Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.930
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 24(38): 11992-11999, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39269785

RESUMEN

Bimetallic nanowires play important roles in the fields of electronics and mechanics. However, their structure types and morphological control methods are limited, especially for systems with low lattice mismatch. Herein, for a Cu-Ni bimetallic system with lattice mismatch ratio less than 2.5%, a novel preparation approach of various Cu-Ni nanowires dominated by Ni(II) reduction kinetics is presented. With the increase of Ni(II) reduction rate, the core-shell Cu@Ni straight nanowires, the asymmetric Cu-Ni nanocurves, and asymmetric Cu-Ni nanocoils can be prepared, respectively. The formation of Cu-Ni nanowires with different structures can be divided into the growth of Cu nanowires and the deposition of Ni. The regulatory effects were revealed by establishing a kinetic model for Ni(II) reduction. For the novel Cu-Ni asymmetrically distributed nanocurves and nanocoils, the formation mechanism was proposed by considering the Cu nanowire bending due to the rearrangement of surface ligand and bending-induced symmetry breaking of Ni(II) reduction.

2.
Nano Lett ; 24(1): 51-60, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-37823474

RESUMEN

The lateral flow immunoassay (LFIA) is a sought-after point-of-care testing platform, yet the insufficient sensitivity of the LFIA limits its application in the detection of tumor biomarkers. Here, a colorimetric signal amplification method, bimetallic nanozyme-mediated in situ-catalyzed reporter deposition (BN-ISCRD), was designed for ultrasensitive cancer diagnosis. The bimetallic nanozyme used, palladium@iridium core-shell nanoparticles (Pd@Ir NPs), had ultrahigh enzyme-like activity, which was further explained by the electron transfer of Pd@Ir NPs and the change in the Gibbs free energy during catalysis through density functional theory calculations. With gastric cancer biomarkers pepsinogen I and pepsinogen II as model targets, this assay could achieve a cutoff value of 10 pg/mL, which was 200-fold lower than that without signal enhancement. The assay was applied to correctly identify 8 positive and 28 negative clinical samples. Overall, this BN-ISCRD-based LFIA showed great merits and potential in the application of ultrasensitive disease diagnosis.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Neoplasias , Humanos , Inmunoensayo/métodos , Biomarcadores de Tumor , Catálisis , Neoplasias/diagnóstico , Límite de Detección , Oro
3.
Nano Lett ; 24(33): 10297-10304, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39133240

RESUMEN

In this paper, Ti3C2Tx MXene/Cu-Bi bimetallic sulfide (Ti3C2Tx/BiCuS2.5) composites were prepared by a simple in situ deposition method for electrocatalytic nitrogen reduction reaction (eNRR). Compared to Ti3C2Tx/Bi2S3 and Ti3C2Tx/CuS, the eNRR performance of Ti3C2Tx/BiCuS2.5 is significantly improved. The results show that Ti3C2Tx/BiCuS2.5 exhibits a NH3 yield of 62.57 µg h-1 mg-1cat. in 0.1 M Na2SO4 at -0.6 V vs reversible hydrogen electrode, and the Faradaic efficiency (FE) reaches 67.69%, which is better than that of Ti3C2Tx/CuS (NH3 yield: 52.26 µg h-1 mg-1cat., FE: 34.15%) and Ti3C2Tx/Bi2S3 (NH3 yield: 54.04 µg h-1 mg-1cat., FE: 37.38%). According to density functional theory calculations, the eNRR at the Ti3C2Tx/BiCuS2.5 surface is the alternating pathway. The 1H NMR experiment of 15N proves that the N of NH3 generated in the experiment originates from N2 passed during the experiment.

4.
Nano Lett ; 24(15): 4665-4671, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38587938

RESUMEN

Effective bimetallic nanoelectrocatalysis demands precise control of composition, structure, and understanding catalytic mechanisms. To address these challenges, we employ a two-in-one approach, integrating online synthesis with real-time imaging of bimetallic Au@Metal core-shell nanoparticles (Au@M NPs) via electrochemiluminescence microscopy (ECLM). Within 120 s, online electrodeposition and in situ catalytic activity screening alternate. ECLM captures transient faradaic processes during potential switches, visualizes electrochemical processes in real-time, and tracks catalytic activity dynamics at the single-particle level. Analysis using ECL photon flux density eliminates size effects and yields quantitative electrocatalytic activity results. Notably, a nonlinear activity trend corresponding to the shell metal to Au surface atomic ratio is discerned, quantifying the optimal surface component ratio of Au@M NPs. This approach offers a comprehensive understanding of catalytic behavior during the deposition process with high spatiotemporal resolution, which is crucial for tailoring efficient bimetallic nanocatalysts for diverse applications.

5.
Nano Lett ; 24(25): 7645-7653, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38875704

RESUMEN

Understanding the nucleation and growth mechanism of 3d transition bimetallic nanocrystals (NCs) is crucial to developing NCs with tailored nanostructures and properties. However, it remains a significant challenge due to the complexity of 3d bimetallic NCs formation and their sensitivity to oxygen. Here, by combining in situ electron microscopy and synchrotron X-ray techniques, we elucidate the nucleation and growth pathways of Fe-Ni NCs. Interestingly, the formation of Fe-Ni NCs emerges from the assimilation of Fe into Ni clusters together with the reduction of Fe-Ni oxides. Subsequently, these NCs undergo solid-state phase transitions, resulting in two distinct solid solutions, ultimately dominated by γ-Fe3Ni2. Furthermore, we deconvolve the interplays between local coordination and electronic state concerning the growth temperature. We directly visualize the oxidation-state distributions of Fe and Ni at the nanoscale and investigate their changes. This work may reshape and enhance the understanding of nucleation and growth in atomic crystallization.

6.
Small ; 20(31): e2311627, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38462958

RESUMEN

For a carbon-neutral society, the production of hydrogen as a clean fuel through water electrolysis is currently of great interest. Since water electrolysis is a laborious energetic reaction, it requires high energy to maintain efficient and sustainable production of hydrogen. Catalytic electrodes can reduce the required energy and minimize production costs. In this context, herein, a bifunctional electrocatalyst made from iron nickel sulfide (FeNi2S4 [FNS]) for the overall electrochemical water splitting is introduced. Compared to Fe2NiO4 (FNO), FNS shows a significantly improved performance toward both OER and HER in alkaline electrolytes. At the same time, the FNS electrode exhibits high activity toward the overall electrochemical water splitting, achieving a current density of 10 mA cm-2 at 1.63 V, which is favourable compared to previously published nonprecious electrocatalysts for overall water splitting. The long-term chronopotentiometry test reveals an activation followed by a subsequent stable overall cell potential at around 2.12 V for 20 h at 100 mA cm-2.

7.
Small ; 20(10): e2306085, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37875668

RESUMEN

Bimetallic metal-organic framework (BMOF) exhibits better electrocatalytic performance than mono-MOF, but deciphering the precise anchoring of foreign atoms and revealing the underlying mechanisms at the atomic level remains a major challenge. Herein, a novel binuclear NiFe-MOF with precise anchoring of Fe sites is synthesized. The low-crystallinity (LC)-NiFe0.33 -MOF exhibited abundant unsaturated active sites and demonstrated excellent electrocatalytic oxygen evolution reaction (OER) performance. It achieved an ultralow overpotential of 230 mV at 10 mA cm-2 and a Tafel slope of 41 mV dec-1 . Using a combination of modulating crystallinity, X-ray absorption spectroscopy, and theoretical calculations, the accurate metal sequence of BMOF and the synergistic effect of the active sites are identified, revealing that the adjacent active site plays a significant role in regulating the catalytic performance of the endmost active site. The proposed model of BMOF electrocatalysts facilitates the investigation of efficient OER electrocatalysts and the related catalytic mechanisms.

8.
Small ; 20(7): e2307619, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37803332

RESUMEN

Atomically precise metal nanoclusters (NCs) have garnered tremendous attention as light-harvesting antennas in heterogeneous photocatalysis due to unique atomic stacking mode, quantum confinement effect, and enriched active sites. However, metal NCs as photosensitizers suffer from extremely short carrier lifetime, poor photostability, and difficulty in carrier migration, which hinder the wide-spread utilization of metal NCs in solar energy conversion. To solve these problems, herein, Ag-doped glutathione (GSH)-capped gold NCs, i.e., alloy Au1- x Agx @GSH NCs and non-conjugated insulating polymer of poly(diallyl-dimethylammonium chloride) (PDDA) are utilized as the building blocks for layer-by-layer assembly of spatially multilayered alloy NCs/metal oxide (MO) photosystems. The alternately deposited ultrathin PDDA layer in-between Au1- x Agx @GSH NCs on the MO substrate functions as an efficient charge flow mediator to relay the directional photoelectron transfer over Au1- x Agx @GSH NCs, giving rise to the cascade charge transfer chain. This peculiar carrier migration mode endowed by exquisite interface configuration design significantly boosts the unidirectional electron migration from the Au1- x Agx @GSH NCs to the MO substrate, substantially improving the visible-light-driven photoelectrochemical water oxidation performances of MO/(PDDA-Au1- x Agx )n multilayer heterostructured photoanodes. The work will inspire the rational construction of alloy metal NCs-based photosystems for modulating spatially controllable charge transfer pathway for solar energy conversion.

9.
Small ; 20(14): e2306272, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37988649

RESUMEN

Precise control of pore volume and size of carbon nanoscale materials is crucial for achieving high capacity and rate performances of charge/discharge. In this paper, starting from the unique mechanism of the role of In, Zn combination, and carboxyl functional groups in the formation of the lumen and pore size, the composition of InZn-MIL-68 is regulated to precisely tune the diameter and wall pore size of the hollow carbon tubes. The hollow carbon nanotubes (CNT) with high-capacity storage and fast exchange of Na+ ions and charges are prepared. The CNT possess ultra-high specific capacitance and ultra-long cycle life and also offer several times higher Na+ ion storage capacity and rate performance than the existing CNTs. Density functional theory calculations and tests reveal that these superior characteristics are attributed to the spacious hollow structure, which provides sufficient space for Na+ storage and the tube wall's distinctive porosity of tube wall as well as open ends for facilitating Na+ rapid desorption. It is believed that precise control of sub-nanopore volume and pore size by tuning the composition of the carbon materials derived from bimetallic metal-organic frameworks (MOFs) will establish the basis for the future development of high-energy density and high-power density supercapacitors and batteries.

10.
Small ; 20(29): e2311638, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38342598

RESUMEN

Potassium-ion batteries (PIBs) have attracted much attention due to their low production cost and abundant resources. Germanium is a promising alloying-type anode with a high theoretical capacity for PIBs, yet suffering significant volume expansion and sluggish potassium-ion transport kinetics. Herein, a rational strategy is formulated to disperse Ge atoms into transition metal V-S sulfide frameworks to form a loosely packed and metallic GeV4S8 medium. The theoretical prediction shows that GeV4S8 is conducive to the adsorption and diffusion of K+. The V-S frameworks provide fast ion/electron diffusion channels and also help to buffer the volume expansion during K+ insertion. In situ and ex situ characterizations manifest that KGe alloy clusters are constrained and dispersed by potassiated VS2 topological structure during discharging, and revert to the original GeV4S8 after charging. Consequently, as a novel anode for PIBs, GeV4S8 provides a high specific capacity of ≈400 mAh g-1 at 0.5 C, maintaining 160 mAh g-1 even at 12.5 C and ≈80% capacity after 1000 cycles at 5 C, superior to most of the state-of-the-art anode materials. The proposed strategy of combining alloy and intercalation dual-functional units is expected to open up a new way for high-capacity and high-rate anode for PIBs.

11.
Small ; : e2403419, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970539

RESUMEN

The conductive carbon-based interlayer, as the secondary current collector in the self-dissolving battery system, can effectively capture escaping cathode active materials, inducing deep release of remaining capacity. In the multi-step reactions of Li─S batteries, the environmental tolerance of the conductive carbon-based interlayer to polysulfides determines the inhibition of shuttle effects. Here, a modified metal-organic framework (Mn-ZIF67) is utilized to obtain nitrogen-doped carbon-coated heterogeneous Co-MnO (Co-MnO@NC) with dual catalytic center for the functional interlayer materials. The synergistic coupling mechanism of NC and Co-MnO achieves rapid deposition and conversion of free polysulfide and fragmented active sulfur on the secondary current collector, reducing capacity loss in the cathode. The Li─S battery with Co-MnO@NC/PP separator maintains an initial capacity of 1050 mAh g-1 (3C) and excellent cycle stability (0.056% capacity decay rate). Under extreme testing conditions (S load = 5.82 mg cm-2, E/S = 9.1 µL mg-1), a reversible capacity of 501.36 mAh g-1 is observed after 200 cycles at 0.2 C, showing good further practical reliability. This work demonstrates the advancement application of Co-MnO@NC bimetallic heterojunctions catalysts in the secondary current collector for high-performance Li─S batteries, thereby providing guidance for the development of interlayer in various dissolution systems.

12.
Small ; 20(23): e2310318, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38183374

RESUMEN

Low-cost and high-efficiency non-precious metal-based oxygen reduction reaction (ORR)/oxygen evolution reaction (OER) bifunctional catalysts are the key to promoting the commercial application of metal-air batteries. Herein, a highly efficient catalyst of Fe0.18Co0.82 alloy anchoring on the nitrogen-doped porous carbon hollow sphere (FexCo1-x/N-C) is intelligently designed by spray pyrolysis (SP). The zinc in the SP-derived metal oxides and metal-organic framework volatilize at high temperature to construct a hierarchical porous structure with abundant defects and fully exposes the FeCo nanoparticles which uniformly anchor on the carbon substrate. In this structure, the coexistence of Fe0.18Co0.82 alloy and binary metal active sites (Fe-Nx/Co-Nx) guarantees the Fe0.2Co0.8/N-C catalyst exhibiting an excellent half-wave potential (E1/2 ═ 0.84 V) superior to 20% Pt/C for ORR and a suppressed overpotential (280 mV) than RuO2 for OER. Assembled rechargeable Zn-air battery (RZAB) demonstrates a promising specific capacity of 807.02 mAh g-1, peak power density of 159.08 mW cm-2 and durability without electrolyte circulation (550 h). This work proposes the design concept of utilizing an oxide core to in situ consume the porous carbon shell for anchoring metal active sites and construct defects, which benefits from spray pyrolysis in achieving precise control of the alloy structure and mass preparation.

13.
Small ; 20(25): e2310603, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38279621

RESUMEN

To improve the sluggish kinetics of the hydrogen evolution reaction (HER), a key component in water-splitting applications, there is an urgent desire to develop efficient, cost-effective, and stable electrocatalysts. Strain engineering is proving an efficient strategy for increasing the catalytic activity of electrocatalysts. This work presents the development of Ru-Au bimetallic aerogels by a simple one-step in situ reduction-gelation approach, which exhibits strain effects and electron transfer to create a remarkable HER activity and stability in an alkaline environment. The surface strain induced by the bimetallic segregated structure shifts the d-band center downward, enhancing catalysis by balancing the processes of water dissociation, OH* adsorption, and H* adsorption. Specifically, the optimized catalyst shows low overpotentials of only 24.1 mV at a current density of 10 mA cm-2 in alkaline electrolytes, surpassing commercial Pt/C. This study can contribute to the understanding of strain engineering in bimetallic electrocatalysts for HER at the atomic scale.

14.
Small ; : e2405309, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39148192

RESUMEN

Zinc-air batteries employing non-Pt cathodes hold significant promise for advancing cathodic oxygen reduction reaction (ORR). However, poor intrinsic electrical conductivity and aggregation tendency hinder the application of metal-organic frameworks (MOFs) as active ORR cathodes. Conductive MOFs possess various atomically dispersed metal centers and well-aligned inherent topologies, eliminating the additional carbonization processes for achieving high conductivity. Here, a novel room-temperature electrochemical cathodic electrodeposition method is introduced for fabricating uniform and continuous layered 2D bimetallic conductive MOF films cathodes without polymeric binders, employing the organic ligand 2,3,6,7,10,11-hexaiminotriphenylene (HITP) and varying the Ni/Cu ratio. The influence of metal centers on modulating the ORR performance is investigated by density functional theory (DFT), demonstrating the performance of bimetallic conductive MOFs can be effectively tuned by the unpaired 3d electrons and the Jahn-Teller effect in the doped Cu. The resulting bimetallic Ni2.1Cu0.9(HITP)2 exhibits superior ORR performance, boasting a high onset potential of 0.93 V. Moreover, the assembled aqueous zinc-air battery demonstrates high specific capacity of 706.2 mA h g-1, and exceptional long-term charge/discharge stability exceeding 1250 cycles.

15.
Small ; : e2403078, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39221641

RESUMEN

Ti3C2Tx (MXene) is widely acknowledged as an excellent substrate for constructing heterogeneous structures with transition metal chalcogenides (TMCs) for boosting the electrochemical performance of lithium-ion storage. However, conventional synthesis strategies inevitably lead to poor electrochemical charge transfer due to Ti3C2Tx-derived TiO2 at the heterogeneous interface between Ti3C2Tx and TMCs. Here, an innovative in situ selenization strategy is proposed to replace the originally generated TiO2 on Ti3C2Tx with metallic TiSe2 interphase, clearing the bottleneck of slow charge transfer barrier caused by MXene oxidation. The construction of bimetallic selenide formed by CoSe2 and TiSe2 generates intrinsic electric fields to guide the fast ion diffusion kinetics in a heterogeneous interface. Additionally, the CoSe2/TiSe2/Ti3C2Tx heterogeneous structure with enhanced structural stability and improved rate performance is confirmed by both experiments and theoretical calculations. The engineered heterogeneous structure exhibits an ultra-high pseudocapacitance contribution (73.1% at 0.1 mV s-1), rendering it well-suited to offset the kinetics differences between double-layer materials. The assembled lithium-ion capacitor based on CoSe2/TiSe2/Ti3C2Tx possesses a high energy density and an ultralong life span (89.5% after 10 000 times at 2 A g-1). This devised strategy provides a feasible solution for utilizing the performance advantages of MXene substrates in lithium storage with ultrafast charge transfer kinetics.

16.
Small ; : e2404609, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39194586

RESUMEN

The intrinsic limitation of low electrical conductivity of MoSe2 resulted in inferior dielectric properties, which restricts its electromagnetic wave absorption (EMWA) performances. Herein, a bimetallic selenide of MoSe2/CoSe2@N-doped carbon (NC) composites with hollow core-branch nanostructures are synthesized via the selenization treatment of MoO3 nanorods coated with ZIF-67. By adjusting the mass ratio of ZIF-67 to MoO3, the electromagnetic parameters and morphologies of composites are finely tuned, further ameliorating the impedance matching and EMWA performances. The involvement of NC improves the electronic conductivity of the composites. The synchronously formed heterostructure not only facilitates charge transfer but also leads to the accumulation and uneven distribution of charges, thus enhancing the conductive loss and polarization loss. The hollow core-branch nanostructure provides abundant conductive networks, heterointerfaces, and voids, significantly enhancing the EMWA property. Density functional theory implies that the heterostructures effectively boost charge transport and change charge distribution, which heightens the conductive loss and polarization loss. As a result, the composites demonstrate a minimum reflection loss value of -53.53 dB at 9.04 GHz, alongside a maximum effective absorption bandwidth of 6.32 GHz. This work offers invaluable insights into novel structural designs for future research and applications.

17.
Small ; 20(32): e2311738, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38477695

RESUMEN

Metal silicide/Si photoelectrodes have demonstrated significant potential for application in photoelectrochemical (PEC) water splitting to produce H2. To achieve an efficient and economical hydrogen evolution reaction (HER), a paramount consideration lies in attaining exceptional catalytic activity on the metal silicide surface with minimal use of noble metals. Here, this study presents the design and construction of a novel Ni0.95Pt0.05Si/p-Si photocathode. Dopant segregation is used to achieve a Schottky barrier height as high as 1.0 eV and a high photovoltage of 420 mV. To achieve superior electrocatalytic activity for HER, a dissolution-induced surface reconstruction (SR) strategy is proposed to in situ convert surface Ni0.95Pt0.05Si to highly active Pt2Si. The resulting SR Ni0.95Pt0.05Si/p-Si photocathode exhibits excellent HER performance with an onset potential of 0.45 V (vs RHE) and a high maximum photocurrent density of 40.5 mA cm-2 and a remarkable applied bias photon-to-current efficiency (ABPE) of 5.3% under simulated AM 1.5 (100 mW cm-2) illumination. The anti-corrosion silicide layer effectively protects Si, ensuring excellent stability of the SR Ni0.95Pt0.05Si/p-Si photoelectrode. This study highlights the potential for achieving efficient PEC HER using bimetallic silicide/Si photocathodes with reduced Pt consumption, offering an auspicious perspective for the cost-effective conversion of solar energy to chemical energy.

18.
Small ; 20(32): e2310409, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38477694

RESUMEN

Electrochemical nitrite reduction reaction ( NO 2 - RR ${\mathrm{NO}}_{\mathrm{2}}^{\mathrm{ - }}{\mathrm{RR}}$ ), as a green and sustainable ammonia synthesis technology, has broad application prospects and environmental friendliness. Herein, an unconventional p-d orbital hybridization strategy is reported to realize the fabrication of defect-rich CuSb porous nanonetwork (CuSb PNs) electrocatalyst for NO 2 - RR ${\mathrm{NO}}_{\mathrm{2}}^ - {\mathrm{RR}}$ . The crystalline/amorphous heterophase structure is cleverly introduced into the porous nanonetworks, and this defect-rich structure exposes more atoms and activated boundaries. CuSb PNs exhibit a large NH3 yield ( r N H 3 ${{r}_{{\mathrm{N}}{{{\mathrm{H}}}_{\mathrm{3}}}}}$ ) of 946.1 µg h-1 m cat - 1 ${\mathrm{m}}_{{\mathrm{cat}}}^{ - {\mathrm{1}}}$ and a high faradaic efficiency (FE) of 90.7%. Experimental and theoretical studies indicate that the excellent performance of CuSb PNs results from the defect-rich porous nanonetworks structure and the p-d hybridization of Cu and Sb elements. This work describes a powerful pathway for the fabrication of p-d orbital hybrid defect-rich porous nanonetworks catalysts, and provides hope for solving the problem of nitrogen oxide pollution in the field of environment and energy.

19.
Small ; 20(34): e2400441, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38593335

RESUMEN

Electrochemical reduction of carbon dioxide (CO2RR) to formate is economically beneficial but suffers from poor selectivity and high overpotential. Herein, enriched microcrystalline copper oxide is introduced on the surface of indium-based metal-organic frameworks. Benefiting from the CuO (111) microcrystalline shell and formed catalytic active In-Cu interfaces, the obtained MIL-68(In)/CuO heterostructure display excellent CO2RR to formate with a Faradaic efficiency (FE) as high as 89.7% at low potential of only -0.7 V vs. RHE in a flow cell. Significantly, the membrane electrode assembly (MEA) cell based on MIL-68(In)/CuO exhibit a remarkable current density of 640.3 mA cm-2 at 3.1 V and can be stably operated for 180 h at 2.7 V with a current density of 200 mA cm-2. The ex/in situ electrochemical investigations reveal that the introduction of CuO increases the formation rate of the carbon dioxide reduction intermediate *HCOO- and inhibits the competitive hydrogen evolution reaction. This work not only provides an in-depth study of the mechanism of the CO2RR pathways on In/Cu composite catalyst but also offers an effective strategy for the interface design of electrocatalytic carbon dioxide reduction reaction.

20.
Small ; : e2404194, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136198

RESUMEN

Conversion and alloying-type transitional metal sulfides have attracted significant interests as anodes for Potassium-ion batteries (PIBs) and Sodium-ion batteries (SIBs) due to their high theoretical capacities and low cost. However, the poor conductivity, structural pulverization, and high-volume expansions greatly limit the performance. Herein, Co1-xS/ZnS hollow nanocube-like heterostructure decorated on reduced graphene oxide (Co1-xS/ZnS@rGO) composite is fabricated through convenient hydrothermal and post-heat vulcanization techniques. This unique composite can provide a more stable conductive network and shorten the diffusion length of ions, which exhibits a remarkable initial charge capacity of 638.5 mA h g-1 at 0.1 A g-1 for SIBs and 606 mA h g-1 at 0.1 A g-1 for PIBs, respectively; It is worth noting that the composite presents remarkable long stable cycle performance in PIBs, which initially delivered 274 mA h g-1 and sustained the charge capacity up to 245 mA h g-1 at high current density of 1 A g-1 after 2000 cycles. A series of in situ/ex situ detections and first principle calculations further validate the high potassium ions adsorption ability of Co1-xS/ZnS anode materials with high diffusion kinetics. This work will accelerate the fundamental construction of bimetallic sulfide hollow nanocubes heterostructure electrodes for energy storage applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA