Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 216
Filtrar
Más filtros

Intervalo de año de publicación
1.
Mol Ther ; 32(10): 3669-3682, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39086134

RESUMEN

Immune checkpoint blockade has been used to treat breast cancer, but the clinical responses remain relatively poor. We have used the CRISPR-Cas9 kinome knockout library consisting of 763 kinase genes to identify tumor-intrinsic kinases conferring resistance to anti-PD-1 immune checkpoint blockade. We have identified the CDC42BPB kinase as a potential target to overcome the resistance to anti-PD-1 immune checkpoint blockade immunotherapy. We found that CDC42BPB is highly expressed in breast cancer patients who are non-responsive to immunotherapy. Furthermore, a small-molecule pharmacological inhibitor, BDP5290, which targets CDC42BPB, synergized with anti-PD-1 and enhanced tumor cell killing by promoting T cell proliferation in both in vitro and in vivo assays. Moreover, anti-PD-1-resistant breast cancer cells showed higher expression of CDC42BPB, and its inhibition rendered the resistant cells more susceptible to T cell killing in the presence of anti-PD-1. We also found that CDC42BPB phosphorylated AURKA, which in turn upregulated PD-L1 through cMYC. Our results have revealed a robust link between tumor-intrinsic kinase and immunotherapy resistance and have provided a rationale for a unique combination therapy of CDC42BPB inhibition and anti-PD-1 immunotherapy for breast cancer.


Asunto(s)
Neoplasias de la Mama , Resistencia a Antineoplásicos , Inhibidores de Puntos de Control Inmunológico , Receptor de Muerte Celular Programada 1 , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Femenino , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Ratones , Animales , Resistencia a Antineoplásicos/genética , Línea Celular Tumoral , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Proliferación Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Linfocitos T/inmunología , Linfocitos T/metabolismo , Linfocitos T/efectos de los fármacos
2.
Biochem Biophys Res Commun ; 703: 149687, 2024 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-38368674

RESUMEN

BACKGROUND: ZNF468 is a relatively unexplored gene that has been implicated in potential oncogenic properties in various cancer types. However, the exact role of ZNF468 in radiotherapy resistance of esophageal squamous cell carcinomas (ESCCs) is not well understood. METHODS: Bioinformatic analysis was performed using the TCGA database to assess ZNF468 expression and prognostic significance in pan-cancer and ESCC. Functional experiments were conducted using ZNF468 overexpressing and knockdown cell lines to assess its impact on cell survival, DNA damage response, cell cycle, and apoptosis upon radiation. A luciferase reporter assay was utilized to validate ZNF468 binding to the AURKA promoter. RESULTS: ZNF468 was significantly upregulated in diverse cancer types, including ESCC, and its high expression correlated with adverse prognosis in specific tumors. In the ESCC cohort, ZNF468 exhibited substantial upregulation in post-radiotherapy tissues, indicating its potential role in conferring radiotherapy resistance. Functional experiments revealed that ZNF468 enhances cell viability and facilitates DNA damage repair in radiotherapy-treated ESCC cells, while dampening the G2/M cell cycle arrest and apoptosis induced by radiation. Moreover, ZNF468 facilitated AURKA transcription, resulting in upregulated Aurora A expression, and subsequently inhibited P53 expression, unveiling key molecular mechanisms underlying radiotherapy resistance in ESCC. CONCLUSION: ZNF468 plays an oncogenic role in ESCC and contributes to radiotherapy resistance. It enhances cell survival while dampening radiation-induced G2/M cell cycle arrest and apoptosis. By modulating AURKA and P53 expression, ZNF468 represents a promising therapeutic target for enhancing radiotherapy efficacy in ESCC.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Apoptosis/genética , Aurora Quinasa A/genética , Aurora Quinasa A/metabolismo , Puntos de Control del Ciclo Celular , Línea Celular Tumoral , Proliferación Celular/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/radioterapia , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/radioterapia , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Tolerancia a Radiación/genética , Proteína p53 Supresora de Tumor
3.
Int Arch Allergy Immunol ; 185(9): 910-920, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38781935

RESUMEN

INTRODUCTION: The occurrence and progression of lung adenocarcinoma (LUAD) impair T-cell immune responses, causing immune escape and subsequently affecting the efficacy of immunotherapy in patients. Aurora kinase A (AURKA) is upregulated in varying cancers, but its role in LUAD immune escape is elusive. This work attempted to explore molecular mechanisms of AURKA regulation in LUAD immune escape. METHODS: Through bioinformatics analysis, AURKA level in LUAD was evaluated, and potential upstream transcription factors of AURKA were predicted using hTFtarget. ETS variant transcription factor 4 (ETV4) expression in LUAD was analyzed through The Cancer Genome Atlas. Pearson's correlation analysis was then utilized to test the correlation between AURKA and ETV4. Interaction and binding between AURKA and ETV4 were validated through dual-luciferase assay and chromatin immunoprecipitation. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) tested relative mRNA expression of AURKA and ETV4 in LUAD cells, cell counting kit-8 assayed cell viability, and Western blot analysis was conducted to determine the protein level of programmed death-ligand 1 (PD-L1). Coculture of LUAD cells with activated CD8+ T cells was carried out, and an LDH assay was used to assess the cytotoxicity of CD8+ T cells against LUAD cells. Interferon-γ (IFN-γ), interleukin-2 (IL-2), and tumor necrosis factor-α (TNF-α) levels in the coculture system were assessed by enzyme-linked immunosorbent assay (ELISA). Western blot assessed protein levels of JAK2, p-JAK2, STAT3, and p-STAT3. RESULTS: Compared to normal tissues, AURKA and ETV4 were upregulated in tumor tissues, and AURKA presented a negative association with CD8+ T-cell immune infiltration but a positive association with PD-L1. qRT-PCR unveiled significantly upregulated mRNA of AURKA and ETV4 in LUAD cells compared to normal lung epithelial cells. Knockdown of AURKA significantly decreased cell viability and PD-L1 protein level in LUAD cells, enhanced cytotoxicity of CD8+ T cells against LUAD cells and IFN-γ, IL-2, and TNF-α expression, while overexpression of AURKA yielded opposite results. Furthermore, the knockdown of ETV4 could reverse the oncogenic characteristics of cells caused by AURKA overexpression. CONCLUSION: Our study illustrated that ETV4/AURKA axis promoted PD-L1 expression, suppressed CD8+ T-cell activity, and mediated immune escape in LUAD by regulating the JAK2/STAT3 signaling pathway.


Asunto(s)
Adenocarcinoma del Pulmón , Aurora Quinasa A , Antígeno B7-H1 , Neoplasias Pulmonares , Proteínas Proto-Oncogénicas c-ets , Escape del Tumor , Humanos , Adenocarcinoma del Pulmón/inmunología , Adenocarcinoma del Pulmón/genética , Proteínas E1A de Adenovirus/metabolismo , Proteínas E1A de Adenovirus/genética , Aurora Quinasa A/metabolismo , Aurora Quinasa A/genética , Aurora Quinasa A/inmunología , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/inmunología , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogénicas c-ets/genética , Proteínas Proto-Oncogénicas c-ets/metabolismo , Proteínas Proto-Oncogénicas c-ets/inmunología , Escape del Tumor/inmunología
4.
Bioorg Med Chem ; 102: 117658, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38460487

RESUMEN

Aurora kinases (AurkA/B/C) regulate the assembly of bipolar mitotic spindles and the fidelity of chromosome segregation during mitosis, and are attractive therapeutic targets for cancers. Numerous ATP-competitive AurkA inhibitors have been developed as potential anti-cancer agents. Recently, a few allosteric inhibitors have been reported that bind to the allosteric Y-pocket within AurkA kinase domain and disrupt the interaction between AurkA and its activator TPX2. Herein we report a novel allosteric AurkA inhibitor (6h) of N-benzylbenzamide backbone. Compound 6h suppressed the both catalytic activity and non-catalytic functions of AurkA. The inhibitory activity of 6h against AurkA (IC50 = 6.50 µM) was comparable to that of the most potent allosteric AurkA inhibitor AurkinA. Docking analysis against the Y-pocket revealed important pharmacophores and interactions that were coherent with structure-activity relationship. In addition, 6h suppressed DNA replication in G1-S phase, which is a feature of allosteric inhibition of AurA. Our current study may provide a useful insight in designing potent allosteric AurkA inhibitors.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Proteínas de Ciclo Celular , Aurora Quinasa A , Neoplasias/tratamiento farmacológico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Replicación del ADN , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico
5.
J Biochem Mol Toxicol ; 38(8): e23771, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39015057

RESUMEN

Colon cancer contributes to high mortality rates internationally that has seriously endangered human health. Aurora kinase A (AURKA) served as a key molecule in colon cancer. However, its role of AURKA on regulating ferroptosis in colon cancer and their possible interactions with miRNAs and circRNAs remain still elusive. Comprehensive bioinformatics analysis after RNA-sequencing was conducted to determine the differentially expressed genes (DEGs), ferroptosis-related DEGs and hub genes. The direct relationship between miR-506-3p and hsa_circRNA_007630 or AURKA was predicted, then verified by dual luciferase reporter and quantitative real-time polymerase chain reaction. The rescue experiments were conducted by cotransfection with si-hsa_circRNA_007630, miR-506-3p inhibitor or pcDNA-AURKA in HT29 cells. Erastin was used to induce ferroptosis in HT29 cells and validated by detecting levels of intracellular Fe2+, lipid reactive oxygen species, glutathione, malondialdehyde and ferroptosis markers expression. We screened a total of 331 DEGs, 26 ferroptosis-related genes, among which 3 hub genes were identified through PPI network analysis. Therein, AURKA expression was elevated in colon cancer cells. Moreover, AURKA was targeted by miR-506-3p, and hsa_circRNA_007630 operated as miR-506-3p sponge. The effect of hsa_circRNA_007630 depletion on the inhibiting malignant phenotypes of HT29 cells was rescued by inhibition of miR-506-3p or AURKA overexpression. Additionally, AURKA reduced erastin-induced ferroptosis in HT29 cells. Depletion of circRNA_007630 exerts as a suppressive role in colon cancer through a novel miR-506-3p/AURKA pathway related to ferroptosis, and might become a novel marker for colon cancer.


Asunto(s)
Aurora Quinasa A , Neoplasias del Colon , Ferroptosis , MicroARNs , ARN Circular , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Ferroptosis/genética , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Neoplasias del Colon/metabolismo , Aurora Quinasa A/genética , Aurora Quinasa A/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Células HT29 , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Progresión de la Enfermedad , ARN Neoplásico/genética , ARN Neoplásico/metabolismo
6.
Mol Divers ; 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38446372

RESUMEN

Aurora-A (AURKA) is serine/threonine protein kinase involved in the regulation of numerous processes of cell division. Numerous studies have demonstrated strong association between AURKA and cancer. AURKA is overexpressed in many cancers, such as colon, breast and prostate cancers. Consequently, AURKA has emerged as promising target for therapeutic intervention in cancer management. Herein, we describe a computational workflow for the discovery of novel anti-AURKA inhibitory leads starting with ligand-based assessment of the pharmacophoric space of six diverse sets of inhibitors. Subsequently, machine learning/QSAR modeling was coupled with genetic function algorithm to search for the best possible combination of machine learner, ligand-based pharmacophore(s) and molecular descriptors capable of explaining variation in anti-AURKA bioactivities within a collected list of inhibitors. Two learners succeeded in achieving acceptable structure/activity correlations, namely, random forests and extreme gradient boosting (XGBoost). Three pharmacophores emerged in the successful ML models. These were then used as 3D search queries to mine the National Cancer Institute database for novel anti-AURKA leads. Top-ranking 38 hits were assessed in vitro for their anti-AURKA bioactivities. Among them, three compounds exhibited promising dose-response curves, demonstrating experimental IC50 values ranging from sub-micromolar to low micromolar values. Remarkably, two of these compounds are of novel chemotypes.

7.
Int J Mol Sci ; 25(11)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38892390

RESUMEN

Aurora kinase A (AURKA) is a serine/threonine-protein kinase that regulates microtubule organization during neuron migration and neurite formation. Decreased activity of AURKA was found in Alzheimer's disease (AD) brain samples, but little is known about the role of AURKA in AD pathogenesis. Here, we demonstrate that AURKA is expressed in primary cultured rat neurons, neurons from adult mouse brains, and neurons in postmortem human AD brains. AURKA phosphorylation, which positively correlates with its activity, is reduced in human AD brains. In SH-SY5Y cells, pharmacological activation of AURKA increased AURKA phosphorylation, acidified endolysosomes, decreased the activity of amyloid beta protein (Aß) generating enzyme ß-site amyloid precursor protein cleaving enzyme (BACE-1), increased the activity of the Aß degrading enzyme cathepsin D, and decreased the intracellular and secreted levels of Aß. Conversely, pharmacological inhibition of AURKA decreased AURKA phosphorylation, de-acidified endolysosomes, decreased the activity of cathepsin D, and increased intracellular and secreted levels of Aß. Thus, reduced AURKA activity in AD may contribute to the development of intraneuronal accumulations of Aß and extracellular amyloid plaque formation.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Aurora Quinasa A , Lisosomas , Neuronas , Aurora Quinasa A/metabolismo , Animales , Neuronas/metabolismo , Humanos , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Ratones , Ratas , Lisosomas/metabolismo , Fosforilación , Línea Celular Tumoral , Encéfalo/metabolismo , Células Cultivadas , Masculino , Secretasas de la Proteína Precursora del Amiloide/metabolismo
8.
Int J Mol Sci ; 25(8)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38673957

RESUMEN

Cuproptosis and ferroptosis represent copper- and iron-dependent forms of cell death, respectively, and both are known to play pivotal roles in head and neck squamous cell carcinoma (HNSCC). However, few studies have explored the prognostic signatures related to cuproptosis and ferroptosis in HNSCC. Our objective was to construct a prognostic model based on genes associated with cuproptosis and ferroptosis. We randomly assigned 502 HSNCC samples from The Cancer Genome Atlas (TCGA) into training and testing sets. Pearson correlation analysis was utilized to identify cuproptosis-associated ferroptosis genes in the training set. Cox proportional hazards (COX) regression and least absolute shrinkage operator (LASSO) were employed to construct the prognostic model. The performance of the prognostic model was internally validated using single-factor COX regression, multifactor COX regression, Kaplan-Meier analysis, principal component analysis (PCA), and receiver operating curve (ROC) analysis. Additionally, we obtained 97 samples from the Gene Expression Omnibus (GEO) database for external validation. The constructed model, based on 12 cuproptosis-associated ferroptosis genes, proved to be an independent predictor of HNSCC prognosis. Among these genes, the increased expression of aurora kinase A (AURKA) has been implicated in various cancers. To further investigate, we employed small interfering RNAs (siRNAs) to knock down AURKA expression and conducted functional experiments. The results demonstrated that AURKA knockdown significantly inhibited the proliferation and migration of HNSCC cells (Cal27 and CNE2). Therefore, AURKA may serve as a potential biomarker in HNSCC.


Asunto(s)
Aurora Quinasa A , Biomarcadores de Tumor , Ferroptosis , Neoplasias de Cabeza y Cuello , Carcinoma de Células Escamosas de Cabeza y Cuello , Humanos , Ferroptosis/genética , Aurora Quinasa A/metabolismo , Aurora Quinasa A/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/patología , Neoplasias de Cabeza y Cuello/metabolismo , Pronóstico , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Masculino , Femenino , Estimación de Kaplan-Meier , Proliferación Celular/genética
9.
J Physiol ; 2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37440212

RESUMEN

Aquaporin-2 (AQP2) is a member of the aquaporin water channel family. In the kidney, AQP2 is expressed in collecting duct principal cells where it facilitates water reabsorption in response to antidiuretic hormone (arginine vasopressin, AVP). AVP induces the redistribution of AQP2 from intracellular vesicles and its incorporation into the plasma membrane. The plasma membrane insertion of AQP2 represents the crucial step in AVP-mediated water reabsorption. Dysregulation of the system preventing the AQP2 plasma membrane insertion causes diabetes insipidus (DI), a disease characterised by an impaired urine concentrating ability and polydipsia. There is no satisfactory treatment of DI available. This review discusses kinases that control the localisation of AQP2 and points out potential kinase-directed targets for the treatment of DI.

10.
J Biol Chem ; 298(5): 101895, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35378133

RESUMEN

Long noncoding RNAs (lncRNAs) have gained widespread attention as a new layer of regulation in biological processes during development and disease. The lncRNA ELDR (EGFR long noncoding downstream RNA) was recently shown to be highly expressed in oral cancers as compared to adjacent nontumor tissue, and we previously reported that ELDR may be an oncogene as inhibition of ELDR reduces tumor growth in oral cancer models. Furthermore, overexpression of ELDR induces proliferation and colony formation in normal oral keratinocytes (NOKs). In this study, we examined in further detail how ELDR drives the neoplastic transformation of normal keratinocytes. We performed RNA-seq analysis on NOKs stably expressing ELDR (NOK-ELDR), which revealed that ELDR enhances the expression of cell cycle-related genes. Expression of Aurora kinase A and its downstream targets Polo-like kinase 1, cell division cycle 25C, cyclin-dependent kinase 1, and cyclin B1 (CCNB1) are significantly increased in NOK-ELDR cells, suggesting induction of G2/M progression. We further identified CCCTC-binding factor (CTCF) as a binding partner of ELDR in NOK-ELDR cells. We show that ELDR stabilizes CTCF and increases its expression. Finally, we demonstrate the ELDR-CTCF axis upregulates transcription factor Forkhead box M1, which induces Aurora kinase A expression and downstream G2/M transition. These findings provide mechanistic insights into the role of the lncRNA ELDR as a potential driver of oral cancer during neoplastic transformation of normal keratinocytes.


Asunto(s)
Fenómenos Biológicos , Queratinocitos , Neoplasias de la Boca , ARN Largo no Codificante , Aurora Quinasa A/metabolismo , División Celular , Línea Celular Tumoral , Proliferación Celular/genética , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , Factores de Transcripción Forkhead/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Queratinocitos/metabolismo , Neoplasias de la Boca/genética , Neoplasias de la Boca/patología , ARN Largo no Codificante/genética
11.
Mol Med ; 29(1): 39, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36977984

RESUMEN

BACKGROUND: Diabetes-related limb ischemia is a challenge for lower extremity amputation. Aurora Kinase A (AURKA) is an essential serine/threonine kinase for mitosis, while its role in limb ischemia remains unclear. METHOD: Human microvascular endothelial cells (HMEC-1) were cultured in high glucose (HG, 25 mmol/L D-glucose) and no additional growth factors (ND) medium to mimic diabetes and low growth factors deprivation as in vitro model. Diabetic C57BL/6 mice were induced by streptozotocin (STZ) administration. After seven days, ischemia was surgically performed by left unilateral femoral artery ligation on diabetic mice. The vector of adenovirus was utilized to overexpress AURKA in vitro and in vivo. RESULTS: In our study, HG and ND-mediated downregulation of AURKA impaired the cell cycle progression, proliferation, migration, and tube formation ability of HMEC-1, which were rescued by overexpressed AURKA. Increased expression of vascular endothelial growth factor A (VEGFA) induced by overexpressed AURKA were likely regulatory molecules that coordinate these events. Mice with AURKA overexpression exhibited improved angiogenesis in response to VEGF in Matrigel plug assay, with increased capillary density and hemoglobin content. In diabetic limb ischemia mice, AURKA overexpression rescued blood perfusion and motor deficits, accompanied by the recovery of gastrocnemius muscles observed by H&E staining and positive Desmin staining. Moreover, AURKA overexpression rescued diabetes-related impairment of angiogenesis, arteriogenesis, and functional recovery in the ischemic limb. Signal pathway results revealed that VEGFR2/PI3K/AKT pathway might be involved in AURKA triggered angiogenesis procedure. In addition, AURKA overexpression impeded oxidative stress and subsequent following lipid peroxidation both in vitro and in vivo, indicating another protective mechanism of AURKA function in diabetic limb ischemia. The changes in lipid peroxidation biomarkers (lipid ROS, GPX4, SLC7A11, ALOX5, and ASLC4) in in vitro and in vivo were suggestive of the possible involvement of ferroptosis and interaction between AUKRA and ferroptosis in diabetic limb ischemia, which need further investigation. CONCLUSIONS: These results implicated a potent role of AURKA in diabetes-related impairment of ischemia-mediated angiogenesis and implied a potential therapeutic target for ischemic diseases of diabetes.


Asunto(s)
Diabetes Mellitus Experimental , Factor A de Crecimiento Endotelial Vascular , Humanos , Ratones , Animales , Factor A de Crecimiento Endotelial Vascular/metabolismo , Aurora Quinasa A/metabolismo , Aurora Quinasa A/uso terapéutico , Diabetes Mellitus Experimental/metabolismo , Células Endoteliales/metabolismo , Neovascularización Fisiológica , Fosfatidilinositol 3-Quinasas/metabolismo , Miembro Posterior , Ratones Endogámicos C57BL , Isquemia , Músculo Esquelético/metabolismo
12.
J Cell Sci ; 134(14)2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34152366

RESUMEN

Oocyte-specific knockdown of pericentrin (PCNT) in transgenic (Tg) mice disrupts acentriolar microtubule-organizing center (aMTOC) formation, leading to spindle instability and error-prone meiotic division. Here, we show that PCNT-depleted oocytes lack phosphorylated Aurora A (pAURKA) at spindle poles, while overall levels are unaltered. To test aMTOC-associated AURKA function, metaphase II (MII) control (WT) and Tg oocytes were briefly exposed to a specific AURKA inhibitor (MLN8237). Similar defects were observed in Tg and MLN8237-treated WT oocytes, including altered spindle structure, increased chromosome misalignment and impaired microtubule regrowth. Yet, AURKA inhibition had a limited effect on Tg oocytes, revealing a critical role for aMTOC-associated AURKA in regulating spindle stability. Notably, spindle instability was associated with disrupted γ-tubulin and lack of the liquid-like meiotic spindle domain (LISD) in Tg oocytes. Analysis of this Tg model provides the first evidence that LISD assembly depends expressly on aMTOC-associated AURKA, and that Ran-mediated spindle formation ensues without the LISD. These data support that loss of aMTOC-associated AURKA and failure of LISD assembly contribute to error-prone meiotic division in PCNT-depleted oocytes, underscoring the essential role of aMTOCs for spindle stability.


Asunto(s)
Aurora Quinasa A , Centro Organizador de los Microtúbulos , Huso Acromático , Animales , Aurora Quinasa A/genética , Meiosis , Ratones , Oocitos , Huso Acromático/genética , Polos del Huso/genética
13.
J Transl Med ; 21(1): 281, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37101292

RESUMEN

BACKGROUND: The primary cilia (PC) is a microtubule-based and nonmotile organelle which protrudes from the surface of almost all mammalian cells. At present, PC has been found to be a deficiency or loss in multiple cancers. Restoring PC could be a novel targeting therapy strategy. Our research showed that PC was reduced in human bladder cancer (BLCA) cells, and PC deficiency promotes cell proliferation. However, the concrete mechanisms remain unknown. SCL/TAL1 interrupting locus (STIL), a PC-related protein, was screened in our previous study and could influence the cell cycle by regulating PC in tumor cells. In this study, we aimed to elucidate the function of STIL for PC to explore the underlying mechanism of PC in BLCA. METHODS: Public database analysis, western blot, and enzyme-linked immunosorbent assay (ELISA) were used to screen genes and explore gene expression alteration. Immunofluorescence and western blot were utilized to investigate PC. Wound healing assay, clone formation assay, and CCK-8 assay were used to explore cell migration, growth, and proliferation. The co-immunoprecipitation and western blot were employed to reveal the interaction of STIL and AURKA. RESULTS: We found that high STIL expression is correlated with poor outcomes of BLCA patients. Further analysis revealed that STIL overexpression could inhibit PC formation, activate SHH signaling pathways, and promote cell proliferation. In contrast, STIL-knockdown could promote PC formation, inactivate SHH signaling, and inhibit cell proliferation. Furthermore, we found that the regulatory functions of STIL for PC depend on AURKA. STIL could influence proteasome activity and maintain AURKA stabilization. AURKA-knockdown could reverse PC deficiency caused by STIL overexpression for PC in BLCA cells. We observed that co-knockdown in STIL and AURKA significantly enhanced PC assembly. CONCLUSION: In summary, our result provides a potential therapy target for BLCA based on the restoration of PC.


Asunto(s)
Aurora Quinasa A , Neoplasias de la Vejiga Urinaria , Animales , Humanos , Aurora Quinasa A/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Cilios/metabolismo , Proliferación Celular/genética , Neoplasias de la Vejiga Urinaria/genética , Línea Celular Tumoral , Mamíferos
14.
EMBO Rep ; 22(4): e51030, 2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33615693

RESUMEN

Cell division requires the regulation of karyokinesis and cytokinesis, which includes an essential role of the achromatic spindle. Although the functions of centrosomes are well characterised in somatic cells, their role during vertebrate spermatogenesis remains elusive. We have studied the dynamics of the meiotic centrosomes in male mouse during both meiotic divisions. Results show that meiotic centrosomes duplicate twice: first duplication occurs in the leptotene/zygotene transition, while the second occurs in interkinesis. The maturation of duplicated centrosomes during the early stages of prophase I and II are followed by their separation and migration to opposite poles to form bipolar spindles I and II. The study of the genetic mouse model Plk1(Δ/Δ) indicates a central role of Polo-like kinase 1 in pericentriolar matrix assembly, in centrosome maturation and migration, and in the formation of the bipolar spindles during spermatogenesis. In addition, in vitro inhibition of Polo-like kinase 1 and Aurora A in organotypic cultures of seminiferous tubules points out to a prominent role of both kinases in the regulation of the formation of meiotic bipolar spindles.


Asunto(s)
Proteínas de Ciclo Celular , Centrosoma , Animales , Proteínas de Ciclo Celular/genética , Masculino , Meiosis , Ratones , Proteínas Serina-Treonina Quinasas , Proteínas Proto-Oncogénicas/genética , Huso Acromático , Quinasa Tipo Polo 1
15.
J Am Acad Dermatol ; 88(5): 1051-1059, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-31306728

RESUMEN

BACKGROUND: Compared with sun-exposed melanomas, less is known regarding the pathogenesis of sun-protected melanomas. Sun-protected melanomas share many epidemiologic factors, but their genetic heterogeneity is not well studied. OBJECTIVE: We investigated the genomic profile of acral, mucosal, and vulvovaginal melanomas. We hypothesize that mucosal melanomas, recognized for their uniquely aggressive clinical behavior, have distinct genomic features. METHODS: We performed whole transcriptome messenger RNA and DNA (1711 genes) sequencing, messenger RNA expression profiling, tumor mutational burden, ultraviolet signature, and copy number variants analysis on 29 volar/digital acral, 7 mucosal, and 6 vulvovaginal melanomas. RESULTS: There was significant genetic heterogeneity, particularly in acral melanomas, with 36% having BRAF alterations, whereas other melanomas had none (P = .0159). Nonzero ultraviolet signatures were more frequent in acral melanomas, suggesting greater ultraviolet involvement. Mucosal melanomas formed a distinct group with increased expression of cell cycle and proliferation genes. Various targetable aberrations were identified, such as AURKA and ERBB2, in mucosal and acral melanomas, respectively. LIMITATIONS: The sample size was a small. CONCLUSION: There is significant genetic heterogeneity among sun-protected melanomas. Mucosal melanomas have upregulation in cell cycle and proliferation genes, which may explain their aggressive behavior. Ultraviolet radiation plays some role in a subset of acral but not other melanomas.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Rayos Ultravioleta/efectos adversos , Estudios Retrospectivos , Mutación , Melanoma/patología , Neoplasias Cutáneas/patología , Genómica , Melanoma Cutáneo Maligno
16.
Int J Mol Sci ; 24(22)2023 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-38003387

RESUMEN

Endocrine therapy is the main treatment for hormone receptor-positive (HR+) breast cancer. However, advanced tumors develop resistance to endocrine therapy, rendering it ineffective as the disease progresses. There are several molecular mechanisms of primary and secondary endocrine resistance. Resistance can develop due to either alteration of the estrogen receptor pathway (e.g., ESR1 mutations) or upstream growth factors signaling pathways (e.g., PI3K/Akt/mTOR pathway). Despite progress in the development of molecularly targeted anticancer therapies, the emergence of resistance remains a major limitation and an area of unmet need. In this article, we review the mechanisms of acquired endocrine resistance in HR+ advanced breast cancer and discuss current and future investigational therapeutic approaches.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Resistencia a Antineoplásicos/genética , Transducción de Señal
17.
Cancer Cell Int ; 22(1): 277, 2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36064409

RESUMEN

BACKGROUND: Circular RNAs (circRNAs) represent a class of newly identified transcripts that act as competing endogenous RNAs (ceRNAs) to modulate gene expression by competing for the shared microRNAs (miRNAs) in humans. In this study, we set out to investigate the role of the circRNA-miRNA-mRNA ceRNA network in gastric cancer (GC). METHODS: A differential analysis on GC-related circRNAs, miRNAs and mRNAs was performed utilizing the R language "limma" package, followed by GO and KEGG enrichment analyses. The Cytoscape visualization software was used to construct the circRNA-miRNA-mRNA ceRNA network. RT-qPCR, Western blot assay, immunohistochemistry, RNA pull down, RIP and dual luciferase gene reporter assay were conducted to verify the expression of the related circRNA, miRNA and mRNA and their interaction in GC tissues and cells. RESULTS: The bioinformatics analysis screened 13 circRNAs, 241 miRNAs and 7483 mRNAs related to GC. Ten DEmRNAs (AURKA, BUB1, CCNF, FEN1, FGF2, ITPKB, CDKN1A, TRIP13, KNTC1 and KIT) were identified from the constructed PPI network and module analysis, among which AURKA was the most critical. A circ_0061265-miRNA-885-3p-AURKA ceRNA network was constructed. In vitro cell experiment demonstrated significantly upregulated circ_0061265 and AURKA, but downregulated miR-885-3p in GC. Moreover, circ_0061265 promoted the occurrence of GC by competitively binding to miRNA-885-3p to regulate AURKA expression. CONCLUSION: Our work validated that circ_0061265 may increase AURKA expression by competitively binding to miRNA-885-3p, thereby promoting GC development.

18.
EMBO Rep ; 21(2): e48290, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-31885126

RESUMEN

The endothelial cilium is a microtubule-based organelle responsible for blood flow-induced mechanosensation and signal transduction during angiogenesis. The precise function and mechanisms by which ciliary mechanosensation occurs, however, are poorly understood. Although posttranslational modifications (PTMs) of cytoplasmic tubulin are known to be important in angiogenesis, the specific roles of ciliary tubulin PTMs play remain unclear. Here, we report that loss of centrosomal protein 41 (CEP41) results in vascular impairment in human cell lines and zebrafish, implying a previously unknown pro-angiogenic role for CEP41. We show that proper control of tubulin glutamylation by CEP41 is necessary for cilia disassembly and that is involved in endothelial cell (EC) dynamics such as migration and tubulogenesis. We show that in ECs responding to shear stress or hypoxia, CEP41 activates Aurora kinase A (AURKA) and upregulates expression of VEGFA and VEGFR2 through ciliary tubulin glutamylation, as well as leads to the deciliation. We further show that in hypoxia-induced angiogenesis, CEP41 is responsible for the activation of HIF1α to trigger the AURKA-VEGF pathway. Overall, our results suggest the CEP41-HIF1α-AURKA-VEGF axis as a key molecular mechanism of angiogenesis and demonstrate how important ciliary tubulin glutamylation is in mechanosense-responded EC dynamics.


Asunto(s)
Aurora Quinasa A , Tubulina (Proteína) , Animales , Aurora Quinasa A/genética , Cilios , Humanos , Microtúbulos , Proteínas , Tubulina (Proteína)/genética , Pez Cebra/genética
19.
Bioorg Med Chem Lett ; 61: 128614, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35151865

RESUMEN

High rates of recurrence and treatment resistance in the most common malignant adult brain cancer, glioblastoma (GBM), suggest that monotherapies are not sufficiently effective. Combination therapies are increasingly pursued, but the possibility of adverse drug-drug interactions may preclude clinical implementation. Developing single molecules with multiple targets is a feasible alternative strategy to identify effective and tolerable pharmacotherapies for GBM. Here, we report the development of a novel, first-in-class, dual aurora and lim kinase inhibitor termed F114. Aurora kinases and lim kinases are involved in neoplastic cell division and cell motility, respectively. Due to the importance of these cellular functions, inhibitors of aurora kinases and lim kinases are being pursued separately as anti-cancer therapies. Using in vitro and ex vivo models of GBM, we found that F114 inhibits GBM proliferation and invasion. These results establish F114 as a promising new scaffold for dual aurora/lim kinase inhibitors that may be used in future drug development efforts for GBM, and potentially other cancers.


Asunto(s)
Antineoplásicos/farmacología , Aurora Quinasa A/antagonistas & inhibidores , Aurora Quinasa B/antagonistas & inhibidores , Neoplasias Encefálicas/tratamiento farmacológico , Glioblastoma/tratamiento farmacológico , Quinasas Lim/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Aurora Quinasa A/metabolismo , Aurora Quinasa B/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Quinasas Lim/metabolismo , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Relación Estructura-Actividad , Células Tumorales Cultivadas
20.
Immunol Invest ; 51(5): 1211-1221, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34018460

RESUMEN

ABBREVIATION: AFP: alpha-fetoprotein; ALP: alkaline phosphatase; ALT: alanine aminotransferase; AST: aspartate aminotransferase; AURKA: aurora kinase A; BCLC: Barcelona- Clinic Liver Cancer; CBC: complete blood count; CT: computed tomography; DM: diabetes mellitus; DNA: deoxyribonucleic acid; EDTA: ethylene diamine tetraacetic acid; GGT: gamma-glutamyl transferase; HB: hemoglobin; HBV: hepatitis B virus; HBsAg: hepatitis B surface antigen; HCC: hepatocellular carcinoma; HCV: hepatitis C virus; INR: international normalized ratio; mRNA: messenger ribonucleic acid; OR: odds ratio; PVT: portal vein thrombosis; RT-PCR: real-time polymerase chain reaction; SNP: single nucleotide polymorphism; WBCs: white blood cells.


Asunto(s)
Aurora Quinasa A , Carcinoma Hepatocelular , Neoplasias Hepáticas , Aurora Quinasa A/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Predisposición Genética a la Enfermedad/genética , Hepacivirus , Antígenos de Superficie de la Hepatitis B/genética , Virus de la Hepatitis B/genética , Hepatitis C , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Polimorfismo Genético
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA