Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 173(2): 430-442.e17, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29606353

RESUMEN

Fetal hemoglobin (HbF, α2γ2) level is genetically controlled and modifies severity of adult hemoglobin (HbA, α2ß2) disorders, sickle cell disease, and ß-thalassemia. Common genetic variation affects expression of BCL11A, a regulator of HbF silencing. To uncover how BCL11A supports the developmental switch from γ- to ß- globin, we use a functional assay and protein binding microarray to establish a requirement for a zinc-finger cluster in BCL11A in repression and identify a preferred DNA recognition sequence. This motif appears in embryonic and fetal-expressed globin promoters and is duplicated in γ-globin promoters. The more distal of the duplicated motifs is mutated in individuals with hereditary persistence of HbF. Using the CUT&RUN approach to map protein binding sites in erythroid cells, we demonstrate BCL11A occupancy preferentially at the distal motif, which can be disrupted by editing the promoter. Our findings reveal that direct γ-globin gene promoter repression by BCL11A underlies hemoglobin switching.


Asunto(s)
Proteínas Portadoras/metabolismo , Hemoglobina Fetal/genética , Proteínas Nucleares/metabolismo , Secuencia de Bases , Sitios de Unión , Proteínas Portadoras/genética , Línea Celular , Cromatina/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Células Eritroides/citología , Células Eritroides/metabolismo , Edición Génica , Humanos , Proteínas Nucleares/genética , Regiones Promotoras Genéticas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Represoras , Dedos de Zinc/genética , Globinas beta/genética , Talasemia beta/genética , Talasemia beta/patología , gamma-Globinas/genética
2.
Proc Natl Acad Sci U S A ; 120(3): e2218959120, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36626555

RESUMEN

Transcription factors (TFs) control numerous genes that are directly relevant to many human disorders. However, developing specific reagents targeting TFs within intact cells is challenging due to the presence of highly disordered regions within these proteins. Intracellular antibodies offer opportunities to probe protein function and validate therapeutic targets. Here, we describe the optimization of nanobodies specific for BCL11A, a validated target for the treatment of hemoglobin disorders. We obtained first-generation nanobodies directed to a region of BCL11A comprising zinc fingers 4 to 6 (ZF456) from a synthetic yeast surface display library, and employed error-prone mutagenesis, structural determination, and molecular modeling to enhance binding affinity. Engineered nanobodies recognized ZF6 and mediated targeted protein degradation (TPD) of BCL11A protein in erythroid cells, leading to the anticipated reactivation of fetal hemoglobin (HbF) expression. Evolved nanobodies distinguished BCL11A from its close paralog BCL11B, which shares an identical DNA-binding specificity. Given the ease of manipulation of nanobodies and their exquisite specificity, nanobody-mediated TPD of TFs should be suitable for dissecting regulatory relationships of TFs and gene targets and validating therapeutic potential of proteins of interest.


Asunto(s)
Anticuerpos de Dominio Único , Humanos , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteínas Portadoras/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Hemoglobina Fetal/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(25): e2302254120, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37307480

RESUMEN

During human development, there is a switch in the erythroid compartment at birth that results in silencing of expression of fetal hemoglobin (HbF). Reversal of this silencing has been shown to be effective in overcoming the pathophysiologic defect in sickle cell anemia. Among the many transcription factors and epigenetic effectors that are known to mediate HbF silencing, two of the most potent are BCL11A and MBD2-NuRD. In this report, we present direct evidence that MBD2-NuRD occupies the γ-globin gene promoter in adult erythroid cells and positions a nucleosome there that results in a closed chromatin conformation that prevents binding of the transcriptional activator, NF-Y. We show that the specific isoform, MBD2a, is required for the formation and stable occupancy of this repressor complex that includes BCL11A, MBD2a-NuRD, and the arginine methyltransferase, PRMT5. The methyl cytosine binding preference and the arginine-rich (GR) domain of MBD2a are required for high affinity binding to methylated γ-globin gene proximal promoter DNA sequences. Mutation of the methyl cytosine-binding domain (MBD) of MBD2 results in a variable but consistent loss of γ-globin gene silencing, in support of the importance of promoter methylation. The GR domain of MBD2a is also required for recruitment of PRMT5, which in turn results in placement of the repressive chromatin mark H3K8me2s at the promoter. These findings support a unified model that integrates the respective roles of BCL11A, MBD2a-NuRD, PRMT5, and DNA methylation in HbF silencing.


Asunto(s)
Hemoglobina Fetal , gamma-Globinas , Adulto , Recién Nacido , Humanos , Genes Reguladores , Factores de Transcripción , Cromatina , Citosina , Proteína-Arginina N-Metiltransferasas , Proteínas de Unión al ADN
4.
Development ; 149(17)2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36069896

RESUMEN

In the developing nervous system, neural stem cells (NSCs) use temporal patterning to generate a wide variety of different neuronal subtypes. In Drosophila, the temporal transcription factors, Hunchback, Kruppel, Pdm and Castor, are sequentially expressed by NSCs to regulate temporal identity during neurogenesis. Here, we identify a new temporal transcription factor that regulates the transition from the Pdm to Castor temporal windows. This factor, which we call Chronophage (or 'time-eater'), is homologous to mammalian CTIP1 (Bcl11a) and CTIP2 (Bcl11b). We show that Chronophage binds upstream of the castor gene and regulates its expression. Consistent with Chronophage promoting a temporal switch, chronophage mutants generate an excess of Pdm-specified neurons and are delayed in generating neurons associated with the Castor temporal window. In addition to promoting the Pdm to Castor transition, Chronophage also represses the production of neurons generated during the earlier Hunchback and Kruppel temporal windows. Genetic interactions with Hunchback and Kruppel indicate that Chronophage regulates NSC competence to generate Hunchback- and Kruppel-specified neurons. Taken together, our results suggest that Chronophage has a conserved role in temporal patterning and neuronal subtype specification.


Asunto(s)
Proteínas de Drosophila , Células-Madre Neurales , Animales , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Mamíferos/metabolismo , Células-Madre Neurales/metabolismo , Receptores de Superficie Celular/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo
5.
Stem Cells ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39110040

RESUMEN

Prior evidence indicates that the erythroid cellular response to glucocorticoids (GC) has developmental specificity, namely, that developmentally more advanced cells that are undergoing or have undergone fetal to adult globin switching are more responsive to GC-induced expansion. To investigate the molecular underpinnings of this, we focused on the major developmental globin regulator BCL11A. We compared: a) levels of expression and nuclear content of BCL11A in adult erythroid cells upon GC stimulation; b) response to GC of CD34+ cells from patients with BCL11A microdeletions and reduced BCL11A expression, and; c) response to GC of two cellular models (HUDEP-2 and adult CD34+ cells) before and after reduction of BCL11A expression by shRNA. We observed that: a) GC-expanded erythroid cells from a large cohort of blood donors displayed amplified expression and nuclear accumulation of BCL11A; b) CD34+ cells from BCL11A microdeletion patients generated fewer erythroid cells when cultured with GC compared to their parents, while the erythroid expansion of the patients was similar to that of their parents in cultures without GC, and; c) adult CD34+ cells and HUDEP-2 cells with shRNA-depleted expression of BCL11A exhibit reduced expansion in response to GC. In addition, RNA-seq profiling of shRNA-BCL11A CD34+ cells cultured with and without GC was similar (very few differentially expressed genes), while GC-specific responses (differential expression of GILZ and of numerous additional genes) were observed only in controls cells with unperturbed BCL11A expression. These data indicate that BCL11A is an important participant of certain aspects of the stress pathway sustained by GC.

6.
Mol Ther ; 32(3): 663-677, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38273654

RESUMEN

BCL11A-XL directly binds and represses the fetal globin (HBG1/2) gene promoters, using 3 zinc-finger domains (ZnF4, ZnF5, and ZnF6), and is a potential target for ß-hemoglobinopathy treatments. Disrupting BCL11A-XL results in derepression of fetal globin and high HbF, but also affects hematopoietic stem and progenitor cell (HSPC) engraftment and erythroid maturation. Intriguingly, neurodevelopmental patients with ZnF domain mutations have elevated HbF with normal hematological parameters. Inspired by this natural phenomenon, we used both CRISPR-Cas9 and base editing at specific ZnF domains and assessed the impacts on HbF production and hematopoietic differentiation. Generating indels in the various ZnF domains by CRISPR-Cas9 prevented the binding of BCL11A-XL to its site in the HBG1/2 promoters and elevated the HbF levels but affected normal hematopoiesis. Far fewer side effects were observed with base editing- for instance, erythroid maturation in vitro was near normal. However, we observed a modest reduction in HSPC engraftment and a complete loss of B cell development in vivo, presumably because current base editing is not capable of precisely recapitulating the mutations found in patients with BCL11A-XL-associated neurodevelopment disorders. Overall, our results reveal that disrupting different ZnF domains has different effects. Disrupting ZnF4 elevated HbF levels significantly while leaving many other erythroid target genes unaffected, and interestingly, disrupting ZnF6 also elevated HbF levels, which was unexpected because this region does not directly interact with the HBG1/2 promoters. This first structure/function analysis of ZnF4-6 provides important insights into the domains of BCL11A-XL that are required to repress fetal globin expression and provide framework for exploring the introduction of natural mutations that may enable the derepression of single gene while leaving other functions unaffected.


Asunto(s)
Edición Génica , gamma-Globinas , Humanos , Edición Génica/métodos , gamma-Globinas/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Células Madre Hematopoyéticas/metabolismo , Dedos de Zinc , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo
7.
EMBO Rep ; 23(8): e54104, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35766181

RESUMEN

Developmental neuron death plays a pivotal role in refining organization and wiring during neocortex formation. Aberrant regulation of this process results in neurodevelopmental disorders including impaired learning and memory. Underlying molecular pathways are incompletely determined. Loss of Bcl11a in cortical projection neurons induces pronounced cell death in upper-layer cortical projection neurons during postnatal corticogenesis. We use this genetic model to explore genetic mechanisms by which developmental neuron death is controlled. Unexpectedly, we find Bcl6, previously shown to be involved in the transition of cortical neurons from progenitor to postmitotic differentiation state to provide a major checkpoint regulating neuron survival during late cortical development. We show that Bcl11a is a direct transcriptional regulator of Bcl6. Deletion of Bcl6 exerts death of cortical projection neurons. In turn, reintroduction of Bcl6 into Bcl11a mutants prevents induction of cell death in these neurons. Together, our data identify a novel Bcl11a/Bcl6-dependent molecular pathway in regulation of developmental cell death during corticogenesis.


Asunto(s)
Neocórtex , Factores de Transcripción , Muerte Celular/genética , Diferenciación Celular/genética , Regulación del Desarrollo de la Expresión Génica , Neocórtex/metabolismo , Neuronas/metabolismo , Factores de Transcripción/metabolismo
8.
Exp Cell Res ; 433(2): 113827, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-37926342

RESUMEN

Neurodevelopmental disorders (NDD) are a group of disorders that include intellectual disability. Although several genes have been implicated in NDD, the molecular mechanisms underlying its pathogenesis remain unclear. Therefore, it is important to develop novel models to analyze the functions of NDD-causing genes in vivo. Recently, rare pathogenic variants of the B-cell lymphoma/leukemia11A/B (BCL11A/B) gene have been identified in several patients with NDD. Drosophila carries the Chronophage (Cph) gene, which has been predicted to be a homolog of BCL11A/B based on the conservation of the amino acid sequence. In the present study, we investigated whether nervous system-specific knockdown of Cph mimics NDD phenotypes in Drosophila. Nervous system-specific knockdown of Cph induced learning and locomotor defects in larvae and epilepsy-like behaviors in adults. The number of synaptic branches was also elevated in the larval neuromuscular junction without a corresponding increase in the number of boutons. Furthermore, the expression levels of putative target genes that are Drosophila homologs of the mammalian BCL11 target genes were decreased in Cph knockdown flies. These results suggest that Cph knockdown flies are a promising model for investigating the pathology of NDD-induced BCL11A/B dysfunction.


Asunto(s)
Drosophila , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Drosophila/genética , Discapacidad Intelectual/genética , Mamíferos , Trastornos del Neurodesarrollo/genética , Proteínas Represoras , Factores de Transcripción/genética , Proteínas de Drosophila/genética
9.
Hemoglobin ; 48(2): 94-100, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38390736

RESUMEN

To assess the roles of genetic modifiers in Iraqi ß-thalassemia patients, and determine whether a genotype-based scoring system could be used to predict phenotype, a total of 224 Iraqi patients with molecularly characterized homozygous or compound heterozygous ß-thalassemia were further investigated for α-thalassemia deletions as well as five polymorphisms namely: rs7482144 C > T at HBG2, rs1427407 G > T and rs10189857 A > G at BCL11A, and rs28384513 A > C and rs9399137 T > C at HMIP. The enrolled patients had a median age of 14 years, with 96 males and 128 females. They included 144 thalassemia major, and 80 thalassemia intermedia patients. Multivariate logistic regression analysis revealed that a model including sex and four of these genetic modifiers, namely: ß+ alleles, HBG2 rs7482144, α-thalassemia deletions, and BCL11A rs1427407 could significantly predict phenotype (major versus intermedia) with an overall accuracy of 83.9%. Furthermore, a log odds genetic score based on these significant predictors had a highly significant area under curve of 0.917 (95% CI 0.882-0.953). This study underscores the notion that genetic scoring systems should be tailored to populations in question, since genetic modifiers (and/or their relative weight) vary between populations. The population-oriented genetic scoring system created by the current study to predict ß-thalassemia phenotype among Iraqis may pave the way to personalized medicine in this patient's group.


Asunto(s)
Fenotipo , Polimorfismo de Nucleótido Simple , Medicina de Precisión , Proteínas Represoras , Talasemia beta , Humanos , Talasemia beta/genética , Talasemia beta/diagnóstico , Masculino , Femenino , Irak , Adolescente , Niño , Genotipo , Alelos , Adulto , Adulto Joven , Preescolar , Talasemia alfa/genética , Talasemia alfa/diagnóstico
10.
Curr Issues Mol Biol ; 45(4): 2681-2698, 2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-37185699

RESUMEN

B-cell leukemia/lymphoma 11A (BCL11A) is a transcription factor that regulates the expression of genes involved in cell division or apoptosis. A link between high BCL11A expression and a worse prognosis has been demonstrated in patients with various cancers. The aim of this study was to investigate the expression pattern of BCL11A in breast cancer (BC) cases and mastopathy samples and to correlate the results with the clinicopathological data. The expression of the BCL11A protein was investigated using immunohistochemistry (IHC) on 200 cases of BC and 13 mastopathy samples. The level of BCL11A mRNA was determined using real-time PCR in 22 cases of BC and 6 mastopathy samples. The expression of BCL11A was also examined at the protein and mRNA levels in BC cell lines. A higher expression level of BCL11A in BC cases was shown compared to mastopathy samples. The expression level of BCL11A in BC cases and in the studied cell lines decreased with the increasing grade of histological malignancy (G). It was also negatively correlated with the primary tumor size. A significantly lower expression of BCL11A was found in BC that did not express estrogen or progesterone receptors and in triple-negative cases. The results of our research suggest that BCL11A may be relevant in the development of BC.

11.
J Virol ; 96(24): e0147022, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36448803

RESUMEN

Hirame novirhabdovirus (HIRRV) infection is characterized by a pronounced viremia, and the high viral load is typically detected in immune-related organs and the circulatory system. In the present study, we demonstrated that HIRRV has the capacity to invade part of flounder membrane-bound IgM (mIgM+) B lymphocyte. Eight quantitative real-time PCR (qRT-PCR) standard curves involving HIRRV genomic RNA (gRNA), cRNA, and six mRNAs were established based on the strand-specific reverse transcription performed with tagged primers. It was revealed that viral RNA synthesis, especially the replication of gRNA, was inhibited in B cells, and the intracellular HIRRV even failed to produce infectious viral particles. Moreover, a range of genes with nucleic acid binding activity or related to viral infection were screened out based on the transcriptome analysis of HIRRV-infected B cells, and five molecules were further selected because of their different expression patterns in HIRRV-infected B cells and hirame natural embryo (HINAE) cells. The overexpression of these genes followed by HIRRV infection and RNA binding protein immunoprecipitation (RIP) assay revealed that the flounder B cell lymphoma/leukemia 11A (BCL11A), a highly conserved zinc finger transcription factor, is able to inhibit the proliferation of HIRRV by binding with full-length viral RNA mainly via its zinc finger domains at the C terminus. In conclusion, these data indicated that the high transcriptional activity of BCL11A in flounder mIgM+ B lymphocytes is a crucial factor for the abortive infection of HIRRV, and our findings provide new insights into the interaction between HIRRV and teleost B cells. IMPORTANCE HIRRV is a fish rhabdovirus that is considered as an important pathogen threatening the fish farming industry represented by flounder because of its high infectivity and fatality rate. To date, research toward understanding the complex pathogenic mechanism of HIRRV is still in its infancy and faces many challenges. Exploration of the relationship between HIRRV and its target cells is interesting and necessary. Here, we revealed that flounder mIgM+ B cells are capable of suppressing viral RNA synthesis and result in an unproductive infection of HIRRV. In addition, our results demonstrated that zinc finger protein BCL11A, a transcription factor in B cells, is able to suppress the replication of HIRRV. These findings increased our understanding of the underlying characteristics of HIRRV infection and revealed a novel antiviral mechanism against HIRRV based on the host restriction factor in teleost B cells, which sheds new light on the research into HIRRV control.


Asunto(s)
Linfocitos B , Enfermedades de los Peces , Novirhabdovirus , Infecciones por Rhabdoviridae , Factores de Transcripción , Animales , Linfocitos B/virología , Enfermedades de los Peces/virología , Lenguado/virología , Novirhabdovirus/genética , Novirhabdovirus/patogenicidad , Infecciones por Rhabdoviridae/veterinaria , Infecciones por Rhabdoviridae/virología , ARN Viral , Replicación Viral
12.
Ann Hematol ; 102(7): 1845-1856, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37148312

RESUMEN

B-cell lymphoma/leukemia 11A (BCL11A) is highly expressed in B-cell non-Hodgkin lymphoma (B-NHL), blocks cell differentiation, and inhibits cell apoptosis. However, little is known about BCL11A in the proliferation, invasion, and migration of B-NHL cells. Here, we found increased expression of BCL11A in B-NHL patients and cell lines. Knockdown of BCL11A suppressed the proliferation, invasion, and migration of B-NHL cells in vitro and reduced tumor growth in vivo. RNA sequencing (RNA-seq) and KEGG pathway analysis demonstrated that BCL11A-targeted genes were significantly enriched in the PI3K/AKT signaling pathway, focal adhesion, and extracellular matrix (ECM)-receptor interaction (including COL4A1, COL4A2, FN1, SPP1), and SPP1 was the most significantly downregulated gene. qRT‒PCR, western blotting, and immunohistochemistry revealed that silencing BCL11A reduced the expression level of SPP1 in Raji cells. Our study suggested that high level of BCL11A may promote B-NHL proliferation, invasion, and migration, and the BCL11A-SPP1 regulatory axis may play an important role in Burkitt's lymphoma.


Asunto(s)
Linfoma de Células B , Fosfatidilinositol 3-Quinasas , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Línea Celular Tumoral , Factores de Transcripción/metabolismo , Apoptosis , Proliferación Celular , Análisis de Secuencia de ARN , Regulación Neoplásica de la Expresión Génica , Movimiento Celular , Proteínas Represoras/metabolismo
13.
Bioorg Chem ; 140: 106768, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37586133

RESUMEN

Pharmacological induction of fetal hemoglobin has proven to be a promising therapeutic intervention in ß-hemoglobinopathies by reducing the globin chain imbalance and inhibiting sickle cell polymerization. Fagonia indica has shown therapeutic relevance to ß-thalassemia. Therefore, we study the ethnopharmacological potential of Fagonia indica and its biomarker compounds for their HbF induction ability for the treatment of ß-thalassemia. Here, we identify, compound 8 (triterpenoid glycosides) of F. indica. as a prominent HbF inducer in-vitro and in-vivo. Compound 8 showed potent erythroid differentiation, enhanced cellular proliferation, ample accumulation of total hemoglobin, and a strong notion of γ-globin gene expression in K562 cultures. Compound 8 treatment also revealed strong induction of erythroid differentiation and fetal hemoglobin mRNA and protein in adult erythroid precursor cells. This induction was associated with simultaneous downregulation of BCL11A and SOX6, and overexpression of the GATA-1 gene, suggesting a compound 8-mediated partial mechanism involved in the reactivation of fetal-like globin genes. The in vivo study with compound 8 (10 mg/kg) in ß-YAC mice resulted in significant HbF synthesis demonstrated by the enhanced level of F-cells (84.14 %) and an 8.85-fold increase in the γ-globin gene. Overall, the study identifies compound 8 as a new HbF-inducing entity and provides an early "proof-of-concept" to enable the initiation of preclinical and clinical studies in the development of this HbF-inducing agent for ß-thalassemia.


Asunto(s)
Hemoglobinopatías , Triterpenos , Talasemia beta , Humanos , Animales , Ratones , gamma-Globinas/genética , gamma-Globinas/metabolismo , Talasemia beta/tratamiento farmacológico , Talasemia beta/genética , Talasemia beta/metabolismo , Glicósidos/farmacología , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , Células K562 , Factores de Transcripción , Expresión Génica , Proteínas Represoras
14.
Cereb Cortex ; 32(17): 3611-3632, 2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-34963132

RESUMEN

The generation and differentiation of cortical projection neurons are extensively regulated by interactive programs of transcriptional factors. Here, we report the cooperative functions of transcription factors Bcl11a and Bcl11b in regulating the development of cortical projection neurons. Among the cells derived from the cortical neural stem cells, Bcl11a is expressed in the progenitors and the projection neurons, while Bcl11b expression is restricted to the projection neurons. Using conditional knockout mice, we show that deficiency of Bcl11a leads to reduced proliferation and precocious differentiation of cortical progenitor cells, which is exacerbated when Bcl11b is simultaneously deleted. Besides defective neuronal production, the differentiation of cortical projection neurons is blocked in the absence of both Bcl11a and Bcl11b: Expression of both pan-cortical and subtype-specific genes is reduced or absent; axonal projections to the thalamus, hindbrain, spinal cord, and contralateral cortical hemisphere are reduced or absent. Furthermore, neurogenesis-to-gliogenesis switch is accelerated in the Bcl11a-CKO and Bcl11a/b-DCKO mice. Bcl11a likely regulates neurogenesis through repressing the Nr2f1 expression. These results demonstrate that Bcl11a and Bcl11b jointly play critical roles in the generation and differentiation of cortical projection neurons and in controlling the timing of neurogenesis-to-gliogenesis switch.


Asunto(s)
Células-Madre Neurales , Factores de Transcripción , Animales , Diferenciación Celular/fisiología , Ratones , Ratones Noqueados , Células-Madre Neurales/metabolismo , Neurogénesis/fisiología , Neuronas/fisiología , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo
15.
Mol Ther ; 30(8): 2693-2708, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35526095

RESUMEN

A promising treatment for ß-hemoglobinopathies is the de-repression of γ-globin expression leading to increased fetal hemoglobin (HbF) by targeting BCL11A. Here, we aim to improve a lentivirus vector (LV) containing a single BCL11A shmiR (SS) to further increase γ-globin induction. We engineered a novel LV to express two shmiRs simultaneously targeting BCL11A and the γ-globin repressor ZNF410. Erythroid cells derived from human HSCs transduced with the double shmiR (DS) showed up to a 70% reduction of both BCL11A and ZNF410 proteins. There was a consistent and significant additional 10% increase in HbF compared to targeting BCL11A alone in erythroid cells. Erythrocytes differentiated from SCD HSCs transduced with the DS demonstrated significantly reduced in vitro sickling phenotype compared to the SS. Erythrocytes differentiated from transduced HSCs from ß-thalassemia major patients demonstrated improved globin chain balance by increased γ-globin with reduced microcytosis. Reconstitution of DS-transduced cells from Berkeley SCD mice was associated with a statistically larger reduction in peripheral blood hemolysis markers compared with the SS vector. Overall, these results indicate that the DS LV targeting BCL11A and ZNF410 can enhance HbF induction for treating ß-hemoglobinopathies and could be used as a model to simultaneously and efficiently target multiple gene products.


Asunto(s)
Hemoglobina Fetal , Hemoglobinopatías , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , Hemoglobinopatías/genética , Hemoglobinopatías/terapia , Humanos , Lentivirus/genética , Lentivirus/metabolismo , Ratones , Proteínas Nucleares/genética , Proteínas Represoras/genética , Factores de Transcripción/metabolismo , gamma-Globinas/genética
16.
Int J Mol Sci ; 24(12)2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37372998

RESUMEN

B-cell leukemia/lymphoma 11A (BCL11A) may be one of the potential biomarkers of non-small cell lung cancer (NSCLC). However, its role in the development of this cancer has not yet been precisely established. The aim of this study was to investigate the expression of BCL11A at the mRNA and protein levels in NSCLC cases and non-malignant lung tissue (NMLT) and to determine the relationship between BCL11A expression and the clinicopathological factors and Ki-67, Slug, Snail and Twist. The localization and the level of BCL11A protein were examined using immunohistochemistry (IHC) on 259 cases of NSCLC, and 116 NMLT samples were prepared as tissue microarrays and using immunofluorescence (IF) in the following cell lines: NCI-H1703, A549 and IMR-90. The mRNA expression of BCL11A was determined using real-time PCR in 33 NSCLC cases, 10 NMLT samples and the cell lines. BCL11A protein expression was significantly higher in NSCLC cases compared to NMLT. Nuclear expression was found in lung squamous cell carcinoma (SCC) cells, while cytoplasmic expression was demonstrated in adenocarcinoma (AC) cells. Nuclear expression of BCL11A decreased with increasing malignancy grade and correlated positively with Ki-67 and Slug and Twist expression. The opposite relationships were found for the cytoplasmic expression of BCL11A. Nuclear expression of BCL11A in NSCLC cells may affect tumor cell proliferation and change their phenotype, thus promoting tumor progression.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/metabolismo , Antígeno Ki-67/metabolismo , Factores de Transcripción/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
17.
Int J Mol Sci ; 23(3)2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35163006

RESUMEN

Molecular therapies and functional studies greatly benefit from spatial and temporal precision of genetic intervention. We therefore conceived and explored tag-activated microRNA (miRNA)-mediated endogene deactivation (TAMED) as a research tool and potential lineage-specific therapy. For proof of principle, we aimed to deactivate γ-globin repressor BCL11A in erythroid cells by tagging the 3' untranslated region (UTR) of BCL11A with miRNA recognition sites (MRSs) for the abundant erythromiR miR-451a. To this end, we employed nucleofection of CRISPR/Cas9 ribonucleoprotein (RNP) particles alongside double- or single-stranded oligodeoxynucleotides for, respectively, non-homologous-end-joining (NHEJ)- or homology-directed-repair (HDR)-mediated MRS insertion. NHEJ-based tagging was imprecise and inefficient (≤6%) and uniformly produced knock-in- and indel-containing MRS tags, whereas HDR-based tagging was more efficient (≤18%), but toxic for longer donors encoding concatenated and thus potentially more efficient MRS tags. Isolation of clones for robust HEK293T cells tagged with a homozygous quadruple MRS resulted in 25% spontaneous reduction in BCL11A and up to 36% reduction after transfection with an miR-451a mimic. Isolation of clones for human umbilical cord blood-derived erythroid progenitor-2 (HUDEP-2) cells tagged with single or double MRS allowed detection of albeit weak γ-globin induction. Our study demonstrates suitability of TAMED for physiologically relevant modulation of gene expression and its unsuitability for therapeutic application in its current form.


Asunto(s)
Células Eritroides/citología , Edición Génica/métodos , MicroARNs/genética , Proteínas Represoras/genética , Regiones no Traducidas 3' , Sistemas CRISPR-Cas , Línea Celular , Reparación del ADN por Unión de Extremidades , Células Eritroides/metabolismo , Células HEK293 , Humanos , Prueba de Estudio Conceptual
18.
J Biol Chem ; 295(33): 11707-11719, 2020 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-32576660

RESUMEN

The phenotypes of each breast cancer subtype are defined by their transcriptomes. However, the transcription factors that regulate differential patterns of gene expression that contribute to specific disease outcomes are not well understood. Here, using gene silencing and overexpression approaches, RNA-Seq, and splicing analysis, we report that the transcription factor B-cell leukemia/lymphoma 11A (BCL11A) is highly expressed in triple-negative breast cancer (TNBC) and drives metastatic disease. Moreover, BCL11A promotes cancer cell invasion by suppressing the expression of muscleblind-like splicing regulator 1 (MBNL1), a splicing regulator that suppresses metastasis. This ultimately increases the levels of an alternatively spliced isoform of integrin-α6 (ITGA6), which is associated with worse patient outcomes. These results suggest that BCL11A sustains TNBC cell invasion and metastatic growth by repressing MBNL1-directed splicing of ITGA6 Our findings also indicate that BCL11A lies at the interface of transcription and splicing and promotes aggressive TNBC phenotypes.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Invasividad Neoplásica/genética , Proteínas Represoras/genética , Neoplasias de la Mama Triple Negativas/genética , Regulación hacia Arriba , Línea Celular Tumoral , Progresión de la Enfermedad , Femenino , Humanos , Invasividad Neoplásica/patología , Metástasis de la Neoplasia/genética , Metástasis de la Neoplasia/patología , Neoplasias de la Mama Triple Negativas/patología
19.
Annu Rev Med ; 70: 257-271, 2019 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-30355263

RESUMEN

The genetic basis of sickle cell disease (SCD) was elucidated >60 years ago, yet current therapy does not rely on this knowledge. Recent advances raise prospects for improved, and perhaps curative, treatment. First, transcription factors, BCL11A and LRF/ZBTB7A, that mediate silencing of the ß-like fetal (γ-) globin gene after birth have been identified and demonstrated to act at the γ-globin promoters, precisely at recognition sequences disrupted in rare individuals with hereditary persistence of fetal hemoglobin. Second, transformative advances in gene editing and progress in lentiviral gene therapy provide diverse opportunities for genetic strategies to cure SCD. Approaches include hematopoietic gene therapy by globin gene addition, gene editing to correct the SCD mutation, and genetic manipulations to enhance fetal hemoglobin production, a potent modifier of the clinical phenotype. Clinical trials may soon identify efficacious and safe genetic approaches to the ultimate goal of cure for SCD.


Asunto(s)
Anemia de Células Falciformes/genética , Anemia de Células Falciformes/terapia , Predisposición Genética a la Enfermedad/epidemiología , Terapia Genética/tendencias , Proteínas Represoras/genética , Anemia de Células Falciformes/diagnóstico , Proteínas de Unión al ADN/genética , Femenino , Predicción , Edición Génica , Terapia Genética/métodos , Humanos , Masculino , Mutación/genética , Factores de Transcripción/genética
20.
Hum Genomics ; 14(1): 39, 2020 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-33066815

RESUMEN

The expression of the human ß-like globin genes follows a well-orchestrated developmental pattern, undergoing two essential switches, the first one during the first weeks of gestation (ε to γ), and the second one during the perinatal period (γ to ß). The γ- to ß-globin gene switching mechanism includes suppression of fetal (γ-globin, HbF) and activation of adult (ß-globin, HbA) globin gene transcription. In hereditary persistence of fetal hemoglobin (HPFH), the γ-globin suppression mechanism is impaired leaving these individuals with unusual elevated levels of fetal hemoglobin (HbF) in adulthood. Recently, the transcription factors KLF1 and BCL11A have been established as master regulators of the γ- to ß-globin switch. Previously, a genomic variant in the KLF1 gene, identified by linkage analysis performed on twenty-seven members of a Maltese family, was found to be associated with HPFH. However, variation in the levels of HbF among family members, and those from other reported families carrying genetic variants in KLF1, suggests additional contributors to globin switching. ASF1B was downregulated in the family members with HPFH. Here, we investigate the role of ASF1B in γ- to ß-globin switching and erythropoiesis in vivo. Mouse-human interspecies ASF1B protein identity is 91.6%. By means of knockdown functional assays in human primary erythroid cultures and analysis of the erythroid lineage in Asf1b knockout mice, we provide evidence that ASF1B is a novel contributor to steady-state erythroid differentiation, and while its loss affects the balance of globin expression, it has no major role in hemoglobin switching.


Asunto(s)
Proteínas de Ciclo Celular/genética , Eritropoyesis/genética , Chaperonas de Histonas/genética , Globinas beta/genética , Animales , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Regulación de la Expresión Génica , Células HEK293 , Chaperonas de Histonas/metabolismo , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones Noqueados , Polimorfismo de Nucleótido Simple , Interferencia de ARN , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , gamma-Globinas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA