RESUMEN
Antibody-drug conjugates (ADCs) have become the cornerstone of effective therapeutics in solid and hematological malignancies by harnessing potent cytotoxic payloads with targeted tumoricidal delivery. Since the monumental shift occurred with HER2-targeted ADCs, the discovery of the TROP2 antigen has revolutionized the landscape of ADC development. Moving beyond the traditional ADC design, multiple novel ADCs have successfully shaped and improved survival outcomes in patients with various tumor histologies. Here we review and contrast the clinical impact of the well-known TROP2 ADCs currently in clinical use. We also shed light on upcoming investigational TROP2 ADCs showing promise with novel ADC platforms.
Asunto(s)
Antineoplásicos , Neoplasias Hematológicas , Inmunoconjugados , Neoplasias , Humanos , Inmunoconjugados/uso terapéutico , Neoplasias/terapia , Antineoplásicos/uso terapéuticoRESUMEN
Stem cell gene therapy and hematopoietic stem cell transplantation (SCT) require conditioning to ablate the recipient's hematopoietic stem cells (HSCs) and create a niche for gene-corrected/donor HSCs. Conventional conditioning agents are non-specific, leading to off-target toxicities and resulting in significant morbidity and mortality. We developed tissue-specific anti-human CD45 antibody-drug conjugates (ADCs), using rat IgG2b anti-human CD45 antibody clones YTH24.5 and YTH54.12, conjugated to cytotoxic pyrrolobenzodiazepine (PBD) dimer payloads with cleavable (SG3249) or non-cleavable (SG3376) linkers. In vitro, these ADCs internalized to lysosomes for drug release, resulting in potent and specific killing of human CD45+ cells. In humanized NSG mice, the ADCs completely ablated human HSCs without toxicity to non-hematopoietic tissues, enabling successful engraftment of gene-modified autologous and allogeneic human HSCs. The ADCs also delayed leukemia onset and improved survival in CD45+ tumor models. These data provide proof of concept that conditioning with anti-human CD45-PBD ADCs allows engraftment of donor/gene-corrected HSCs with minimal toxicity to non-hematopoietic tissues. Our anti-CD45-PBDs or similar agents could potentially shift the paradigm in transplantation medicine that intensive chemo/radiotherapy is required for HSC engraftment after gene therapy and allogeneic SCT. Targeted conditioning both improve the safety and minimize late effects of these procedures, which would greatly increase their applicability.
Asunto(s)
Benzodiazepinas , Terapia Genética , Trasplante de Células Madre Hematopoyéticas , Inmunoconjugados , Antígenos Comunes de Leucocito , Animales , Humanos , Ratones , Inmunoconjugados/farmacología , Antígenos Comunes de Leucocito/metabolismo , Terapia Genética/métodos , Trasplante de Células Madre Hematopoyéticas/métodos , Benzodiazepinas/farmacología , Benzodiazepinas/química , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/efectos de los fármacos , Ratas , Acondicionamiento Pretrasplante/métodos , Modelos Animales de Enfermedad , Anticuerpos Monoclonales/farmacología , PirrolesRESUMEN
Antibody-drug conjugates (ADCs) represent a novel and promising approach in targeted therapy, uniting the specificity of antibodies that recognize specific antigens with payloads, all connected by the stable linker. These conjugates combine the best targeted and cytotoxic therapies, offering the killing effect of precisely targeting specific antigens and the potent cell-killing power of small molecule drugs. The targeted approach minimizes the off-target toxicities associated with the payloads and broadens the therapeutic window, enhancing the efficacy and safety profile of cancer treatments. Within precision oncology, ADCs have garnered significant attention as a cutting-edge research area and have been approved to treat a range of malignant tumors. Correspondingly, the issue of resistance to ADCs has gradually come to the fore. Any dysfunction in the steps leading to the ADCs' action within tumor cells can lead to the development of resistance. A deeper understanding of resistance mechanisms may be crucial for developing novel ADCs and exploring combination therapy strategies, which could further enhance the clinical efficacy of ADCs in cancer treatment. This review outlines the brief historical development and mechanism of ADCs and discusses the impact of their key components on the activity of ADCs. Furthermore, it provides a detailed account of the application of ADCs with various target antigens in cancer therapy, the categorization of potential resistance mechanisms, and the current state of combination therapies. Looking forward, breakthroughs in overcoming technical barriers, selecting differentiated target antigens, and enhancing resistance management and combination therapy strategies will broaden the therapeutic indications for ADCs. These progresses are anticipated to advance cancer treatment and yield benefits for patients.
Asunto(s)
Resistencia a Antineoplásicos , Inmunoconjugados , Neoplasias , Humanos , Inmunoconjugados/farmacología , Inmunoconjugados/uso terapéutico , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Animales , Terapia Molecular Dirigida/métodos , Antígenos de Neoplasias/inmunologíaRESUMEN
The cGAS-STING pathway is essential for immune defense against microbial pathogens and malignant cells; as such, STING is an attractive target for cancer immunotherapy. However, systemic administration of STING agonists poses safety issues while intratumoral injection is limited by tumor accessibility. Here, we generated antibody-drug conjugates (ADCs) by conjugating a STING agonist through a cleavable linker to antibodies targeting tumor cells. Systemic administration of these ADCs was well tolerated and exhibited potent antitumor efficacy in syngeneic mouse tumor models. The STING ADC further synergized with an anti-PD-L1 antibody to achieve superior antitumor efficacy. The STING ADC promoted multiple aspects of innate and adaptive antitumor immune responses, including activation of dendritic cells, T cells, natural killer cells and natural killer T cells, as well as promotion of M2 to M1 polarization of tumor-associated macrophages. These results provided the proof of concept for clinical development of the STING ADCs.
Asunto(s)
Inmunoconjugados , Neoplasias , Animales , Ratones , Inmunoterapia , Factores Inmunológicos , Neoplasias/terapia , Macrófagos Asociados a TumoresRESUMEN
BACKGROUND: Mutations in the recombinase-activating genes 1 and 2 (RAG1, RAG2) cause a spectrum of phenotypes, ranging from severe combined immune deficiency to combined immune deficiency with immune dysregulation (CID-ID). Hematopoietic cell transplantation is a curative option. Use of conditioning facilitates robust and durable stem cell engraftment and immune reconstitution but may cause toxicity. Transplantation from haploidentical donors is associated with poor outcome in patients with CID-ID. OBJECTIVES: We sought to evaluate multilineage engraftment and immune reconstitution after conditioning with CD45-antibody drug conjugate (CD45-ADC) as a single agent in hypomorphic mice with Rag1 mutation treated with congenic and haploidentical hematopoietic cell transplantation. METHODS: Rag1-F971L mice, a model of CID-ID, were conditioned with various doses of CD45-ADC, total body irradiation, or isotype-ADC, and then given transplants of total bone marrow cells from congenic or haploidentical donors. Flow cytometry was used to assess chimerism and immune reconstitution. Histology was used to document reconstitution of thymic architecture. RESULTS: Conditioning with CD45-ADC as a single agent allowed robust engraftment and immune reconstitution, with restoration of thymus, bone marrow, and peripheral compartments. The optimal doses of CD45-ADC were 1.5 mg/kg and 5 mg/kg for congenic and haploidentical transplantation, respectively. No graft-versus-host disease was observed. CONCLUSIONS: Conditioning with CD45-ADC alone allows full donor chimerism and immune reconstitution in Rag1 hypomorphic mice even following haploidentical transplantation, opening the way for the implementation of similar approaches in humans.
Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Síndromes de Inmunodeficiencia , Humanos , Ratones , Animales , Acondicionamiento Pretrasplante , Trasplante de Médula Ósea , Síndromes de Inmunodeficiencia/terapia , Proteínas de Homeodominio/genéticaRESUMEN
PURPOSE: The study aimed to investigate the diagnostic accuracy of prostate health index (PHI) and apparent diffusion coefficient (ADC) values in predicting prostate cancer (PCa) and construct a nomogram for the prediction of PCa and clinically significant PCa (CSPCa) in Prostate Imaging-Reporting and Data System (PI-RADS) three lesions cohort. METHODS: This study prospectively enrolled 301 patients who underwent multiparametric magnetic resonance (mpMRI) and were scheduled for prostate biopsy. The receiver operating characteristic curve (ROC) was performed to estimate the diagnostic accuracy of each predictor. Univariable and multivariable logistic regression analysis was conducted to ascertain hidden risk factors and constructed nomograms in PI-RADS three lesions cohort. RESULTS: In the whole cohort, the area under the ROC curve (AUC) of PHI is relatively high, which is 0.779. As radiographic parameters, the AUC of PI-RADS and ADC values was 0.702 and 0.756, respectively. The utilization of PHI and ADC values either individually or in combination significantly improved the diagnostic accuracy of the basic model. In PI-RADS three lesions cohort, the AUC for PCa was 0.817 in the training cohort and 0.904 in the validation cohort. The AUC for CSPCa was 0.856 in the training cohort and 0.871 in the validation cohort. When applying the nomogram for predicting PCa, 50.0% of biopsies could be saved, supplemented by 6.9% of CSPCa being missed. CONCLUSION: PHI and ADC values can be used as predictors of CSPCa. The nomogram included PHI, ADC values and other clinical predictors demonstrated an enhanced capability in detecting PCa and CSPCa within PI-RADS three lesions cohort.
Asunto(s)
Próstata , Neoplasias de la Próstata , Masculino , Humanos , Próstata/patología , Imagen por Resonancia Magnética , Neoplasias de la Próstata/patología , Antígeno Prostático Específico/análisis , Estudios Retrospectivos , BiopsiaRESUMEN
Antibody-drug conjugates (ADCs) have demonstrated effectiveness in treating various cancers, particularly exhibiting specificity in targeting human epidermal growth factor receptor 2 (HER2)-positive breast cancer. Recent advancements in phase 3 clinical trials have broadened current understanding of ADCs, especially trastuzumab deruxtecan, in treating other HER2-expressing malignancies. This expansion of knowledge has led to the US Food and Drug Administration's approval of trastuzumab deruxtecan for HER2-positive and HER2-low breast cancer, HER2-positive gastric cancer, and HER2-mutant nonsmall cell lung cancer. Concurrent with the increasing use of ADCs in oncology, there is growing concern among health care professionals regarding the rise in the incidence of interstitial lung disease or pneumonitis (ILD/p), which is associated with anti-HER2 ADC therapy. Studies on anti-HER2 ADCs have reported varying ILD/p mortality rates. Consequently, it is crucial to establish guidelines for the diagnosis and management of ILD/p in patients receiving anti-HER2 ADC therapy. To this end, a panel of Chinese experts was convened to formulate a strategic approach for the identification and management of ILD/p in patients treated with anti-HER2 ADC therapy. This report presents the expert panel's opinions and recommendations, which are intended to guide the management of ILD/p induced by anti-HER2 ADC therapy in clinical practice.
Asunto(s)
Inmunoconjugados , Enfermedades Pulmonares Intersticiales , Receptor ErbB-2 , Humanos , Enfermedades Pulmonares Intersticiales/tratamiento farmacológico , Enfermedades Pulmonares Intersticiales/inducido químicamente , China , Inmunoconjugados/uso terapéutico , Inmunoconjugados/efectos adversos , Neumonía/tratamiento farmacológico , Femenino , Consenso , Trastuzumab/uso terapéutico , Trastuzumab/efectos adversos , Neoplasias de la Mama/tratamiento farmacológico , Camptotecina/análogos & derivadosRESUMEN
Diffuse large B-cell lymphoma (DLBCL) is the most common aggressive lymphoma, accounting for ~40% of all cases in adults. Whilst approximately two-thirds of DLBCL patients can be cured by first-line therapy, one-third of patients are primary refractory or relapse after an initial response (r/r DLBCL). Recent advances in the treatment of DLBCL have been achieved by a plethora of novel drugs, such as monoclonal antibodies, antibody-drug conjugates (ADC), bi-specific T-cell engagers (BITEs), and CD-19 directed chimeric antigen receptor (CAR)-T-cell therapies. The increasing number of therapeutic options significantly improved the outcome of patients; however, the therapeutic algorithm has become increasingly complex. In this review, we provide an overview of novel therapies for DLBCL patients and potential treatment sequencing from first to second, third, and later lines.
RESUMEN
BACKGROUND: Sacituzumab govitecan (SG), a novel antibody-drug conjugate (ADC) targeting TROP2, is approved for pre-treated metastatic triple-negative breast cancer (mTNBC). We conducted an investigator-initiated clinical trial evaluating neoadjuvant (NA) SG (NCT04230109), and report primary results. PATIENTS AND METHODS: Participants with early-stage TNBC received NA SG for four cycles. The primary objective was to assess pathological complete response (pCR) rate in breast and lymph nodes (ypT0/isN0) to SG. Secondary objectives included overall response rate (ORR), safety, event-free survival (EFS), and predictive biomarkers. A response-guided approach was utilized, and subsequent systemic therapy decisions were at the discretion of the treating physician. RESULTS: From July 2020 to August 2021, 50 participants were enrolled (median age = 48.5 years; 13 clinical stage I disease, 26 stage II, 11 stage III). Forty-nine (98%) completed four cycles of SG. Overall, the pCR rate with SG alone was 30% [n = 15, 95% confidence interval (CI) 18% to 45%]. The ORR per RECIST V1.1 after SG alone was 64% (n = 32/50, 95% CI 77% to 98%). Higher Ki-67 and tumor-infiltrating lymphocytes (TILs) were predictive of pCR to SG (P = 0.007 for Ki-67 and 0.002 for TILs), while baseline TROP2 expression was not (P = 0.440). Common adverse events were nausea (82%), fatigue (76%), alopecia (76%), neutropenia (44%), and rash (48%). With a median follow-up time of 18.9 months (95% CI 16.3-21.9 months), the 2-year EFS for all participants was 95%. Among participants with a pCR with SG (n = 15), the 2-year EFS was 100%. CONCLUSIONS: In the first NA trial with an ADC in localized TNBC, SG demonstrated single-agent efficacy and feasibility of response-guided escalation/de-escalation. Further research on optimal duration of SG as well as NA combination strategies, including immunotherapy, are needed.
Asunto(s)
Anticuerpos Monoclonales Humanizados , Camptotecina/análogos & derivados , Inmunoconjugados , Neoplasias de la Mama Triple Negativas , Humanos , Persona de Mediana Edad , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Terapia Neoadyuvante , Antígeno Ki-67 , Antígenos de Neoplasias/genética , Inmunoconjugados/efectos adversosRESUMEN
The electronic excitations of conformationally constrained bithiophene cage systems as previously investigated by Lewis et al. (J. Am. Chem. Soc. 143, 18548 (2021)) are revisited, employing the correlated ab initio Scaled Opposite-Spin Algebraic Diagrammatic Construction Second Order electronic structure method. Quantitative descriptors are determined to assess the extent of charge transfer between the bithiophene moieties and the capping domains, represented by either phenyl or triazine groups. The investigation substantiates intrinsic differences in the photophysical behavior of these two structural variants and reveals the presence of lower-energy excited states characterized by noteworthy charge transfer contributions in the triazine cage system. The manifestation of this charge transfer character is discernible even at the Franck-Condon geometry, persisting throughout the relaxation of the excited state. By examining isolated monomer building blocks, we confirm the existence of analogous charge transfer contributions in their excitations. Employing this methodological approach facilitates the prospective identification of potential wall/cap chromophore pairs, wherein charge transfer pathways can be accessed within the energetically favorable regime.
RESUMEN
A computational methodology, founded on chemical concepts, is presented for interpreting the role of nuclear motion in the electron transport through single-molecule junctions (SMJ) using many-electron ab initio quantum chemical calculations. Within this approach the many-electron states of the system, computed at the SOS-ADC(2) level, are followed along the individual normal modes of the encapsulated molecules. The inspection of the changes in the partial charge distribution of the many-electron states allows the quantification of the electron transport and the estimation of transmission probabilities. This analysis improves the understanding of the relationship between internal motions and electron transport. Two SMJ model systems are studied for validation purposes, constructed from a conductor (BDA, benzene-1,4-diamine) and an insulator molecule (DABCO, 1,4-diazabicyclo[2.2.2]octane). The trends of the resulting transmission probabilities are in agreement with the experimental observations, demonstrating the capability of the approach to distinguish between conductor and insulator type systems, thereby offering a straightforward and cost-effective tool for such classifications via quantum chemical calculations.
RESUMEN
Intramolecular charge transfer (ICT) effects of para-nitroaniline (pNA) in eight solvents (cyclohexane, toluene, acetic acid, dichloroethane, acetone, acetonitrile, dimethylsulfoxide, and water) are investigated extensively. The second-order algebraic diagrammatic construction, ADC(2), ab initio wave function is employed with the COSMO implicit and discrete multiscale solvation methods. We found a decreasing amine group torsion angle with increased solvent polarity and a linear correlation between the polarity and ADC(2) transition energies. The first absorption band involves π â π* transitions with ICT from the amine and the benzene ring to the nitro group, increased by 4%-11% for different solvation models of water compared to the vacuum. A second band of pNA is characterized for the first time. This band is primarily a local excitation on the nitro group, including some ICT from the amine group to the benzene ring that decreases with the solvent polarity. For cyclohexane, the COSMO implicit solvent model shows the best agreement with the experiment, while the explicit model has the best agreement for water.
RESUMEN
An enhanced variant of the antimitotic toxin cryptophycin was conjugated to the anti-Her2 monoclonal antibody (mAb) Trastuzumab upon Michael addition. Either antibodies with freed hinge-region cysteines or THIOMAB formats with engineered cysteines in the mAbs light chain were added to a maleimide derivative of cryptophycin. These Antibody-Drug Conjugates (ADCs) showed retained binding to Her2 positive tumor cells and highly efficient cell killing in double-digit pM range on high Her2-expressing SK-BR-3 cells. Two ADCs (DAR 6, DAR 3) showed superior cell killing of the cell lines JIMT-1 and RT112 with medium receptor expression level in comparison with a DAR 6 MMAE ADC serving as reference. The observed cell cytotoxicity is target-dependent since no impact on cell viability was observed for low Her2-expressing MDA-MB468 cells. Particularly the DAR 3 ADC in THIOMAB format exhibiting desirable biophysical properties and high potency emerged as a promising candidate for further in vivo investigations.
RESUMEN
Homogeneous, site-specifically conjugated antibodies have shown to result in antibody-drug conjugates (ADCs) with improved efficacy and tolerability compared to stochastically conjugated ADCs. However, precisely controlling the drug-load as well as attaching multiple payload moieties on the antibody remains challenging. Here, we demonstrate the simple and direct modification of native IgG-antibodies at the residue glutamine 295 (Q295) without the need for any protein engineering at flexible drug-to-antibody ratios of one or multiple payloads. The conjugation is enabled through short, positively charged lysine containing peptides and native, commercially available microbial transglutaminase. In proof-of-concept studies, HER2-targeting ADCs based on trastuzumab were generated with drug-to-antibody ratios (DARs) of 2 and 4 of the same or different payloads using orthogonal conjugation chemistries. Quantitative biodistribution studies performed with 111In-radiolabeled conjugates showed high tumour uptake and low accumulation of radioactivity in non-targeted tissues. A single dose study of trastuzumab conjugated to the highly potent payload α-Amanitin demonstrated complete and long-lasting tumour remissions and was well-tolerated at all dose levels tested.
RESUMEN
OBJECTIVES: Blood dendritic cell antigen 2 (BDCA2) is exclusively expressed on plasmacytoid dendritic cells (pDCs) whose uncontrolled production of type I IFN (IFN-I) is crucial in pathogenesis of SLE and other autoimmune diseases. Although anti-BDCA2 antibody therapy reduced disease activity in SLE patients, its clinical efficacy needs further improvement. We developed a novel glucocorticoid receptor agonist and used it as a payload to conjugate with an anti-BDCA2 antibody to form an BDCA2 antibody-drug conjugate (BDCA2-ADC). The activation of BDCA2-ADC was evaluated in vitro. METHODS: Inhibitory activity of BDCA2-ADC was evaluated in peripheral blood mononuclear cells or in purified pDCs under ex vivo toll-like receptor agonistic stimulation. The global gene regulation in purified pDCs was analysed by RNA-seq. The antigen-dependent payload delivery was measured by reporter assay. RESULTS: The BDCA2-ADC molecule causes total suppression of IFNα production and broader inhibition of inflammatory cytokine production compared with the parental antibody in human pDCs. Global gene expression analysis confirmed that the payload and antibody acted synergistically to regulate both type I IFN signature genes and glucocorticoid responsive genes in pDCs. CONCLUSION: Taken together, these data suggest dual mechanisms of BDCA2-ADC on pDCs and the potential for BDCA2-ADC to be the first ADC treatment for SLE in the world and a better treatment option than anti-BDCA2 antibody for SLE patients.
Asunto(s)
Inmunoconjugados , Interferón Tipo I , Lupus Eritematoso Sistémico , Humanos , Leucocitos Mononucleares/metabolismo , Glucocorticoides/farmacología , Inmunoconjugados/farmacología , Inmunoconjugados/metabolismo , Células Dendríticas/metabolismo , Interferón Tipo I/metabolismo , Anticuerpos , Lupus Eritematoso Sistémico/tratamiento farmacológico , Lupus Eritematoso Sistémico/metabolismoRESUMEN
Early tumor response prediction can help avoid overtreatment with unnecessary chemotherapy sessions. It is important to determine whether multiple apparent diffusion coefficient indices (S index, ADC-diff) are effective in the early prediction of pathological response to neoadjuvant chemotherapy (NAC) in breast cancer (BC). Patients with stage II and III BCs who underwent T1WI, diffusion-weighted imaging (DWI), and dynamic contrast-enhanced MRI using a 3 T system were included. They were divided into two groups: major histological responders (MHRs, Miller-Payne G4/5) and nonmajor histological responders (nMHRs, Miller-Payne G1-3). Three b values were used for DWI to derive the S index; ADC-diff values were obtained using b = 0 and 1000 s/mm2. The different interquartile ranges of percentile S-index and ADC-diff values after treatment were calculated and compared. The assessment was performed at baseline and after two and four NAC cycles. A total of 59 patients were evaluated. There are some correlations of interquartile ranges of S-index parameters and ADC-diff values with histopathological prognostic factors (such as estrogen receptor and human epidermal growth factor receptor 2 expression, all p < 0.05), but no significant differences were found in some other interquartile ranges of S-index parameters or ADC-diff values between progesterone receptor positive and negative or for Ki-67 tumors (all P > 0.05). No differences were found in the dynamic contrast-enhanced MRI characteristics between the two groups. HER-2 expression and kurtosis of the S-index distribution were screened out as independent risk factors for predicting MHR group (p < 0.05, area under the curve (AUC) = 0.811) before NAC. After early NAC (two cycles), only the 10th percentile S index was statistically significant between the two groups (p < 0.05, AUC = 0.714). No significant differences were found in ADC-diff value at any time point of NAC between the two groups (P > 0.1). These findings demonstrate that the S-index value may be used as an early predictor of pathological response to NAC in BC; the value of ADC-diff as an imaging biomarker of NAC needs to be further confirmed by ongoing multicenter prospective trials.
Asunto(s)
Neoplasias de la Mama , Medios de Contraste , Imagen de Difusión por Resonancia Magnética , Terapia Neoadyuvante , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/patología , Femenino , Persona de Mediana Edad , Adulto , Resultado del Tratamiento , AncianoRESUMEN
BACKGROUND: To provide reference for clinical development of ADCs in the industry, we analyzed the landscape and characteristics of clinical trials about antibody-drug conjugates (ADCs). METHOD: Clinical trials to study ADCs used for the pharmacotherapy of cancers initiated by the sponsor were searched in the Cite line Pharma Intelligence (Trialtrove database), and the landscape and characteristics of these clinical trials were analyzed from multiple perspectives, such as the number, phases, status, indications, and targets of the clinical trials. RESULT: As of December 31, 2022, a total of 431 clinical trials have been initiated to study ADCs used for the pharmacotherapy of cancers, and the number of the last 10 years was 5.5 times as large as the first 11 years. These clinical trials involved 47 indications, including breast cancer, lymphoma (lymphoma, non-Hodgkin's and lymphoma, Hodgkin's), unspecified solid tumor, bladder cancer and lung cancer (lung, non-small cell cancer and lung, small cell cancer). As for each of these five indications, 50 + clinical trials have been carried out, accounting for as high as 48.50% (454/936). ADCs involve 38 targets, which are relatively concentrated. Among them, ERBB2 (HER2) and TNFRSF8 (CD30) involve in 100 + registered clinical trials, and TNFRSF17 (BCMA), NECTIN4 and CD19 in 10 + trials. The clinical trials for these five targets account for 79.02% (354/448) of the total number. Up to 93.97% (405/431) of these clinical trials explored the correlation between biomarkers and efficacy. Up to 45.91% (292/636) of Lots (lines of treatment) applied in the clinical trials were the second line. Until December 31, 2022, 54.52% (235/431) of the clinical trials have been completed or terminated. CONCLUSION: ADCs are a hotspot of research and development in oncology clinical trials, but the indications, targets, phases, and Lot that have been registered are seemingly relatively concentrated at present. This study provides a comprehensive analysis which can assist researchers/developer quickly grasp relevant knowledge to assess a product and also providing new clues and ideas for future research.
Asunto(s)
Ensayos Clínicos como Asunto , Desarrollo de Medicamentos , Inmunoconjugados , Neoplasias , Sistema de Registros , Humanos , Neoplasias/tratamiento farmacológico , Inmunoconjugados/uso terapéutico , Antineoplásicos/uso terapéuticoRESUMEN
The developments of antibodies for cancer therapeutics have made remarkable success in recent years. There are multiple factors contributing to the success of the biological molecule including origin of the antibody, isotype, affinity, avidity and mechanism of action. With better understanding of mechanism of cancer progression and immune manipulation, recombinant formats of antibodies are used to develop therapeutic modalities for manipulating the immune cells of patients by targeting specific molecules to control the disease. These molecules have been successful in minimizing the side effects instead caused by small molecules or systemic chemotherapy but because of the developing therapeutic resistance against these antibodies, combination therapy is thought to be the best bet for patient care. Here, in this review, we have discussed different aspects of antibodies in cancer therapy affecting their efficacy and mechanism of resistance with some relevant examples of the most studied molecules approved by the US FDA.
Asunto(s)
Inmunoconjugados , Neoplasias , Humanos , Neoplasias/prevención & control , Neoplasias/tratamiento farmacológico , Factores Inmunológicos/uso terapéuticoRESUMEN
Triple-negative breast cancer (TNBC) is the deadliest form of breast cancer with limited treatment options. The persistence of highly tumorigenic CD44-expressing subpopulation referred to as cancer stem cells (CSCs), endowed with the self-renewal capacity, has been associated with therapeutic resistance, hence clinical relapses. To mitigate these undesired events, targeted immunotherapies using antibody-photoconjugate (APC) or antibody-drug conjugate (ADC), were developed to specifically release cytotoxic payloads within targeted cells overexpressing cognate antigen receptors. Therefore, an αCD44(scFv)-SNAP-tag antibody fusion protein was engineered through genetic fusion of a single-chain antibody fragment (scFv) to a SNAPf-tag fusion protein, capable of self-conjugating with benzylguanine-modified light-sensitive near-infrared (NIR) phthalocyanine dye IRDye700DX (BG-IR700) or the small molecule toxin auristatin-F (BG-AURIF). Binding of the αCD44(scFv)-SNAPf-IR700 photoimmunoconjugate to antigen-positive cells was demonstrated by confocal microscopy and flow cytometry. By switching to NIR irradiation, CD44-expressing TNBC was selectively killed through induced phototoxic activities. Likewise, the αCD44(scFv)-SNAPf-AURIF immunoconjugate was able to selectively accumulate within targeted cells and significantly reduced cell viability through antimitotic activities at nano- to micromolar drug concentrations. This study provides an in vitro proof-of-concept for a future strategy to selectively destroy light-accessible superficial CD44-expressing TNBC tumors and their metastatic lesions which are inaccessible to therapeutic light.
Asunto(s)
Aminobenzoatos , Receptores de Hialuranos , Inmunoconjugados , Oligopéptidos , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/terapia , Neoplasias de la Mama Triple Negativas/patología , Receptores de Hialuranos/metabolismo , Inmunoconjugados/farmacología , Línea Celular Tumoral , Aminobenzoatos/farmacología , Aminobenzoatos/química , Femenino , Oligopéptidos/farmacología , Oligopéptidos/química , Anticuerpos de Cadena Única/farmacología , Inmunoterapia/métodos , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismoRESUMEN
OBJECTIVE: Mirvetuximab soravtansine-gynx (MIRV) is a novel antibody-drug conjugate targeting folate receptor alpha (FRα), which is overexpressed in epithelial ovarian cancer (EOC), with limited expression on normal tissues. This integrated safety summary sought to characterize the safety profile of MIRV monotherapy in participants with FRα-expressing recurrent EOC. METHODS: Safety data were retrospectively analyzed from 4 clinical studies (phase 1 trial [NCT01609556], phase 3 FORWARD I [NCT02631876], phase 2 SORAYA [NCT04296890], phase 3 MIRASOL [NCT04209855]) that evaluated participants with FRα-expressing recurrent EOC who received ≥1 dose of MIRV 6 mg/kg adjusted ideal body weight every 3 weeks. RESULTS: In this analysis of 682 participants, 94 % had platinum-resistant ovarian cancer (PROC). Blurred vision (43 %), nausea (41 %), diarrhea (39 %), and fatigue (35 %) were the most common treatment-emergent adverse events (TEAEs) and were primarily grade 1-2 in severity. Grade ≥ 3 TEAEs occurred in 48 % of participants, with the most common being keratopathy and blurred vision (5 % each). Most TEAEs were managed with supportive care and dose modifications, and only 12 % of participants experienced a TEAE leading to discontinuation (1 % due to ocular events). No corneal ulcerations or perforations have been reported. Median time to onset of blurred vision and keratopathy was 5.9 and 6.7 weeks, respectively. Most blurred vision events and keratopathy events resolved completely (71 % and 66 %, respectively) or partially (15 % and 14 %, respectively). CONCLUSIONS: As demonstrated among 682 participants, the safety profile of MIRV is well tolerated and consists primarily of low-grade gastrointestinal, fatigue, headache, peripheral neuropathy, and resolvable ocular adverse events.