Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Med Virol ; 96(2): e29443, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38373154

RESUMEN

Cross-neutralizing activity of human antibody response against Dengue virus complex (DENV) changes importantly over time. Domain III (DIII) of the envelope protein of DENV elicits a potently neutralizing and mostly type-specific IgG response. We used sera from 24 individuals from early- or late convalescence of DENV1 infection to investigate the evolution of anti-DIII human IgG with the time lapse since the infection. We evaluated the correlation between the serotype-specific reactivity against recombinant DIII proteins and the neutralization capacity against the four serotypes, and examined its behavior with the time of convalescence. Also, we use a library of 71 alanine mutants of surface-exposed amino acid residues to investigate the dominant epitopes. In early convalescence anti-DIII titers and potency of virus neutralization were positively associated with correlation coefficients from 0.82 to 1.0 for the four serotypes. For late convalescence, a positive correlation (r = 0.69) was found only for DENV1. The dominant epitope of the type-specific response is centered in the FG-loop (G383, E384, and K385) and includes most of the lateral ridge. The dominant epitope of the anti-DIII cross-reactive IgG in secondary infections shifts from the A-strand during early convalescence to a site centered in residues E314-H317 of the AB-loop and I352-E368 of the DI/DIII interface, in late convalescence. An immunoassay based on the detection of IgG anti-DIII response can be implemented for detection of infecting serotype in diagnosis of DENV infection, either primary or secondary. Human dominant epitopes of the cross-reactive circulating antibodies change with time of convalescence.


Asunto(s)
Virus del Dengue , Dengue , Humanos , Epítopos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Formación de Anticuerpos , Convalecencia , Proteínas del Envoltorio Viral , Proteínas Recombinantes/metabolismo , Inmunoglobulina G/metabolismo , Reacciones Cruzadas
2.
Bioorg Med Chem Lett ; 104: 129732, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38583785

RESUMEN

Osteoporosis is a progressive systemic skeletal disease that decreases bone density and bone quality, making them fragile and easy to break. In spite of effective anti-osteoporosis potency, teriparatide, the first anabolic medications approved for the treatment of osteoporosis, was proven to exhibit various side effects. And the relevant structure-activity relationship (SAR) of teriparatide was in need. In this work, we performed a systematical alanine scanning against teriparatide and synthesized 34 teriparatide derivatives. Their biological activities were evaluated and the importance of each residue for anti-osteoporosis activity was also revealed. A remarkable decrease in activity was observed for alanine replacement of the residue Gly12, His14, Ser17, Arg20 and Leu24, showcasing the important role of these residues in teriparatide on anti-osteoporosis activity. On contrary, when Gly13 and Gln30 were mutated to Ala, the peptide derivatives exhibited the significantly increased activities, demonstrating that these two residues could be readily replaced. Our research expanded the peptide library of teriparatide analogues and presented a potential opportunity for designing the more powerful anti-osteoporosis peptide agents.


Asunto(s)
Conservadores de la Densidad Ósea , Osteoporosis , Teriparatido , Humanos , Densidad Ósea , Conservadores de la Densidad Ósea/efectos adversos , Conservadores de la Densidad Ósea/química , Osteoporosis/tratamiento farmacológico , Relación Estructura-Actividad , Teriparatido/efectos adversos , Teriparatido/análogos & derivados , Análisis Mutacional de ADN , Mutagénesis Sitio-Dirigida , Alanina/genética
3.
Molecules ; 29(4)2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38398632

RESUMEN

The major histocompatibility complex (MHC) can recognize and bind to external peptides to generate effective immune responses by presenting the peptides to T cells. Therefore, understanding the binding modes of peptide-MHC complexes (pMHC) and predicting the binding affinity of pMHCs play a crucial role in the rational design of peptide vaccines. In this study, we employed molecular dynamics (MD) simulations and free energy calculations with an Alanine Scanning with Generalized Born and Interaction Entropy (ASGBIE) method to investigate the protein-peptide interaction between HLA-A*02:01 and the G9209 peptide derived from the melanoma antigen gp100. The energy contribution of individual residue was calculated using alanine scanning, and hotspots on both the MHC and the peptides were identified. Our study shows that the pMHC binding is dominated by the van der Waals interactions. Furthermore, we optimized the ASGBIE method, achieving a Pearson correlation coefficient of 0.91 between predicted and experimental binding affinity for mutated antigens. This represents a significant improvement over the conventional MM/GBSA method, which yields a Pearson correlation coefficient of 0.22. The computational protocol developed in this study can be applied to the computational screening of antigens for the MHC1 as well as other protein-peptide binding systems.


Asunto(s)
Péptidos , Proteínas , Péptidos/química , Proteínas/metabolismo , Unión Proteica , Complejo Mayor de Histocompatibilidad , Antígenos de Histocompatibilidad/metabolismo , Alanina/metabolismo
4.
J Mol Biol ; 436(12): 168607, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38734203

RESUMEN

Polyglutamine (polyQ) sequences undergo repeat-length dependent formation of disease-associated, amyloid-like cross-ß core structures with kinetics and aggregate morphologies often influenced by the flanking sequences. In Huntington's disease (HD), the httNT segment on the polyQ's N-terminal flank enhances aggregation rates by changing amyloid nucleation from a classical homogeneous mechanism to a two-step process requiring an ɑ-helix-rich oligomeric intermediate. A folded, helix-rich httNT tetrameric structure suggested to be this critical intermediate was recently reported. Here we employ single alanine replacements along the httNT sequence to assess this proposed structure and refine the mechanistic model. We find that Ala replacement of hydrophobic residues within simple httNT peptides greatly suppresses helicity, supporting the tetramer model. These same helix-disruptive replacements in the httNT segment of an exon-1 analog greatly reduce aggregation kinetics, suggesting that an ɑ-helix rich multimer - either the tetramer or a larger multimer - plays an on-pathway role in nucleation. Surprisingly, several other Ala replacements actually enhance helicity and/or amyloid aggregation. The spatial localization of these residues on the tetramer surface suggests a self-association interface responsible for formation of the octomers and higher-order multimers most likely required for polyQ amyloid nucleation. Multimer docking of the tetramer, using the protein-protein docking algorithm ClusPro, predicts this symmetric surface to be a viable tetramer dimerization interface. Intriguingly, octomer formation brings the emerging polyQ chains into closer proximity at this tetramer-tetramer interface. Further supporting the potential importance of tetramer super-assembly, computational docking with a known exon-1 aggregation inhibitor predicts ligand contacts with residues at this interface.


Asunto(s)
Amiloide , Exones , Proteína Huntingtina , Multimerización de Proteína , Humanos , Amiloide/química , Amiloide/metabolismo , Proteína Huntingtina/química , Proteína Huntingtina/metabolismo , Proteína Huntingtina/genética , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/genética , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Modelos Moleculares , Péptidos/química , Péptidos/metabolismo , Agregado de Proteínas
5.
ChemMedChem ; : e202400488, 2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39128881

RESUMEN

A preference for several amino acids is observed to occur at particular positions of cationic α-helical antimicrobial peptides (AMPs), which ensures the formation of amphipathic regions once they assume their correct secondary structure in membranes or membrane-mimicking environments and makes them active against pathogens. This study determined the effect of alanine mutations on the secondary structure and bioactivity of lyp1987 (GRLQAFLAKMKEIAAQTL-NH2), a  cationic α-helical AMP obtained from the venom of Lycosa poonaensis which exhibits broad range activity against Gram-positive and Gram-negative bacteria with micromolar minimum inhibitory concentrations (MIC). CD spectroscopy revealed no significant difference in the secondary structure, with all alanine-substituted analogs exhibiting predominantly α-helical structure in buffered 2,2,2-trifluoroethanol solution. Alanine substitution at Glu12 and Thr17 increased the activity of lyp1987 against Gram-positive and -negative bacteria, while alanine substitution at Lys9 increased its selectivity against Gram-positive bacteria. Further investigation can be done to determine positions and substitutions that will give less cytotoxic analogs.

6.
PeerJ ; 12: e17069, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38549779

RESUMEN

In this work we carried out an in silico analysis to understand the interaction between InvF-SicA and RNAP in the bacterium Salmonella Typhimurium strain LT2. Structural analysis of InvF allowed the identification of three possible potential cavities for interaction with SicA. This interaction could occur with the structural motif known as tetratricopeptide repeat (TPR) 1 and 2 in the two cavities located in the interface of the InvF and α-CTD of RNAP. Indeed, molecular dynamics simulations showed that SicA stabilizes the Helix-turn-Helix DNA-binding motifs, i.e., maintaining their proper conformation, mainly in the DNA Binding Domain (DBD). Finally, to evaluate the role of amino acids that contribute to protein-protein affinity, an alanine scanning mutagenesis approach, indicated that R177 and R181, located in the DBD motif, caused the greatest changes in binding affinity with α-CTD, suggesting a central role in the stabilization of the complex. However, it seems that the N-terminal region also plays a key role in the protein-protein interaction, especially the amino acid R40, since we observed conformational flexibility in this region allowing it to interact with interface residues. We consider that this analysis opens the possibility to validate experimentally the amino acids involved in protein-protein interactions and explore other regulatory complexes where chaperones are involved.


Asunto(s)
Proteínas Bacterianas , Chaperonas Moleculares , Proteínas Bacterianas/genética , Chaperonas Moleculares/genética , Salmonella typhimurium/genética , Aminoácidos/metabolismo , ADN/metabolismo
7.
Int J Biol Macromol ; 268(Pt 2): 131836, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38692553

RESUMEN

Multiple species of Bifidobacterium exhibit the ability to bioconvert conjugated fatty acids (CFAs), which is considered an important pathway for these strains to promote host health. However, there has been limited progress in understanding the enzymatic mechanism of CFA bioconversion by bifidobacteria, despite the increasing number of studies identifying CFA-producing strains. The protein responsible for polyunsaturated fatty acid (PUFA) isomerization in B. breve CCFM683 has recently been discovered and named BBI, providing a starting point for exploring Bifidobacterium isomerases (BIs). This study presents the sequence classification of membrane-bound isomerases from four common Bifidobacterium species that produce CFA. Heterologous expression, purification, and enzymatic studies of the typical sequences revealed that all possess a single c9, t11 isomer as the product and share common features in terms of enzymatic properties and catalytic kinetics. Using molecular docking and alanine scanning, Lys84, Tyr198, Asn202, and Leu245 located in the binding pocket were identified as critical to the catalytic activity, a finding further confirmed by site-directed mutagenesis-based screening assays. Overall, these findings provide insightful knowledge concerning the molecular mechanisms of BIs. This will open up additional opportunities for the use of bifidobacteria and CFAs in probiotic foods and precision nutrition.


Asunto(s)
Bifidobacterium , Ácidos Grasos Insaturados , Bifidobacterium/enzimología , Bifidobacterium/genética , Bifidobacterium/metabolismo , Ácidos Grasos Insaturados/metabolismo , Ácidos Grasos Insaturados/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Simulación del Acoplamiento Molecular , Isomerismo , Cinética , Secuencia de Aminoácidos , Mutagénesis Sitio-Dirigida , Probióticos/metabolismo
8.
Monoclon Antib Immunodiagn Immunother ; 43(4): 101-107, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38836509

RESUMEN

The C-C motif chemokine receptor 8 (CCR8) is highly and selectively expressed in regulatory T (Treg) cells and is associated with tumor progression. The massive accumulation of Treg cells into tumors suppresses the effector function of CD8+ cells against tumor cells. Therefore, selective depletion of Treg cells using anti-CCR8 monoclonal antibodies (mAbs) reinvigorates antitumor immune responses and improves responses to cancer immunotherapy. Previously, we developed an anti-mouse CCR8 (mCCR8) mAb, C8Mab-2, using the Cell-Based Immunization and Screening method. In this study, the binding epitope of C8Mab-2 was investigated using flow cytometry. The mCCR8 extracellular domain-substituted mutant analysis showed that C8Mab-2 recognizes the N-terminal region (1-33 amino acids) of mCCR8. Next, 1×alanine (or glycine) scanning and 2×alanine (or glycine) scanning were conducted in the N-terminal region. The results revealed that the 17-DFFTAP-22 sequence is important for the recognition by C8Mab-2, and Thr20 is a central amino acid of the epitope. These results revealed the involvement of the N-terminus of mCCR8 in the recognition by C8Mab-2.


Asunto(s)
Anticuerpos Monoclonales , Mapeo Epitopo , Citometría de Flujo , Receptores CCR8 , Animales , Mapeo Epitopo/métodos , Ratones , Anticuerpos Monoclonales/inmunología , Receptores CCR8/inmunología , Receptores CCR8/genética , Epítopos/inmunología , Humanos , Linfocitos T Reguladores/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA