Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 308
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Fungal Genet Biol ; 170: 103864, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38199492

RESUMEN

Methyl jasmonate (MeJA)-regulated postharvest quality retention of Agaricus bisporus fruiting bodies is associated with arginine catabolism. However, the mechanism of MeJA-regulated arginine catabolism in edible mushrooms is still unclear. This study aimed to investigate the regulatory modes of MeJA on the expression of arginine catabolism-related genes and proteins in intact and different tissues of A. bisporus mushrooms during storage. Results showed that exogenous MeJA treatment activated endogenous JA biosynthesis in A. bisporus mushrooms, and differentially and tissue-specifically regulated the expression of arginine catabolism-related genes (AbARG, AbODC, AbSPE-SDH, AbSPDS, AbSAMDC, and AbASL) and proteins (AbARG, AbSPE-SDH, AbASL, and AbASS). MeJA caused no significant change in AbASS expression but resulted in a dramatic increase in AbASS protein level. Neither the expression of the AbSAMS gene nor the AbSAMS protein was conspicuously altered upon MeJA treatment. Additionally, MeJA reduced the contents of arginine and ornithine and induced the accumulation of free putrescine and spermidine, which was closely correlated with MeJA-regulated arginine catabolism-related genes and proteins. Hence, the results suggested that the differential and tissue-specific regulation of arginine catabolism-related genes and proteins by MeJA contributed to their selective involvement in the postharvest continuing development and quality retention of button mushrooms.


Asunto(s)
Agaricus , Agaricus/genética , Acetatos/farmacología , Ciclopentanos/farmacología , Oxilipinas/farmacología
2.
J Nutr ; 154(2): 574-582, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38135005

RESUMEN

BACKGROUND: Mushrooms are a nutritious food, though knowledge of the effects of mushroom consumption on cardiometabolic risk factors is limited and inconsistent. OBJECTIVE: We assessed the effects of consuming mushrooms as part of a healthy United States Mediterranean-style dietary pattern (MED) on traditional and emerging cardiometabolic disease (CMD) risk factors. We hypothesized that adopting a MED diet with mushrooms would lead to greater improvements in multiple CMD risk factors. METHODS: Using a randomized, parallel study design, 60 adults (36 females, 24 males; aged 46 ± 12 y; body mass index 28.3 ± 2.84 kg/m2, mean ± standard deviation) without diagnosed CMD morbidities consumed a MED diet (all foods provided) without (control with breadcrumbs) or with 84 g/d of Agaricus bisporus (White Button, 4 d/wk) and Pleurotus ostreatus (Oyster, 3 d/wk) mushrooms for 8 wk. Fasting baseline and postintervention outcome measurements were traditional CMD risk factors, including blood pressure and fasting serum lipids, lipoproteins, glucose, and insulin. Exploratory CMD-related outcomes included lipoprotein particle sizes and indexes of inflammation. RESULTS: Adopting the MED-mushroom diet compared with the MED-control diet without mushrooms improved fasting serum glucose (change from baseline -2.9 ± 1.18 compared with 0.6 ± 1.10 mg/dL; time × group P = 0.034). Adopting the MED diet, independent of mushroom consumption, reduced serum total cholesterol (-10.2 ± 3.77 mg/dL; time P = 0.0001). Concomitantly, there was a reduction in high-density lipoprotein (HDL) cholesterol, buoyant HDL2b, and apolipoprotein A1, and an increase in lipoprotein(a) concentrations (main effect of time P < 0.05 for all). There were no changes in other measured CMD risk factors. CONCLUSIONS: Consuming a Mediterranean-style healthy dietary pattern with 1 serving/d of whole Agaricus bisporus and Pleurotus ostreatus mushrooms improved fasting serum glucose but did not influence other established or emerging CMD risk factors among middle-aged and older adults classified as overweight or obese but with clinically normal cardiometabolic health. TRIAL REGISTRATION NUMBER: https://www. CLINICALTRIALS: gov/study/NCT04259229?term=NCT04259229&rank=1.


Asunto(s)
Agaricus , Enfermedades Cardiovasculares , Masculino , Femenino , Persona de Mediana Edad , Humanos , Anciano , Patrones Dietéticos , Factores de Riesgo Cardiometabólico , HDL-Colesterol , Glucosa , Enfermedades Cardiovasculares/prevención & control
3.
Artículo en Inglés | MEDLINE | ID: mdl-39190453

RESUMEN

Two Gram-stain-negative, aerobic, rod-shaped, orange-coloured bacterial strains, designated strain C216T and strain M2295, were isolated from mature mushroom compost from composting facilities in Victoria and South Australia, Australia, respectively. External structures such as flagella or pili were not observed on the cells under scanning electron microscopy. Optimal growth was found to occur at 45 °C, at pH 7.25 and in the absence of NaCl on Emerson's 350 YpSs medium. The genome sequence of strain C216T was 3 342 126 bp long with a G+C content of 40.5 mol%. Functional analysis of the genome of strain C216T revealed genes encoding chitinolytic and hemi-cellulolytic functions, with 166 predicted genes associated with carbohydrate metabolism (8.9% of the predicted genes). These functions are important for survival in the mushroom compost environment, which is rich in hemicelluloses. No antibiotic resistance genes were found in the genome sequence. The major fatty acids of strain C216T were iso-C15 : 0 (56.7%), iso-C17 : 0 3-OH (15.6%), C16 : 1 ω7c/iso-C15 : 0 2-OH (7.3%) and iso-C15 : 1 G (6.1%). The only respiratory quinone was MK-7. The major polar lipid of strain C216T was phosphatidylethanolamine, but three unidentified phospholipids, four unidentified aminophospholipids/aminolipids and one unidentified glycolipid were also detected. Phylogenetic analysis based on proteins encoded by the core genome (bac120, 120 conserved bacterial genes) showed that strain C216T forms a distinct lineage in the family Chitinophagaceae and that the closest identified relative is Niabella soli (69.69% ANI). These data demonstrate that strain C216T represents a novel genus and novel species within the family Chitinophagaceae, for which we propose the name Mycovorax composti. The type strain is C216T (=DSM 114558T=LMG 32998T).


Asunto(s)
Agaricales , Técnicas de Tipificación Bacteriana , Composición de Base , Compostaje , ADN Bacteriano , Ácidos Grasos , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , Microbiología del Suelo , Ácidos Grasos/análisis , Agaricales/genética , Agaricales/clasificación , Agaricales/aislamiento & purificación , ADN Bacteriano/genética , ARN Ribosómico 16S/genética , Comamonadaceae/genética , Comamonadaceae/aislamiento & purificación , Comamonadaceae/clasificación , Fosfolípidos/análisis , Vitamina K 2/análogos & derivados , Fosfatidiletanolaminas , Genoma Bacteriano , Australia del Sur
4.
Mol Biol Rep ; 51(1): 702, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38822942

RESUMEN

BACKGROUND: The development of cost-effective, simple, environment-friendly biographene is an area of interest. To accomplish environmentally safe, benign culturing that has advantages over other methods to reduce the graphene oxide (GO), extracellular metabolites from actinobacteria associated with mushrooms were used for the first time. METHODS: Bactericidal effect of GO against methicillin-resistant Staphylococcus aureus, antioxidant activity, and hydroxyapatite-like bone layer formation, gene expression analysis and appropriate biodegradation of the microbe-mediated synthesis of graphene was studied. RESULTS: Isolated extracellular contents Streptomyces achromogenes sub sp rubradiris reduced nano-GO to graphene (rGO), which was further examined by spectrometry and suggested an efficient conversion and significant reduction in the intensity of all oxygen-containing moieties and shifted crystalline peaks. Electron microscopic results also suggested the reduction of GO layer. In addition, absence of significant toxicity in MG-63 cell line, intentional free radical scavenging prowess, liver and kidney histopathology, and Wistar rat bone regeneration through modulation of OPG/RANKL/RUNX2/ALP pathways show the feasibility of the prepared nano GO. CONCLUSIONS: The study demonstrates the successful synthesis of biographene from actinobacterial extracellular metabolites, its potential biomedical applications, and its promising role in addressing health and environmental concerns.


Asunto(s)
Regeneración Ósea , Grafito , Osteoprotegerina , Ligando RANK , Ratas Wistar , Grafito/farmacología , Animales , Regeneración Ósea/efectos de los fármacos , Ratas , Ligando RANK/metabolismo , Osteoprotegerina/metabolismo , Humanos , Materiales Biocompatibles/farmacología , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Actinobacteria/metabolismo , Antibacterianos/farmacología , Antioxidantes/metabolismo , Antioxidantes/farmacología , Transducción de Señal/efectos de los fármacos
5.
Appl Microbiol Biotechnol ; 108(1): 151, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38240861

RESUMEN

Mushrooms are an important source of protein in the human diet. They are increasingly viewed as a sustainable meat replacement in an era of growing populations, with button mushrooms (Agaricus bisporus) the most popular and economically important mushroom in Europe, Australia and North America. Button mushrooms are cultivated on a defined, straw-derived compost, and the nitrogen (N) required to grow these high-protein foods is provided mainly by the addition of poultry manure and horse manure. Using the correct balance of carbon (C) and N sources to produce mushroom compost is critically important in achieving maximum mushroom yields. Changes in the amount and form of N added, the rate and timing of N addition and the other compost components used can dramatically change the proportion of added N recovered in the mushroom caps, the yield and quality of the mushrooms and the loss of N as ammonia and nitrogen oxide gases during composting. This review examines how N supply for mushroom production can be optimised by the use of a broad range of inorganic and organic N sources for mushroom composting, together with the use of recycled compost leachate, gypsum and protein-rich supplements. Integrating this knowledge into our current molecular understanding of mushroom compost biology will provide a pathway for the development of sustainable solutions in mushroom production that will contribute strongly to the circular economy. KEY POINTS: • Nitrogen for production of mushroom compost can be provided as a much wider range of organic feedstocks or inorganic compounds than currently used • Most of the nitrogen used in production of mushroom compost is not recovered as protein in the mushroom crop • The sustainability of mushroom cropping would be increased through alternative nitrogen management during composting and cropping.


Asunto(s)
Agaricus , Compostaje , Animales , Caballos , Humanos , Estiércol , Nitrógeno/metabolismo , Amoníaco , Aves de Corral , Suelo
6.
Appl Microbiol Biotechnol ; 108(1): 301, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38639797

RESUMEN

Water bodies are increasingly contaminated with a diversity of organic micropollutants (OMPs). This impacts the quality of ecosystems due to their recalcitrant nature. In this study, we assessed the removal of OMPs by spent mushroom substrate (SMS) of the white button mushroom (Agaricus bisporus) and by its aqueous tea extract. Removal of acesulfame K, antipyrine, bentazon, caffeine, carbamazepine, chloridazon, clofibric acid, and N, N-diethyl-meta-toluamide (DEET) by SMS and its tea was between 10 and 90% and 0-26%, respectively, in a 7-day period. Sorption to SMS particles was between 0 and 29%, which can thus not explain the removal difference between SMS and its tea, the latter lacking these particles. Carbamazepine was removed most efficiently by both SMS and its tea. Removal of OMPs (except caffeine) by SMS tea was not affected by heat treatment. By contrast, heat-treatment of SMS reduced OMP removal to < 10% except for carbamazepine with a removal of 90%. These results indicate that OMP removal by SMS and its tea is mediated by both enzymatic and non-enzymatic activities. The presence of copper, manganese, and iron (0.03, 0.88, and 0.33 µg L-1, respectively) as well as H2O2 (1.5 µM) in SMS tea indicated that the Fenton reaction represents (part of) the non-enzymatic activity. Indeed, the in vitro reconstituted Fenton reaction removed OMPs > 50% better than the teas. From these data it is concluded that spent mushroom substrate of the white button mushroom, which is widely available as a waste-stream, can be used to purify water from OMPs.


Asunto(s)
Agaricus , Ecosistema , Cafeína , Peróxido de Hidrógeno , Agua , , Carbamazepina
7.
Plant Dis ; 108(3): 666-670, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37807093

RESUMEN

Green mold (Trichoderma aggressivum) is an invasive disease of commercial mushrooms introduced into the United States from Europe that now has spread to commercial mushrooms throughout North America. We examined potential sources of invasive green mold inoculum and the association with different compost filling technologies on a large actively producing commercial mushroom farm. Green mold foci were sampled bed by bed, which generated 20,906 data points. Logistic regression was used to determine treatment differences. Mechanical filling of compost into the beds reduced green mold incidence over hand filling, apparently due to the reduced incidence of worker contact with the floor and between beds. Lower growing beds located closer to the floor had a higher incidence of green mold for both mechanical and hand-filled beds. We conclude that mechanical filling and generally reducing contact with the floor and between beds will reduce spread of green mold in commercial mushroom production.


Asunto(s)
Agaricus , Compostaje , Trichoderma , Estados Unidos , Incidencia , Europa (Continente)
8.
Plant Dis ; 108(9): 2778-2787, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38679595

RESUMEN

Taxonomically diverse Pseudomonas species induce bacterial blotch of edible mushrooms around the world. Pseudomonas tolaasii, [P. gingeri], and P. agarici are dominant mycopathogenic pseudomonads in mushroom production farms. In this study, among 216 mycopathogenic bacterial strains isolated from edible mushrooms in Iran, 96 strains were identified as Pseudomonas spp., while only three strains were preliminarily identified as P. agarici. Multilocus sequence analysis showed that only one strain (FH2) authentically belonged to P. agarici, while the other two strains either belonged to [P. gingeri] or represented a unique phylogenetic clade. The three strains also differed from each other in phenotypic characteristics, for example, production of fluorescent pigment and the reaction to tolaasin produced by P. tolaasii. Pathogenicity assays under a controlled environment showed that the symptoms induced by authentic P. agarici were far less severe than those caused by the predominant species P. tolaasii. Furthermore, coinoculation of P. agarici with three bacterial pathogens that are prevalent in Iran on mushroom caps, that is, P. tolaasii, Ewingella americana, and Mycetocola sp., resulted in the development of combined symptoms representing characteristics of both pathogens. The antibiosis assay showed that tolaasin-producing strains of P. tolaasii could inhibit the growth of P. agarici, while tolaasin-negative strains of the same species were unable to do so. This led us to the hypothesis that the inhibitory effect of P. tolaasii on P. agarici is driven by tolaasin production in the former species. This inhibitory effect is also associated with the rarity of P. agarici in natural conditions.


Asunto(s)
Agaricales , Filogenia , Pseudomonas , Agaricales/química , Pseudomonas/genética , Pseudomonas/fisiología , Irán , Tipificación de Secuencias Multilocus
9.
J Basic Microbiol ; : e2400422, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39363529

RESUMEN

During the cultivation of button mushrooms, the green mold epidemic, which causes a decrease in productivity, is a very important problem. The environmental harm of chemicals used in the control of such epidemics and the demand of consumers for organic products without chemicals have brought environmentally friendly biological control to the fore. Biological control can be achieved by the use of antagonistic microorganisms and their metabolites. In this study, the effectiveness of Bacillus spp. and Pseudomonas spp. for the biological control of the aggressive biotypes of the green mold disease agent Trichoderma aggressivum strains was examined in vitro. For this purpose, the antifungal effects of Bacillus spp. and Pseudomonas spp. against T. aggressivum strains were examined by in vitro dual culture test. Afterward, the antifungal activity of Bacillus spp. metabolites was assessed further using the agar well diffusion method. Then, it was determined whether the bacterial strains showing antifungal activity showed antagonistic activity against A. bisporus. Although none of the Pseudomonas spp. showed antifungal activity against T. aggressivum strains, most of the Bacillus spp. were found to have high activity. It has been concluded that Bacillus sp. Ö-4-82 may be potential biological control agent for button mushroom cultivation.

10.
Molecules ; 29(19)2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39407711

RESUMEN

The optimization of extraction parameters, including the process time, temperature, and liquid-to-solid ratio, was conducted in order to obtain the polysaccharide-rich fraction from the lyophilized Agaricus bisporus fruiting body. The efficiency of extraction for polysaccharides and antioxidant activity was determined by analyzing the extracts for total carbohydrate content, the reducing sugars content, and the antioxidant activity employing DPPH, ABTS, and hydroxyl radical scavenging assays. The results showed that all parameters, except for the extraction time, impacted differently on the extraction efficiency of polysaccharides and antioxidant activity. The highest total carbohydrate content was observed at the longest process time, highest temperature, and a liquid-to-solid ratio of 118 mL/g. To minimize the reducing sugar level, a lower temperature is required, while the highest antioxidant activity requires a moderate temperature and the lowest liquid-to-solid ratio. The optimization of antioxidant activity by means of the DPPH and H2O2 method failed, which shows that the specific mechanism of polysaccharides as antioxidants needs further investigation. The aqueous extraction method demonstrated to be an efficient and simple approach to recover the potentially bioactive polysaccharide fractions from Agaricus bisporus that are also active as antioxidants.


Asunto(s)
Agaricus , Antioxidantes , Agua , Agaricus/química , Antioxidantes/química , Antioxidantes/farmacología , Antioxidantes/aislamiento & purificación , Agua/química , Polisacáridos/química , Polisacáridos/aislamiento & purificación , Calor , Polisacáridos Fúngicos/química , Polisacáridos Fúngicos/aislamiento & purificación , Polisacáridos Fúngicos/farmacología , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/aislamiento & purificación
11.
Molecules ; 29(19)2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39407709

RESUMEN

Mushroom ß-D-glucans can be isolated from several species, including the widely consumed Agaricus bisporus. Besides immunomodulatory responses, some ß-D-glucans may exhibit direct antitumoral effects. It was previously observed that a ß-(1→6)-D-glucan (BDG16) has indirect cytotoxicity on triple-negative breast cancer cells. In this study, the cytotoxicity of this same glucan was observed on estrogen receptor-positive (ER+) breast cancer cells (MCF-7). Cell viability was determined by multiple methods to assess metabolic activity, lysosomal membrane integrity, and adhesion capacity. Assays to evaluate cell respiration, cell cycle, apoptosis, necroptosis, and oxidative stress were performed to determine the action of BDG16 on MCF-7 cells. A gradual and significant cell viability reduction was observed when the cells were treated with BDG16 (10-1000 µg/mL). This result could be associated with the inhibition of the basal state respiration after incubation with the ß-D-glucan. The cells showed a significant arrest in G1 phase population at 1000 µg/mL, with no induction of apoptosis. However, an increase in necrosis and necroptosis at the same concentration was observed. No difference in oxidative stress-related molecules was observed. Altogether, our findings demonstrate that BDG16 directly induces toxicity in MCF-7 cells, primarily by impairing mitochondrial respiration and promoting necroptosis. The specific mechanisms that mediate this action are being investigated.


Asunto(s)
Agaricus , Antineoplásicos , Apoptosis , Neoplasias de la Mama , Supervivencia Celular , Estrés Oxidativo , Receptores de Estrógenos , Agaricus/química , Humanos , Células MCF-7 , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Femenino , Supervivencia Celular/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Receptores de Estrógenos/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , beta-Glucanos/farmacología , beta-Glucanos/química
12.
Arch Biochem Biophys ; 744: 109678, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37356609

RESUMEN

Malignant melanoma is an invasive and highly aggressive skin cancer that-if diagnosed-poses a serious threat to the patient's health and life. In this work, a novel purified cell-wall polysaccharide (termed Abwp) was obtained from the discarded stipe of Agaricus bisporus (A. bisporus) and characterized to be a novel homogeneous polysaccharide consisted of a ß-(1 â†’ 4)- glucosyl backbone with ß-(1 â†’ 2) and (1 â†’ 6)-d-glucosyl side-chains. The anti-melanoma effects of Abwp and its associated mechanisms in mice were then explored using in vitro and in vivo approaches. In vitro results showed that Abwp inhibited B16 melanoma cell proliferation and promoted their apoptosis in both time- and dose-dependent manners. In B16 cells induced with tumor necrosis factor (TNF-α), Abwp significantly decreased the protein expression of inflammatory-related signaling pathway (e.g., p38 MAPK and NF-κB) in time-, concentration-, and dose-dependent manners. Moreover, Abwp blocked nuclear entry of NF-κB-p65. In an in vivo mouse model featuring neoplasm transplantation with B16 melanoma cells, Abwp significantly inhibited the growth and proliferation of mouse melanoma. Hematoxylin staining showed that the invasion of melanoma cells into the lung tissue of the Abwp-treated group was significantly reduced. Immunohistochemical analysis showed that the expression of proliferation cell nuclear antigen (PCNA), N-cadherin, MMP-9, and Snail in the lung of mouse was significantly inhibited. Immunofluorescence showed that Abwp significantly interfered with the nuclear transcription of NF-κB-p65 in a dose-dependent manner. Collectively, these results showed that Abwp mediated p38 MAPK and NF-κB signaling pathways to inhibit the inflammatory response and malignant proliferation and metastasis of melanoma in mice.


Asunto(s)
Melanoma Experimental , FN-kappa B , Animales , Ratones , FN-kappa B/metabolismo , Melanoma Experimental/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Proliferación Celular , Polisacáridos/farmacología , Polisacáridos/uso terapéutico , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Línea Celular Tumoral
13.
Fish Shellfish Immunol ; 141: 109051, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37689228

RESUMEN

Herein, the effects of Agaricus bisporus Polysaccharides (ABPs) on anti-channel catfish virus (CCV) infections to promote their application in channel catfish culture were explored. Transcriptome and metabolome analyses were conducted on the spleen of a CCV-infected channel catfish model fed with or without ABPs. CCV infections upregulated many immune and apoptosis-related genes, such as IL-6, IFN-α3, IFN-γ1, IL-26, Casp3, Casp8, and IL-10, and activated specific immunity mediated by B cells. However, after adding ABPs, the expression of inflammation-related genes decreased in CCV-infected channel catfish, and the inflammatory inhibitors NLRC3 were upregulated. Meanwhile, the expression of apoptosis-related genes was reduced, indicating that ABPs can more rapidly and strongly enhance the immunity of channel catfish to resist viral infection. Moreover, the metabonomic analysis showed that channel catfish had a high energy requirement during CCV infection, and ABPs could enhance the immune function of channel catfish. In conclusion, ABPs can enhance the antiviral ability of channel catfish by enhancing immune response and regulating inflammation. Thus, these findings provided new insights into the antiviral response effects of ABPs, which might support their application in aquaculture.


Asunto(s)
Enfermedades de los Peces , Ictaluridae , Ictalurivirus , Animales , Inmunidad , Inflamación , Antivirales
14.
Fish Shellfish Immunol ; 140: 108941, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37463648

RESUMEN

To promote the application of Agaricus bisporus polysaccharides (ABPs) in channel catfish (Ictalurus punctatus) culture, we evaluated the effects of ABPs on the growth, immunity, antioxidant, and antibacterial activity of channel catfish. When the amount of ABPs was 250 mg/kg, channel catfish's weight gain and specific growth rates increased significantly while the feed coefficient decreased. We also found that adding ABPs in the feed effectively increased the activities of ACP, MDA, T-SOD, AKP, T-AOC, GSH, and CAT enzymes and immune-related genes such as IL-1ß, Hsp70, and IgM in the head kidney of channel catfish. Besides, long-term addition will not cause pathological damage to the head kidney. When the amount of ABPs was over 125 mg/kg, the protection rate of channel catfish was more than 60%. According to the intestinal transcriptome analysis, the addition of ABPs promoted the expression of intestinal immunity genes and growth metabolism-related genes and enriched multiple related KEEG pathways. When challenged by Yersinia ruckeri infection, the immune response of channel catfish fed with ABPs was intenser and quicker. Additionally, the 16S rRNA gene sequencing analysis showed that the composition of the intestinal microbial community of channel catfish treated with ABPs significantly changed, and the abundance of microorganisms beneficial to channel catfish growth, such as Firmicutes and Bacteroidota increased. In conclusion, feeding channel catfish with ABPs promoted growth, enhanced immunity and antioxidant, and improved resistance to bacterial infections. Our current results might promote the use of ABPs in channel catfish and even other aquacultured fish species.


Asunto(s)
Enfermedades de los Peces , Ictaluridae , Yersiniosis , Animales , Antioxidantes/metabolismo , Yersinia ruckeri/fisiología , ARN Ribosómico 16S , Dieta/veterinaria , Polisacáridos
15.
J Appl Microbiol ; 134(1)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36626759

RESUMEN

The cultivated edible mushrooms Agaricus bisporus and Pleurotus ostreatus are valuable food crops and an important source of human nutrition. Agaricus bisporus is the dominant cultivated species in the western hemisphere and in Australia, while in Asian countries P. ostreatus is more prevalent. These two mushroom species are grown on fermented-pasteurized substrates, and bacteria and fungi play an important role in converting feedstocks into a selective medium for the mushroom mycelium. The mushrooms are usually introduced to the substrate as grain spawn, and the actively growing hyphae form a range of direct interactions with the diverse bacterial community in the substrate. Of these interactions, the most well studied is the removal of inhibitory volatile C8 compounds and ethylene by pseudomonads, which promotes mycelium growth and stimulates primordia formation of both A. bisporus and P. ostreatus. Bacterial biomass in the substrate is a significant nutrition source for the A. bisporus mycelium, both directly through bacteriolytic enzymes produced by A. bisporus, and indirectly through the action of extracellular bacterial enzymes, but this is less well studied for P. ostreatus. Apart from their role as a food source for the growing mycelium, bacteria also form extensive interactions with the mycelium of A. bisporus and P. ostreatus, by means other than those of the removal of inhibitory compounds. Although several of these interactions have been observed to promote mycelial growth, the proposed mechanisms of growth promotion by specific bacterial strains remain largely uncertain, and at times conflicting. Bacterial interactions also elicit varying growth-inhibitory responses from A. bisporus and P. ostreatus. This review explores characterized interactions involving bacteria and A. bisporus, and to a lesser degree P.ostreatus, and whilst doing so identifies existing research gaps and emphasizes directions for future work.


Asunto(s)
Agaricus , Pleurotus , Humanos , Pleurotus/química , Agaricus/química , Bacterias , Micelio
16.
Phytopathology ; 113(2): 150-159, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36131391

RESUMEN

Mycopathogenic bacteria play a pivotal role in the productivity of edible mushrooms grown under controlled conditions. In this study, we carried out a comprehensive farm survey and sampling (2018 to 2021) on button mushroom (Agaricus bisporus) farms in 15 provinces in Iran to monitor the status of bacterial pathogens infecting the crop. Mycopathogenic bacterial strains were isolated from pins, stems, and caps, as well as the casing layer on 38 mushroom farms. The bacterial strains incited symptoms on mushroom caps ranging from faint discoloration to dark brown and blotch of the inoculated surfaces. Among the bacterial strains inciting disease symptoms on bottom mushroom, 40 were identified as Ewingella americana based on biochemical assays and phylogeny of 16S rRNA and the gyrB gene. E. americana strains differed in their aggressiveness on mushroom caps and stipes, where the corresponding symptoms ranged from deep yellow to dark brown. In the phylogenetic analyses, all E. americana strains isolated in this study were clustered in a monophyletic clade closely related to the nonpathogenic and environmental strains of the species. BOX-PCR-based fingerprinting revealed intraspecific diversity. Using the cutoff level of 73 to 76% similarity, the strains formed six clusters. A chronological pattern was observed, where the strains isolated in 2018 were differentiated from those isolated in 2020 and 2021. Taken together, due to the multifaceted nature of the pathogen, such a widespread occurrence of E. americana on mushroom farms in Iran could be an emerging threat for the mushroom industry in the country.


Asunto(s)
Enterobacteriaceae , Enfermedades de las Plantas , Filogenia , ARN Ribosómico 16S/genética , Enterobacteriaceae/genética , Bacterias/genética
17.
Ecotoxicol Environ Saf ; 249: 114360, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36508827

RESUMEN

Animal manure is an important raw material for Agaricus bisporus production; however, it is also a reservoir for antibiotic residues, antibiotic resistance genes (ARGs), and antibiotic-resistant bacteria. Little is known about the influence of the commercial cultivation of A. bisporus on the dynamics of ARGs and the underlying mechanisms that cause their variations. In this study, we investigated the fate of 285 ARGs, 10 mobile genetic elements, and seven major categories of antibiotic residues in substrate and mushroom samples at different production phases. The results showed that commercial substrate preparation, particularly the pasteurization phase, was highly efficient in removing ARGs from the substrate. We further found that mycelium proliferation of A. bisporus contributed significantly to the removal of ARGs from the substrate and casing soil. The bacterial community is the key driver of changes in ARGs during the commercial cultivation of A. bisporus, which explained 46.67% of the variation in ARGs. Our results indicate that, despite the addition of animal manure, the risk of ARG dissemination to fruiting bodies and the environment is low. We propose that bioremediation by specific edible fungi might be a novel and promising method for scavenging antimicrobial resistance contamination from soil environment.


Asunto(s)
Antibacterianos , Compostaje , Animales , Estiércol/microbiología , Bacterias/genética , Suelo/química , Farmacorresistencia Microbiana/genética , Genes Bacterianos
18.
Plant Dis ; 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36802294

RESUMEN

Agaricus bisporus is one of the most commonly grown edible fungi in the world. In December 2021, brown blotch disease (2% incidence) was observed on the cap of A. bisporus, growing in a mushroom cultivation base in Guangxi, China. Initially, brown blotches (1-1.3 cm) appeared on the cap of A. bisporus, which expanded gradually as the cap grew. After two days, the infection penetrated inner tissues of fruiting bodies, and blotches were dark brown. For the isolation of causative agent(s), internal tissue samples of the infected stipes (5×5×5 mm) were sterilized in 75% ethanol for 30 s, rinsed three times with sterile deionized water (SDW), then, mashed in the sterile 2 ml Eppendorf tubes, 1000 µl SDW was added and the suspension was diluted into seven concentrations (10-1~10-7). Each suspension (120 µl) was spread on Luria Bertani (LB) medium and incubated for 24 hours at 28 °C. Morphological examination of the isolates was referred to Liu et al (2022). The dominant single colonies were whitish-grayish, smooth, convex. The cells were Gram-positive, non-flagellated, nonmotile, no pods or endospores formed, and no fluorescent pigments production on King's B medium (Solarbio). Amplified 16S rRNA (1351 bp; OP740790) of five colonies using universal primers 27f/1492r (Liu et al., 2022), exhibited 99.26% identity with Arthrobacter (Ar.) woluwensis. The partial sequences of the ATP synthase subunit beta gene (atpD) (677 bp; OQ262957), RNA polymerase subunit beta gene (rpoB) (848 bp; OQ262958), preprotein translocase subunit SecY gene (secY) (859 bp; OQ262959) and elongation factor Tu gene (tuf) (831 bp; OQ262960) genes of colonies were amplified using the method of Liu et al (2018), also exhibited more than 99% similarities to Ar. woluwensis. The biochemical tests for isolates (n=3) were performed via bacterial micro-biochemical reaction tubes (Hangzhou Microbial Reagent Co., LTD), and the results showed the same biochemical characteristics as Ar. woluwensis (Positive for esculin hydrolysis, urea, gelatinase, catalase, sorbitol, gluconate, salicin and arginine. Negative for citrate, nitrate reduction and rhamnose) (Funke et al., 1996). The isolates were identified as Ar. woluwensis based on morphological characteristics, biochemical tests and phylogenetic analysis. Pathogenicity tests were performed with bacterial suspensions (1 × 109 CFU/ml) after growing for 36 h in LB Broth at 28 °C, 160 rpm. 30 µl bacterial suspension was added to the cap and tissue of young A. bisporus. SDW was added as a negative control. All treatments were incubated at 20 °C and 80-85% humidity. The experiment was repeated three times with five caps and five tissues of young A. bisporus each time. Brown blotches were observed on all the parts of the inoculated caps and tissues after 24 h of inoculation. At 48 h, the inoculated caps turned dark brown while the infected tissues changed from brown to black and expanded to the entire tissue block giving a severely rotten appearance and foul odor. This disease symptoms were similar to those observed in the original samples. There were no lesions in the control group. After the pathogenicity test, the pathogen was re-isolated from the infected caps and tissues based on morphological characteristics, 16S rRNA sequences, and biochemical results, fulfilling Koch's postulates. Arthrobacter spp. are very widely distributed in the environment (Kim et al., 2008). To date, two studies have confirmed Arthrobacter spp. as a pathogen of edible fungi (Bessette, 1984; Wang et al., 2019). However, this is the first report of Ar. woluwensis causing brown blotch disease on A. bisporus. Our finding could contribute to developing phytosanitary and control treatments for this disease.

19.
Int J Mol Sci ; 24(9)2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37175649

RESUMEN

Tyrosinase (EC 1.14.18.1) is implicated in melanin production in various organisms. There is a growing body of evidence suggesting that the overproduction of melanin might be related to several skin pigmentation disorders as well as neurodegenerative processes in Parkinson's disease. Based on this consideration, the development of tyrosinase inhibitors represents a new challenge to identify new agents in pharmaceutical and cosmetic applications. With the goal of identifying tyrosinase inhibitors from a synthetic source, we employed a cheap and facile preliminary assay using tyrosinase from Agaricus bisporus (AbTYR). We have previously demonstrated that the 4-fluorobenzyl moiety might be effective in interactions with the catalytic site of AbTYR; moreover, the additional chlorine atom exerted beneficial effects in enhancing inhibitory activity. Therefore, we planned the synthesis of new small compounds in which we incorporated the 3-chloro-4-fluorophenyl fragment into distinct chemotypes that revealed the ability to establish profitable contact with the AbTYR catalytic site. Our results confirmed that the presence of this fragment is an important structural feature to improve the AbTYR inhibition in these new chemotypes as well. Furthermore, docking analysis supported the best activity of the selected studied compounds, possessing higher potency when compared with reference compounds.


Asunto(s)
Agaricus , Monofenol Monooxigenasa , Monofenol Monooxigenasa/metabolismo , Melaninas/farmacología , Agaricus/química , Dominio Catalítico , Inhibidores Enzimáticos/química , Simulación del Acoplamiento Molecular
20.
Prep Biochem Biotechnol ; 53(7): 786-796, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36345997

RESUMEN

Agaricus bisporus is one of the most widely cultivated edible mushrooms in the world. The chemical components of A. bisporus have a wide range of biological activities. In order to deeply understand the antioxidant properties of A. bisporus, this study conducted an investigation on the components of A. bisporus fermentation. Through the single factor experiment and response surface optimization, it was found that when the C/N ratio was 45:1, the inoculum concentration was 10%, and the fermentation time was 7 d, the n-butanol extract of the fermentation product had the strongest scavenging capacity for free radical generated through 2,2'-azino-bis(3-ethylbenzothiazoline)-6-sulphonic acid (ABTS·+). The concentration for 50% of the maximal effect (EC50) was 0.33 ± 0.01 mg/mL. Moreover, in order to identify the two main components, the elution-extrusion counter-current chromatography (EECCC) was employed for separation, where 5,5'-oxy-dimethyl-bis(2-furfuraldehyde) and 5-(butoxymethyl) furfural were obtained. The antioxidant activity of 5,5'-oxy-dimethyl-bis(2-furfuraldehyde) (EC50 = 0.26 ± 0.01 mg/mL) was superior to that of 5-butylmethyl furfural (EC50 = 1.52 ± 0.02 mg/mL), indicating that 5,5'-oxy-dimethyl-bis(2-furfuraldehyde) was the main antioxidant in the fermentation products. The thermodynamic parameters and frontier molecular orbitals of 5,5'-oxy-dimethyl-bis (2-furanaldehyde) was evaluated by density functional theory (DFT). The result indicated 5,5'-oxy-dimethyl-bis(2-furanaldehyde) scavenged free radicals in polar media through single electron transfer followed by proton transfer (SET-PT).


Asunto(s)
Agaricus , Antioxidantes , Antioxidantes/farmacología , Antioxidantes/química , Fermentación , Furaldehído , Agaricus/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA