RESUMEN

The endocrine-disrupting effects of androgenic signaling play crucial roles in several androgen-related diseases. In attempting to develop an in vitro cell line to be used in androgen receptor (AR)-mediated reporter gene assays, we developed a stable 22Rv1/MMTV cell line, which is a human prostate cancer cell line that endogenously expresses functional AR, to evaluate AR-mediated transcriptional activation (TA). Using 22Rv1/MMTV cells, we established and optimized a test protocol for the AR-TA assay and validated the proposed assay using 20 compounds recommended by the Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM). All the performance parameters for agonist and antagonist assays were 91-100% comparable between the 22Rv1/MMTV assay and the ICCVAM report. In conclusion, the AR-TA assay using 22Rv1/MMTV cells might be a quick and relatively inexpensive method for screening large numbers of chemicals for their potential to activate or inhibit AR-mediated gene transcription.


Asunto(s)
Antagonistas de Andrógenos/farmacología , Andrógenos/farmacología , Receptores Androgénicos/genética , Activación Transcripcional/efectos de los fármacos , Bioensayo , Línea Celular Tumoral , Genes Reporteros , Humanos , Luciferasas/metabolismo
20.
Oncol Lett ; 9(1): 437-441, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25436005

RESUMEN

Sulfur is a bright yellow crystalline solid at room temperature. The aim of the present study was to investigate the inhibitory effect of sulfur on prostate cancer (PCa) in vivo. Prostate tumors were developed by injecting 22Rv1 or DU-145 PCa cells into sulfur-treated or untreated nude mice. The weight and volume of the tumors were measured. The cancer cells were separated from the tumors, and analyzed for their growth rate and clonogenicity in culture. The expression of PCa-targeted genes was also assessed using real-time polymerase chain reaction. The rate of growth of 22Rv1 tumors in sulfur-treated nude mice gradually decreased, and was reduced by 41.99% (P<0.01) after 22 days when compared with that of the control group. In addition, the growth of DU-145 tumors was also suppressed by 75.16% (P<0.05) after 11 weeks. The clonogenicity of the sulfur-treated tumor cells decreased by 36.7% when compared with that of the control cells. However, no significant difference in cell growth was identified. mRNA levels of the androgen-receptor, prostate specific antigen and human Hox (NKX3.1) genes were significantly decreased by 32.8, 48.2 and 42.2% in sulfur-treated tumors, respectively. Additionally, it was found that the hydrogen sulfide concentration in the serum of sulfur-treated mice was increased by 4.73% (P<0.05). Sulfur significantly suppressed the growth of PCa in vivo. Since sulfur is a known ingredient used in traditional Chinese medicine, it may be used clinically for the treatment of PCa, independently or in combination with other medicine.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA