Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Proc Biol Sci ; 287(1929): 20200550, 2020 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-32546092

RESUMEN

Reciprocal subsidies link ecosystems into meta-ecosystems, but energy transfer to organisms that do not cross boundaries may create sinks, reducing reciprocal subsidy transfer. We investigated how the type of subsidy and top predator presence influenced reciprocal flows of energy, by manipulating the addition of terrestrial leaf and terrestrial insect subsidies to experimental freshwater pond mesocosms with and without predatory fish. Over 18 months, fortnightly addition of subsidies (terrestrial beetle larvae) to top-predators was crossed with monthly addition of subsidies (willow leaves) to primary consumers in mesocosms with and without top predators (upland bullies) in a 2 × 2 × 2 factorial design in four replicate blocks. Terrestrial insect subsidies increased reciprocal flows, measured as the emergence of aquatic insects out of mesocosms, but leaf subsidies dampened those effects. However, the presence of fish and snails, consumers with no terrestrial life stage, usurped and retained the energy within in the aquatic ecosystem, creating a cross-ecosystem bottleneck to energy flow. Thus, changes in species composition of donor or recipient food webs within a meta-ecosystems can alter reciprocal subsidies through cross-ecosystem bottlenecks.


Asunto(s)
Ecosistema , Insectos/fisiología , Animales , Peces , Cadena Alimentaria , Agua Dulce , Hojas de la Planta , Estanques , Conducta Predatoria
2.
Sci Total Environ ; 913: 169735, 2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38163597

RESUMEN

The conservation and management of riparian ecosystems rely on understanding the ecological consequences of anthropogenic stressors that impact natural communities. In this context, studies investigating the effects of anthropogenic stressors require reliable methods capable of mapping the relationships between taxa occurrence or abundance and environmental predictors within a spatio-temporal framework. Here, we present an integrative approach using DNA metabarcoding and Hierarchical Modelling of Species Communities (HMSC) to unravel the intricate dynamics and resilience of chironomid communities exposed to Bacillus thuringiensis var. israelensis (Bti). Chironomid emergence was sampled from a total of 12 floodplain pond mesocosms, half of which received Bti treatment, during a 16-week period spanning spring and summer of 2020. Subsequently, we determined the community compositions of chironomids and examined their genus-specific responses to the Bti treatment, considering their phylogenetic affiliations and ecological traits of the larvae. Additionally, we investigated the impact of the Bti treatment on the body size distribution of emerging chironomids. Our study revealed consistent responses to Bti among different chironomid genera, indicating that neither phylogenetic affiliations nor larval feeding strategies significantly contributed to the observed patterns. Both taxonomic and genetic diversity were positively correlated with the number of emerged individuals. Furthermore, our findings demonstrated Bti-related effects on chironomid body size distribution, which could have relevant implications for size-selective terrestrial predators. Hence, our study highlights the value of employing a combination of DNA metabarcoding and HMSC to unravel the complex dynamics of Bti-related non-target effects on chironomid communities. The insights gained from this integrated framework contribute to our understanding of the ecological consequences of anthropogenic stressors and provide a foundation for informed decision-making regarding the conservation and management of riparian ecosystems.


Asunto(s)
Bacillus thuringiensis , Chironomidae , Culicidae , Humanos , Animales , Ecosistema , Chironomidae/fisiología , Control de Mosquitos/métodos , Código de Barras del ADN Taxonómico , Filogenia , Larva , Control Biológico de Vectores
3.
Environ Toxicol Chem ; 42(1): 60-70, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36205389

RESUMEN

Exposure of freshwater ecosystems to insecticides can negatively impact the development of emerging aquatic insects. These insects serve as an important nutritional subsidy for terrestrial insectivores. Changes in insect emergence phenology (i.e., emergence success and temporal pattern) or fluxes of insecticides retained by the emerging adults have the potential to negatively impact terrestrial food webs. These processes are influenced by contaminant toxicity, lipohilicity, or metabolic processes. The interplay between emergence phenology, contaminant retention through metamorphosis, and associated contaminant flux is not yet understood for current-use insecticides. In a microcosm study, we evaluated the impacts of a 24-h pulse exposure of one of three current-use insecticides, namely pirimicarb, indoxacarb, and thiacloprid, at two environmentally realistic concentration levels on the larval development and emergence of the nonbiting midge Chironomus riparius. In addition, we measured insecticide concentrations in the larvae and adults using ultrahigh performance liquid chromatography coupled to tandem mass spectrometry by electrospray ionization. Exposure to pirimicarb delayed larval development and emergence, and exposure to indoxacarb reduced emergence success. The neonicotinoid thiacloprid had the greatest impact by reducing larval survival and emergence success. At the same time, thiacloprid was the only insecticide measured in the adults with average concentrations of 10.3 and 37.3 ng/g after exposure at 0.1 and 4 µg/L, respectively. In addition, an approximate 30% higher survival to emergence after exposure to 0.1 µg/L relative to a 4-µg/L exposure resulted in a relatively higher flux of thiacloprid, from the aquatic to the terrestrial environment, at the lower exposure. Our experimental results help to explain the impacts of current-use insecticides on aquatic-terrestrial subsidy coupling and indicate the potential for widespread dietary exposure of terrestrial insectivores preying on emerging aquatic insects to the neonicotinoid thiacloprid. Environ Toxicol Chem 2023;42:60-70. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Chironomidae , Insecticidas , Animales , Insecticidas/toxicidad , Insecticidas/análisis , Ecosistema , Neonicotinoides/toxicidad , Insectos , Larva
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA