Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Cell Sci ; 135(6)2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35048992

RESUMEN

During the first cell cycles of early development, the chromatin of the embryo is highly reprogrammed while the embryonic genome starts its own transcription. The spatial organization of the genome is an important process that contributes to regulating gene transcription in time and space. It has, however, been poorly studied in the context of early embryos. To study the cause-and-effect link between transcription and spatial organization in embryos, we focused on ribosomal genes, which are silent initially but start to be transcribed in 2-cell mouse embryos. We demonstrated that ribosomal sequences and early unprocessed rRNAs are spatially organized in a very particular manner between 2-cell and 16-cell stage. By using drugs that interfere with ribosomal DNA transcription, we showed that this organization - which is totally different in somatic cells - depends on an active transcription of ribosomal genes and induces a unique chromatin environment that favors transcription of major satellite sequences once the 4-cell stage has been reached.


Asunto(s)
Cromatina , ARN Ribosómico , Animales , Cromatina/genética , Cromatina/metabolismo , ADN Ribosómico/genética , Embrión de Mamíferos/metabolismo , Ratones , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Ribosomas/metabolismo , Transcripción Genética
2.
BMC Bioinformatics ; 22(1): 72, 2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-33596823

RESUMEN

BACKGROUND: Bioimaging techniques offer a robust tool for studying molecular pathways and morphological phenotypes of cell populations subjected to various conditions. As modern high-resolution 3D microscopy provides access to an ever-increasing amount of high-quality images, there arises a need for their analysis in an automated, unbiased, and simple way. Segmentation of structures within the cell nucleus, which is the focus of this paper, presents a new layer of complexity in the form of dense packing and significant signal overlap. At the same time, the available segmentation tools provide a steep learning curve for new users with a limited technical background. This is especially apparent in the bulk processing of image sets, which requires the use of some form of programming notation. RESULTS: In this paper, we present PartSeg, a tool for segmentation and reconstruction of 3D microscopy images, optimised for the study of the cell nucleus. PartSeg integrates refined versions of several state-of-the-art algorithms, including a new multi-scale approach for segmentation and quantitative analysis of 3D microscopy images. The features and user-friendly interface of PartSeg were carefully planned with biologists in mind, based on analysis of multiple use cases and difficulties encountered with other tools, to offer an ergonomic interface with a minimal entry barrier. Bulk processing in an ad-hoc manner is possible without the need for programmer support. As the size of datasets of interest grows, such bulk processing solutions become essential for proper statistical analysis of results. Advanced users can use PartSeg components as a library within Python data processing and visualisation pipelines, for example within Jupyter notebooks. The tool is extensible so that new functionality and algorithms can be added by the use of plugins. For biologists, the utility of PartSeg is presented in several scenarios, showing the quantitative analysis of nuclear structures. CONCLUSIONS: In this paper, we have presented PartSeg which is a tool for precise and verifiable segmentation and reconstruction of 3D microscopy images. PartSeg is optimised for cell nucleus analysis and offers multi-scale segmentation algorithms best-suited for this task. PartSeg can also be used for the bulk processing of multiple images and its components can be reused in other systems or computational experiments.


Asunto(s)
Imagenología Tridimensional , Microscopía , Algoritmos , Núcleo Celular , Procesamiento de Imagen Asistido por Computador
3.
Chromosoma ; 128(1): 31-39, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30483879

RESUMEN

Chromosome pairing in meiosis usually starts in the vicinity of the telomere attachment to the nuclear membrane and congregation of telomeres in the leptotene bouquet is believed responsible for bringing homologue pairs together. In a heterozygote for an inversion of a rye (Secale cereale L.) chromosome arm in wheat, a distal segment of the normal homologue is capable of chiasmate pairing with its counterpart in the inverted arm, located near the centromere. Using 3D imaging confocal microscopy, we observed that some telomeres failed to be incorporated into the bouquet and occupied various positions throughout the entire volume of the nucleus, including the centromere pole. Rye telomeres appeared ca. 21 times more likely to fail to be included in the telomere bouquet than wheat telomeres. The frequency of the out-of-bouquet rye telomere position in leptotene was virtually identical to the frequency of telomeres deviating from Rabl's orientation in the nuclei of somatic cells, and was similar to the frequency of synapsis of the normal and inverted chromosome arms, but lower than the MI pairing frequency of segments of these two arms normally positioned across the volume of the nucleus. Out-of-position placement of the rye telomeres may be responsible for reduced MI pairing of rye chromosomes in hybrids with wheat and their disproportionate contribution to aneuploidy, but appears responsible for initiating chiasmate pairing of distantly positioned segments of homology in an inversion heterozygote.


Asunto(s)
Inversión Cromosómica , Cromosomas de las Plantas/ultraestructura , Profase Meiótica I , Secale/genética , Telómero/ultraestructura , Triticum/genética , Núcleo Celular/genética , Núcleo Celular/ultraestructura , Centrómero/química , Centrómero/ultraestructura , Quimera/genética , Emparejamiento Cromosómico , Cromosomas de las Plantas/química , Heterocigoto , Procesamiento de Imagen Asistido por Computador/estadística & datos numéricos , Imagenología Tridimensional/métodos , Hibridación Fluorescente in Situ , Microscopía Confocal , Células Vegetales/metabolismo , Células Vegetales/ultraestructura , Secale/ultraestructura , Especificidad de la Especie , Telómero/química , Triticum/ultraestructura
4.
J Exp Bot ; 71(20): 6262-6272, 2020 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-32805034

RESUMEN

Despite much recent progress, our understanding of the principles of plant genome organization and its dynamics in three-dimensional space of interphase nuclei remains surprisingly limited. Notably, it is not clear how these processes could be affected by the size of a plant's nuclear genome. In this study, DNA replication timing and interphase chromosome positioning were analyzed in seven Poaceae species that differ in their genome size. To provide a comprehensive picture, a suite of advanced, complementary methods was used: labeling of newly replicated DNA by ethynyl-2'-deoxyuridine, isolation of nuclei at particular cell cycle phases by flow cytometric sorting, three-dimensional immunofluorescence in situ hybridization, and confocal microscopy. Our results revealed conserved dynamics of DNA replication in all species, and a similar replication timing order for telomeres and centromeres, as well as for euchromatin and heterochromatin regions, irrespective of genome size. Moreover, stable chromosome positioning was observed while transitioning through different stages of interphase. These findings expand upon earlier studies in suggesting that a more complex interplay exists between genome size, organization of repetitive DNA sequences along chromosomes, and higher order chromatin structure and its maintenance in interphase, albeit controlled by currently unknown factors.


Asunto(s)
Núcleo Celular , Posicionamiento de Cromosoma , Núcleo Celular/genética , Centrómero/genética , Replicación del ADN , Genoma de Planta , Interfase
5.
Proc Natl Acad Sci U S A ; 114(52): 13714-13719, 2017 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-29229825

RESUMEN

The 3D structure of the genome plays a key role in regulatory control of the cell. Experimental methods such as high-throughput chromosome conformation capture (Hi-C) have been developed to probe the 3D structure of the genome. However, it remains a challenge to deduce from these data chromosome regions that are colocalized and coregulated. Here, we present an integrative approach that leverages 1D functional genomic features (e.g., epigenetic marks) with 3D interactions from Hi-C data to identify functional interchromosomal interactions. We construct a weighted network with 250-kb genomic regions as nodes and Hi-C interactions as edges, where the edge weights are given by the correlation between 1D genomic features. Individual interacting clusters are determined using weighted correlation clustering on the network. We show that intermingling regions generally fall into either active or inactive clusters based on the enrichment for RNA polymerase II (RNAPII) and H3K9me3, respectively. We show that active clusters are hotspots for transcription factor binding sites. We also validate our predictions experimentally by 3D fluorescence in situ hybridization (FISH) experiments and show that active RNAPII is enriched in predicted active clusters. Our method provides a general quantitative framework that couples 1D genomic features with 3D interactions from Hi-C to probe the guiding principles that link the spatial organization of the genome with regulatory control.


Asunto(s)
Cromosomas Humanos , Análisis de Secuencia de ADN/métodos , Transcripción Genética/fisiología , Animales , Cromosomas Humanos/genética , Cromosomas Humanos/metabolismo , Humanos
6.
Chromosoma ; 127(2): 247-259, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29238858

RESUMEN

In the interphase cell nucleus, chromosomes adopt a conserved and non-random arrangement in subnuclear domains called chromosome territories (CTs). Whereas chromosome translocation can affect CT organization in tumor cell nuclei, little is known about how aneuploidies can impact CT organization. Here, we performed 3D-FISH on control and trisomic 21 nuclei to track the patterning of chromosome territories, focusing on the radial distribution of trisomic HSA21 as well as 11 disomic chromosomes. We have established an experimental design based on cultured chorionic villus cells which keep their original mesenchymal features including a characteristic ellipsoid nuclear morphology and a radial CT distribution that correlates with chromosome size. Our study suggests that in trisomy 21 nuclei, the extra HSA21 induces a shift of HSA1 and HSA3 CTs out toward a more peripheral position in nuclear space and a higher compaction of HSA1 and HSA17 CTs. We posit that the presence of a supernumerary chromosome 21 alters chromosome compaction and results in displacement of other chromosome territories from their usual nuclear position.


Asunto(s)
Núcleo Celular/metabolismo , Vellosidades Coriónicas/metabolismo , Cromatina/metabolismo , Síndrome de Down/genética , Translocación Genética , Amniocentesis , Aneuploidia , Núcleo Celular/ultraestructura , Vellosidades Coriónicas/ultraestructura , Cromatina/ultraestructura , Síndrome de Down/metabolismo , Síndrome de Down/patología , Femenino , Fibroblastos/metabolismo , Fibroblastos/ultraestructura , Humanos , Hibridación Fluorescente in Situ , Interfase , Cariotipificación , Linfocitos/metabolismo , Linfocitos/ultraestructura , Embarazo , Cultivo Primario de Células
7.
Chromosoma ; 127(3): 387-403, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29666907

RESUMEN

Changes to the spatial organization of specific chromatin domains such as constitutive heterochromatin have been studied extensively in somatic cells. During early embryonic development, drastic epigenetic reprogramming of both the maternal and paternal genomes, followed by chromatin remodeling at the time of embryonic genome activation (EGA), have been observed in the mouse. Very few studies have been performed in other mammalian species (human, bovine, or rabbit) and the data are far from complete. During this work, we studied the three-dimensional organization of pericentromeric regions during the preimplantation period in the rabbit using specific techniques (3D-FISH) and tools (semi-automated image analysis). We observed that the pericentromeric regions (identified with specific probes for Rsat I and Rsat II genomic sequences) changed their shapes (from pearl necklaces to clusters), their nuclear localizations (from central to peripheral), as from the 4-cell stage. This reorganization goes along with histone modification changes and reduced amount of interactions with nucleolar precursor body surface. Altogether, our results suggest that the 4-cell stage may be a crucial window for events necessary before major EGA, which occurs during the 8-cell stage in the rabbit.


Asunto(s)
Núcleo Celular/genética , Desarrollo Embrionario/genética , Heterocromatina/genética , Animales , Núcleo Celular/metabolismo , Centrómero/genética , Centrómero/metabolismo , Ensamble y Desensamble de Cromatina , Epigénesis Genética , Femenino , Heterocromatina/metabolismo , Hibridación Fluorescente in Situ , Microscopía Fluorescente , Conejos
8.
J Assist Reprod Genet ; 36(1): 69-77, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30362053

RESUMEN

PURPOSE: To explore the three-dimensional (3D) organization of sperm genome in DPY19L2-deficient globozoospermic patients speculating a link between DPY19L2 and genome organization of sperm nucleus. METHODS: This is a study of chromatin organization in DPY19L2-deficient globozoospermic patients and healthy donors using three-dimensional fluorescence in situ hybridization (3D-FISH) combined with confocal laser scanning microscopy followed by 3D image analysis. The 3D structures of sperm nuclei, chromocenter, telomeric regions and chromosome territories (CTs), were reconstructed using IMARIS software, and the relative radial position for each individual signal was calculated. Statistical analysis used a non-parametric Mann-Whitney test was appropriate with significance at p < 0.05. RESULTS: DPY19L2-deficient globozoospermic patients display impaired sperm chromocenter organization resulting in an increased number of chromocenters (5.4 vs 3.5; p < 0.0001). Moreover, radial positions of telomeres are modified with a more central position in globozoospermic nuclei. 3D-FISH analysis of five chromosome territories (CTs) (X, Y, 7, 17, 18) showed that DPY19L2-deficient globozoospermic sperm nuclei display altered spatial organization of CT X, CT 7 and CT 18. CONCLUSIONS: Our findings strengthen the hypothesis that DPY19L2 might be considered as a LINC-like protein having a crucial role in the organization of nuclear chromatin in sperm nucleus through its interaction with nuclear lamina. Our results might also explain defective embryonic development after intracytoplasmic sperm injection (ICSI) performed with DPY19L2-deficient globozoospermic sperm.


Asunto(s)
Cromosomas Humanos/química , Cromosomas Humanos/genética , Genoma Humano , Hibridación Fluorescente in Situ/métodos , Proteínas de la Membrana/deficiencia , Espermatozoides/metabolismo , Teratozoospermia/genética , Adulto , Estudios de Casos y Controles , Humanos , Masculino , Proteínas de la Membrana/genética , Teratozoospermia/patología
9.
Int J Mol Sci ; 20(17)2019 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-31450653

RESUMEN

During interphase, the chromosomes of eukaryotes decondense and they occupy distinct regions of the nucleus, called chromosome domains or chromosome territories (CTs). In plants, the Rabl's configuration, with telomeres at one pole of nucleus and centromeres at the other, appears to be common, at least in plants with large genomes. It is unclear whether individual chromosomes of plants adopt defined, genetically determined addresses within the nucleus, as is the case in mammals. In this study, the nuclear disposition of alien rye and barley chromosomes and chromosome arm introgressions into wheat while using 3D-FISH in various somatic tissues was analyzed. All of the introgressed chromosomes showed Rabl's orientation, but their relative positions in the nuclei were less clear. While in most cases pairs of introgressed chromosomes occupied discrete positions, their association (proximity) along their entire lengths was rare, and partial association only marginally more frequent. This arrangement is relatively stable in various tissues and during various stages of the cell cycle. On the other hand, the length of a chromosome arm appears to play a role in its positioning in a nucleus: shorter chromosomes or chromosome arms tend to be located closer to the centre of the nucleus, while longer arms are more often positioned at the nuclear periphery.


Asunto(s)
Cromosomas de las Plantas , Hibridación Fluorescente in Situ , Interfase , Secale/genética , Triticum/genética , Núcleo Celular , Cromatina/genética , Citometría de Flujo , Hordeum/genética , Procesamiento de Imagen Asistido por Computador , Hibridación Fluorescente in Situ/métodos , Interfase/genética
10.
Int J Mol Sci ; 20(6)2019 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-30909382

RESUMEN

Alien introgressions introduce beneficial alleles into existing crops and hence, are widely used in plant breeding. Generally, introgressed alien chromosomes show reduced meiotic pairing relative to the host genome, and may be eliminated over generations. Reduced pairing appears to result from a failure of some telomeres of alien chromosomes to incorporate into the leptotene bouquet at the onset of meiosis, thereby preventing chiasmate pairing. In this study, we analysed somatic nuclei of rye introgressions in wheat using 3D-FISH and found that while introgressed rye chromosomes or chromosome arms occupied discrete positions in the Rabl's orientation similar to chromosomes of the wheat host, their telomeres frequently occupied positions away from the nuclear periphery. The frequencies of such abnormal telomere positioning were similar to the frequencies of out-of-bouquet telomere positioning at leptotene, and of pairing failure at metaphase I. This study indicates that improper positioning of alien chromosomes that leads to reduced pairing is not a strictly meiotic event but rather a consequence of a more systemic problem. Improper positioning in the nuclei probably impacts the ability of introgressed chromosomes to migrate into the telomere bouquet at the onset of meiosis, preventing synapsis and chiasma establishment, and leading to their gradual elimination over generations.


Asunto(s)
Inestabilidad Cromosómica , Cromosomas de las Plantas , Triticum/genética , Nucléolo Celular , Centrómero , Hibridación Fluorescente in Situ , Mitosis , Telómero
11.
Chromosoma ; 126(5): 655-667, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28343235

RESUMEN

Human chromosomes occupy distinct territories in the interphase nucleus. Such chromosome territories (CTs) are positioned according to gene density. Gene-rich CTs are generally located in the center of the nucleus, while gene-poor CTs are positioned more towards the nuclear periphery. However, the association between gene expression levels and the radial positioning of genes within the CT is still under debate. In the present study, we performed three-dimensional fluorescence in situ hybridization experiments in the colorectal cancer cell lines DLD-1 and LoVo using whole chromosome painting probes for chromosomes 8 and 11 and BAC clones targeting four genes with different expression levels assessed by gene expression arrays and RT-PCR. Our results confirmed that the two over-expressed genes, MYC on chromosome 8 and CCND1 on chromosome 11, are located significantly further away from the center of the CT compared to under-expressed genes on the same chromosomes, i.e., DLC1 and SCN3B. When CCND1 expression was reduced after silencing the major transcription factor of the WNT/ß-catenin signaling pathway, TCF7L2, the gene was repositioned and mostly detected in the interior of the CT. Thus, we suggest a non-random distribution in which over-expressed genes are located more towards the periphery of the respective CTs.


Asunto(s)
Núcleo Celular/metabolismo , Cromosomas Humanos/metabolismo , Interfase , Transducción de Señal , Proteína 2 Similar al Factor de Transcripción 7/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Línea Celular Tumoral , Núcleo Celular/genética , Cromosomas Humanos/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Regulación de la Expresión Génica , Humanos , Hibridación Fluorescente in Situ
12.
Chromosoma ; 125(3): 389-403, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26490167

RESUMEN

The well-established human epidermal keratinocyte (HEK) differentiation model was investigated to determine possible alterations in chromosome territory (CT) association during differentiation. The seven human chromosomes (1, 4, 11, 12, 16, 17, and 18) selected for this analysis are representative of the chromosome size and gene density range of the overall human genome as well as including a majority of genes involved in epidermal development and differentiation (CT1, 12, and 17). Induction with calcium chloride (Ca(2+)) resulted in morphological changes characteristic of keratinocyte differentiation. Combined multi-fluorescence in situ hybridization (FISH) and computational image analysis on the undifferentiated (0 h) and differentiated (24 h after Ca(2+) treatment) HEK revealed that (a) increases in CT volumes correspond to overall nuclear volume increases, (b) radial positioning is gene density-dependent at 0 h but neither gene density- nor size-dependent at 24 h, (c) the average number of interchromosomal associations for each CT is gene density-dependent and similar at both time points, and (d) there are striking differences in the single and multiple pairwise interchromosomal association profiles. Probabilistic network models of the overall interchromosomal associations demonstrate major reorganization of the network during differentiation. Only ~40 % of the CT pairwise connections in the networks are common to both 0 and 24 h HEK. We propose that there is a probabilistic chromosome positional code which can be significantly altered during cell differentiation in coordination with reprogramming of gene expression.


Asunto(s)
Diferenciación Celular/fisiología , Cromosomas Humanos/metabolismo , Epidermis/metabolismo , Queratinocitos/metabolismo , Modelos Biológicos , Células Epidérmicas , Humanos , Queratinocitos/citología
13.
J Reprod Dev ; 63(2): 167-174, 2017 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-28190810

RESUMEN

The fertilized oocyte begins cleavage, leading to zygotic gene activation (ZGA), which re-activates the resting genome to acquire totipotency. In this process, genomic function is regulated by the dynamic structural conversion in the nucleus. Indeed, a considerable number of genes that are essential for embryonic development are located near the pericentromeric regions, wherein the heterochromatin is formed. These genes are repressed transcriptionally in somatic cells. Three-dimensional fluorescence in situ hybridization (3D-FISH) enables the visualization of the intranuclear spatial arrangement, such as gene loci, chromosomal domains, and chromosome territories (CTs). However, the 3D-FISH approach in mammalian embryos has been limited to certain repeated sequences because of its unfavorable properties. In this study, we developed an easy-to-use chamber device (EASI-FISH chamber) for 3D-FISH in early embryos, and visualized, for the first time, the spatial arrangements of pericentromeric regions, the ZGA-activated gene (Zscan4) loci, and CTs (chromosome 7), simultaneously during the early cleavage stage of mouse embryos by 3D-FISH. As a result, it was revealed that morphological changes of the pericentromeric regions and CTs, and relocation of the Zscan4 loci in CTs, occurred in the 1- to 4-cell stage embryos, which was different from those in somatic cells. This convenient and reproducible 3D-FISH technique for mammalian embryos represents a valuable tool that will provide insights into the nuclear dynamics of development.


Asunto(s)
Núcleo Celular/genética , Embrión de Mamíferos , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica/genética , Hibridación Fluorescente in Situ/métodos , Animales , Femenino , Ratones , Embarazo
14.
Clin Genet ; 90(1): 35-48, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27283765

RESUMEN

The organization and dynamics of chromatin within the interphase nucleus as chromosome territories (CTs) and the relationship with transcriptional regulation are not fully understood. We studied a natural example of chromosomal disorganization: aneuploidy due to trisomies 13, 18 and 21. We hypothesized that the presence of an extra copy of one chromosome alters the CT distribution, which perturbs transcriptional activity. We used 3D-FISH to study the position of the chromosomes of interest (18 and 21) in cultured amniocytes and chorionic villus cells from pregnancies with a normal or aneuploid karyotype. We studied the volumes of nuclei and CTs in both conditions and performed a compared transcriptome analysis. We did not observe any differences between euploid and aneuploid cells in terms of the radial and relative CT positions, suggesting that the same rules govern nuclear organization in cases of trisomy. We observed lower volumes for CTs 18 and 21. Overall genome expression profiles highlighted changes in the expression of a subset of genes in trisomic chromosomes, while the majority of transcriptional changes concerned genes located on euploid chromosomes. Our results suggest that a dosage imbalance of the genes on trisomic chromosomes is associated with a disturbance of overall genomic expression.


Asunto(s)
Núcleo Celular/ultraestructura , Trastornos de los Cromosomas/genética , Síndrome de Down/genética , Genoma Humano , Transcriptoma , Trisomía/genética , Adulto , Amnios/metabolismo , Amnios/patología , Núcleo Celular/metabolismo , Vellosidades Coriónicas/metabolismo , Vellosidades Coriónicas/patología , Cromatina/metabolismo , Cromatina/ultraestructura , Trastornos de los Cromosomas/metabolismo , Trastornos de los Cromosomas/patología , Cromosomas Humanos Par 13/genética , Cromosomas Humanos Par 13/metabolismo , Cromosomas Humanos Par 18/genética , Cromosomas Humanos Par 18/metabolismo , Síndrome de Down/metabolismo , Síndrome de Down/patología , Femenino , Perfilación de la Expresión Génica , Edad Gestacional , Humanos , Hibridación Fluorescente in Situ , Interfase , Cariotipificación , Embarazo , Cultivo Primario de Células , Trisomía/patología , Síndrome de la Trisomía 13 , Síndrome de la Trisomía 18
15.
Genomics ; 102(4): 288-95, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23648727

RESUMEN

An Evolutionary Neo-Centromere (ENC) is a centromere that emerged in an ectopic region of a chromosome during evolution. It is thought that the old centromere must be inactivated because dicentric chromosomes are not viable. The aim of the present study was to investigate whether 3D arrangement in the interphase nucleus of the novel and old centromeric domains was affected by the repositioning event. The data we present here strongly indicate that the ENC phenomenon does not affect the 3D location of either novel or old centromeres. Very likely, other features, such as gene density, rather than the newly acquired or lost functions, define positioning in the nucleus.


Asunto(s)
Centrómero/genética , Centrómero/ultraestructura , Evolución Molecular , Filogenia , Primates/genética , Animales , Atelinae/genética , Evolución Biológica , Línea Celular , Núcleo Celular/genética , Núcleo Celular/fisiología , Cromosomas , Genoma , Gorilla gorilla/genética , Humanos , Hibridación Fluorescente in Situ , Interfase/genética , Macaca nemestrina/genética , Pongo pygmaeus/genética
16.
Methods Mol Biol ; 2825: 213-237, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38913312

RESUMEN

Three-dimensional structured illumination microscopy (3D-SIM) and fluorescence in situ hybridization on three-dimensional preserved cells (3D-FISH) have proven to be robust and efficient methodologies for analyzing nuclear architecture and profiling the genome's topological features. These methods have allowed the simultaneous visualization and evaluation of several target structures at super-resolution. In this chapter, we focus on the application of 3D-SIM for the visualization of 3D-FISH preparations of chromosomes in interphase, known as Chromosome Territories (CTs). We provide a workflow and detailed guidelines for sample preparation, image acquisition, and image analysis to obtain quantitative measurements for profiling chromosome topological features. In parallel, we address a practical example of these protocols in the profiling of CTs 9 and 22 involved in the translocation t(9;22) in Chronic Myeloid Leukemia (CML). The profiling of chromosome topological features described in this chapter allowed us to characterize a large-scale topological disruption of CTs 9 and 22 that correlates directly with patients' response to treatment and as a possible potential change in the inheritance systems. These findings open new insights into how the genome structure is associated with the response to cancer treatments, highlighting the importance of microscopy in analyzing the topological features of the genome.


Asunto(s)
Imagenología Tridimensional , Hibridación Fluorescente in Situ , Humanos , Hibridación Fluorescente in Situ/métodos , Imagenología Tridimensional/métodos , Translocación Genética , Cromosomas/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Interfase/genética , Cromosomas Humanos/genética , Procesamiento de Imagen Asistido por Computador/métodos
17.
Methods Mol Biol ; 2672: 365-376, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37335489

RESUMEN

Visualization of chromosome territories is a challenging task in plant genomes due to the lack of chromosome-specific probes, especially in species with large genomes. On the other hand, combination of flow sorting, genomic in situ hybridization (GISH), confocal microscopy, and employment of software for 3D modeling enables to visualize and characterize chromosome territories (CT) in interspecific hybrids. Here, we describe the protocol for the analysis of CTs in wheat-rye and wheat-barley hybrids, including amphiploids and introgression forms, where a pair of chromosomes or chromosome arms from one species is introgressed into the genome of another species. In this way, the architecture and dynamics of CTs in various tissues and different stages of cell cycle can be analyzed.


Asunto(s)
Cromosomas de las Plantas , Especies Introducidas , Cromosomas de las Plantas/genética , Genoma de Planta , Núcleo Celular/genética , Hibridación in Situ
19.
Front Plant Sci ; 12: 768347, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34938308

RESUMEN

Nucleolar dominance (ND) is an epigenetic, developmentally regulated phenomenon that describes the selective inactivation of 35S rDNA loci derived from one progenitor of a hybrid or allopolyploid. The presence of ND was documented in an allotetraploid grass, Brachypodium hybridum (genome composition DDSS), which is a polyphyletic species that arose from crosses between two putative ancestors that resembled the modern B. distachyon (DD) and B. stacei (SS). In this work, we investigated the developmental stability of ND in B. hybridum genotype 3-7-2 and compared it with the reference genotype ABR113. We addressed the question of whether the ND is established in generative tissues such as pollen mother cells (PMC). We examined condensation of rDNA chromatin by fluorescence in situ hybridization employing state-of-art confocal microscopy. The transcription of rDNA homeologs was determined by reverse-transcription cleaved amplified polymorphic sequence analysis. In ABR113, the ND was stable in all tissues analyzed (primary and adventitious root, leaf, and spikes). In contrast, the 3-7-2 individuals showed a strong upregulation of the S-genome units in adventitious roots but not in other tissues. Microscopic analysis of the 3-7-2 PMCs revealed extensive decondensation of the D-genome loci and their association with the nucleolus in meiosis. As opposed, the S-genome loci were always highly condensed and localized outside the nucleolus. These results indicate that genotype-specific loss of ND in B. hybridum occurs probably after fertilization during developmental processes. This finding supports our view that B. hybridum is an attractive model to study ND in grasses.

20.
BMC Mol Cell Biol ; 22(1): 45, 2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34521351

RESUMEN

BACKGROUND: The crucial role of the major histocompatibility complex (MHC) for the immune response to infectious diseases is well-known, but no information is available on the 3D nuclear organization of this gene-dense region in immune cells, whereas nuclear architecture is known to play an essential role on genome function regulation. We analyzed the spatial arrangement of the three MHC regions (class I, III and II) in macrophages using 3D-FISH. Since this complex presents major differences in humans and pigs with, notably, the presence of the centromere between class III and class II regions in pigs, the analysis was implemented in both species to determine the impact of this organization on the 3D conformation of the MHC. The expression level of the three genes selected to represent each MHC region was assessed by quantitative real-time PCR. Resting and lipopolysaccharide (LPS)-activated states were investigated to ascertain whether a response to a pathogen modifies their expression level and their 3D organization. RESULTS: While the three MHC regions occupy an intermediate radial position in porcine macrophages, the class I region was clearly more peripheral in humans. The BAC center-to-center distances allowed us to propose a 3D nuclear organization of the MHC in each species. LPS/IFNγ activation induces a significant decompaction of the chromatin between class I and class III regions in pigs and between class I and class II regions in humans. We detected a strong overexpression of TNFα (class III region) in both species. Moreover, a single nucleus analysis revealed that the two alleles can have either the same or a different compaction pattern. In addition, macrophage activation leads to an increase in alleles that present a decompacted pattern in humans and pigs. CONCLUSIONS: The data presented demonstrate that: (i) the MHC harbors a different 3D organization in humans and pigs; (ii) LPS/IFNγ activation induces chromatin decompaction, but it is not the same area affected in the two species. These findings were supported by the application of an original computation method based on the geometrical distribution of the three target genes. Finally, the position of the centromere inside the swine MHC could influence chromatin reorganization during the activation process.


Asunto(s)
Macrófagos , Complejo Mayor de Histocompatibilidad , Animales , Núcleo Celular , Centrómero , Humanos , Lipopolisacáridos/farmacología , Complejo Mayor de Histocompatibilidad/genética , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA