Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 52(1): 123-135.e6, 2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31859049

RESUMEN

The immune system monitors the health of cells and is stimulated by necrosis. Here we examined the receptors and ligands driving this response. In a targeted screen of C-type lectin receptors, a Clec2d reporter responded to lysates from necrotic cells. Biochemical purification identified histones, both free and bound to nucleosomes or neutrophil extracellular traps, as Clec2d ligands. Clec2d recognized poly-basic sequences in histone tails and this recognition was sensitive to post-translational modifications of these sequences. As compared with WT mice, Clec2d-/- mice exhibited reduced proinflammatory responses to injected histones, and less tissue damage and improved survival in a hepatotoxic injury model. In macrophages, Clec2d localized to the plasma membrane and endosomes. Histone binding to Clec2d did not stimulate kinase activation or cytokine production. Rather, histone-bound DNA stimulated endosomal Tlr9-dependent responses in a Clec2d-dependent manner. Thus, Clec2d binds to histones released upon necrotic cell death, with functional consequences to inflammation and tissue damage.


Asunto(s)
Histonas/metabolismo , Lectinas Tipo C/inmunología , Lectinas Tipo C/metabolismo , Hígado/lesiones , Necrosis/patología , Receptores de Superficie Celular/inmunología , Receptores de Superficie Celular/metabolismo , Animales , Apoptosis/inmunología , Endosomas/metabolismo , Células HEK293 , Humanos , Células Jurkat , Lectinas Tipo C/genética , Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neutrófilos/inmunología , Receptores de Superficie Celular/genética , Receptor Toll-Like 9/inmunología
2.
FASEB J ; 38(2): e23402, 2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38193585

RESUMEN

Cancer cells circulating in the blood attach to platelets by direct cell-cell interactions via several receptor-counterreceptor contacts and indirectly by fibrin bridges which connect the two cell types by distinct integrin receptors. In the microenvironment of these tumor cell platelet aggregates (TCPAs), the tumor cells are shielded from the shear stress of the blood flow and from attack by the immune system. This supports hematogenous metastasis and tumor cell induced thrombosis. Platelet activation is triggered by binding of podoplanin on cancer cells to the platelet receptor Clec-2. Therefore, we hypothesize that targeting this initial step will prevent the entire cascade leading to the formation of TCPAs. Rhodocytin, a heterodimeric (αß)2 C-type lectin from the Malayan pit viper Calloselasma rhodostoma, binds to Clec-2 and thereby induces TCPA formation. Remarkably, mutations in rhodocytin that disturbed formation of oligomers, blocked the podoplanin-Clec-2 axis and prevented platelet activation. Therefore, we used lysine reactive chemicals to modify rhodocytin isolated from the crude snake venom. Blue native gel electrophoresis and far western blotting showed a change of rhodocytin's suprastructure triggered by acetylation and PEGylation. Mass spectrometry analysis of altered lysines suggested that their modifications interfered with the formation of rhodocytin tetramers. When tested in assays for tumor cell induced platelet aggregation, we found that derivatization turned rhodocytin from an agonist into an antagonist. This observation indicates that Clec-2 is a valid target receptor molecule to curb TCPA formation and to prevent hematogenous metastasis and tumor cell induced thrombosis in cancer patients.


Asunto(s)
Agregación Plaquetaria , Trombosis , Humanos , Plaquetas , Lectinas Tipo C
3.
BMC Cancer ; 24(1): 399, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561690

RESUMEN

BACKGROUND: Podoplanin (PDPN) expressed on tumour cells interacts with platelet C-type lectin-like receptor 2 (CLEC-2). This study aimed to investigate the role of the PDPN-platelet CLEC-2 interaction in melanoma pulmonary metastasis. METHODS: Murine melanoma B16-F0 cells, which have two populations that express podoplanin, were sorted by FACS with anti-podoplanin staining to obtain purified PDPN + and PDPN- B16-F0 cells. C57BL/6J mice transplanted with CLEC-2-deficient bone marrow cells were used for in vivo experiments. RESULTS: The in vivo data showed that the number of metastatic lung nodules in WT mice injected with PDPN + cells was significantly higher than that in WT mice injected with PDPN- cells and in WT or CLEC-2 KO mice injected with PDPN- cells. In addition, our results revealed that the platelet Syk-dependent signalling pathway contributed to platelet aggregation and melanoma metastasis. CONCLUSIONS: Our study indicates that the PDPN-CLEC-2 interaction promotes experimental pulmonary metastasis in a mouse melanoma model. Tumour cell-induced platelet aggregation mediated by the interaction between PDPN and CLEC-2 is a key factor in melanoma pulmonary metastasis.


Asunto(s)
Neoplasias Pulmonares , Melanoma , Animales , Ratones , Plaquetas/metabolismo , Lectinas Tipo C/metabolismo , Neoplasias Pulmonares/metabolismo , Melanoma/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones Endogámicos C57BL , Agregación Plaquetaria
4.
Arterioscler Thromb Vasc Biol ; 43(10): 1747-1754, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37534465

RESUMEN

Lymphatic vessels form a systemic network that maintains interstitial fluid homeostasis and regulates immune responses and is strictly separated from the circulatory system. During embryonic development, lymphatic endothelial cells originate from blood vascular endothelial cells in the cardinal veins and form lymph sacs. Platelets are critical for separating lymph sacs from the cardinal veins through interactions between CLEC-2 (C-type lectin-like receptor-2) and PDPN (podoplanin) in lymphatic endothelial cells. Therefore, deficiencies of these genes cause blood-filled lymphatic vessels, leading to abnormal lymphatic vessel maturation. The junction between the thoracic duct and the subclavian vein has valves and forms physiological thrombi dependent on CLEC-2/PDPN signaling to prevent blood backflow into the thoracic duct. In addition, platelets regulate lymphangiogenesis and maintain blood/lymphatic separation in pathological conditions, such as wound healing and inflammatory diseases. More recently, it was reported that the entire hemostatic system is involved in lymphangiogenesis. Thus, the hemostatic system plays a crucial role in the establishment, maintenance, and rearrangement of lymphatic networks and contributes to body fluid homeostasis, which suggests that the hemostatic system is a potential target for treating lymphatic disorders. This review comprehensively summarizes the role of the hemostatic system in lymphangiogenesis and lymphatic vessel function and discusses challenges and future perspectives.


Asunto(s)
Hemostáticos , Vasos Linfáticos , Femenino , Embarazo , Humanos , Células Endoteliales , Linfangiogénesis , Activación Plaquetaria/fisiología , Lectinas Tipo C
5.
Rinsho Ketsueki ; 65(9): 1106-1115, 2024.
Artículo en Japonés | MEDLINE | ID: mdl-39358267

RESUMEN

Unlike for anticoagulants, no good monitoring methods exist for antiplatelet agents, and their monitoring is considered unnecessary. In the platelet aggregation test, which is the standard test for platelet function, aggregation is evaluated by adding a platelet activator to platelets in a cuvette. Therefore, it provides information on the maximum potential of platelets to induce aggregation, but not the actual in vivo degree of platelet activation. In vivo platelet activation markers are not widely used because they require a special blood collection method, although some tests are covered by insurance. My colleagues and I identified the platelet activation receptor C-type lectin-like receptor 2 (CLEC-2) and found that CLEC-2 is cleaved and released during platelet activation. We established a plasma-soluble CLEC-2 (sCLEC-2) assay system with the aim of using it as a marker of in vivo platelet activation. Elevation of sCLEC-2 has been reported in various thrombotic diseases. The multi-center prospective cohort study CLECSTRO is now underway to investigate the usefulness of sCLEC-2 for diagnosis, typing, and prognostic estimation in acute ischemic stroke.


Asunto(s)
Biomarcadores , Lectinas Tipo C , Activación Plaquetaria , Lectinas Tipo C/sangre , Humanos , Biomarcadores/sangre , Solubilidad , Animales , Glicoproteínas de Membrana
6.
Platelets ; 34(1): 2244594, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37578059

RESUMEN

Predicting the clinical course and allocating limited medical resources appropriately is crucial during the COVID-19 pandemic. Platelets are involved in microthrombosis, a critical pathogenesis of COVID-19; however, the role of soluble CLEC-2 (sCLEC-2), a novel platelet activation marker, in predicting the prognosis of COVID-19 remains unexplored. We enrolled 108 patients with COVID-19, hospitalized between January 2021 and May 2022, to evaluate the clinical use of sCLEC-2 as a predictive marker. sCLEC-2 levels were measured in plasma sampled on admission, as well as interleukin-6, cell-free DNA, von Willebrand factor, and thrombomodulin. We retrospectively classified the patients into two groups - those who required oxygenation during hospitalization (oxygenated group) and those who did not (unoxygenated group) - and compared their clinical and laboratory characteristics. The correlation between sCLEC-2 and the other parameters was validated. The sCLEC-2 level was significantly higher in the oxygenated group (188.8 pg/mL vs. 296.1 pg/mL). Multivariate analysis identified high sCLEC-2 levels (odds ratio per 10 pg/mL:1.25) as an independent predictor of oxygen therapy requirement. sCLEC-2 was positively correlated with cell-free DNA, supporting the association between platelet activation and neutrophil extracellular traps. In conclusion, sCLEC-2 is a clinically valuable marker in predicting oxygen therapy requirements for patients with COVID-19.


What is the context? During the COVID-19 epidemic with tremendous damage to healthcare systems worldwide, predicting the clinical course of patients and allocating limited medical resources appropriately is crucial.Platelets are involved in microthrombosis - a critical pathogenesis of COVID-19. The role of soluble CLEC-2 (sCLEC-2), a novel in vivo platelet activation marker, in predicting the prognosis of COVID-19 remains unexplored.What is new? sCLEC-2 is an independent predictive marker of oxygen therapy requirement in COVID-19.What is the impact? In most cases, patients requiring oxygen therapy must be hospitalized. The ability to predict such cases during the COVID-19 epidemic, when medical recourses are depleted, may contribute to the appropriate allocation of medical resources.


Asunto(s)
COVID-19 , Ácidos Nucleicos Libres de Células , Humanos , COVID-19/terapia , Pandemias , Estudios Retrospectivos , Lectinas Tipo C , Oxígeno
7.
Platelets ; 34(1): 2281941, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38010137

RESUMEN

Kappa-carrageenan (KCG), which is used to induce thrombosis in laboratory animals for antithrombotic drug screening, can trigger platelet aggregation. However, the cell-surface receptor and related signaling pathways remain unclear. In this study, we investigated the molecular basis of KCG-induced platelet activation using light-transmittance aggregometry, flow cytometry, western blotting, and surface plasmon resonance assays using platelets from platelet receptor-deficient mice and recombinant proteins. KCG-induced tail thrombosis was also evaluated in mice lacking the platelet receptor. We found that KCG induces platelet aggregation with α-granule secretion, activated integrin αIIbß3, and phosphatidylserine exposure. As this aggregation was significantly inhibited by the Src family kinase inhibitor and spleen tyrosine kinase (Syk) inhibitor, a tyrosine kinase-dependent pathway is required. Platelets exposed to KCG exhibited intracellular tyrosine phosphorylation of Syk, linker activated T cells, and phospholipase C gamma 2. KCG-induced platelet aggregation was abolished in platelets from C-type lectin-like receptor-2 (CLEC-2)-deficient mice, but not in platelets pre-treated with glycoprotein VI-blocking antibody, JAQ1. Surface plasmon resonance assays showed a direct association between murine/human recombinant CLEC-2 and KCG. KCG-induced thrombosis and thrombocytopenia were significantly inhibited in CLEC-2-deficient mice. Our findings show that KCG induces platelet activation via CLEC-2.


Thrombosis is a serious medical condition that occurs when blood clots form in the blood vessels and can lead to heart attacks or strokes. Animal models are important for evaluating the effectiveness of drugs in thrombosis treatment. Kappa-carrageenan (KCG) is a food thickener and a substance used to induce clot formation in laboratory animals. In this study, we investigated the molecular basis of KCG-induced platelet activation, which is an important step in thrombosis development. We found that KCG activates platelets via a receptor called C-type lectin-like receptor 2 (CLEC-2), leading to a prothrombotic state in mice. We also showed that KCG-induced tail thrombosis (CTT) is significantly inhibited in CLEC-2 deficient mice. Our findings suggest that CLEC-2-mediated platelet activation plays a key role in the pathogenesis of thrombosis and CLEC-2 May participate in innate immunity as a receptor for sulfate-polysaccharide.Abbreviation; CLEC-2: C-type lectin-like receptor 2; CRP: collagen-related peptide; CTT: KCGN-induced tail thrombosis; DIC: disseminated intravascular coagulation; EDTA: ethylenediaminetetraacetic acid; GPVI: glycoprotein VI; HRP: horseradish peroxidase; KCG: Κ-Carrageenan; LAT: linker activated T cells; LDS: lithium dodecyl sulfate; LTA: light-transmittance aggregometry; MFI: mean fluorescence intensity; PFA: paraformaldehyde; PLCγ2: phospholipase C gamma 2; PS: phosphatidylserine; Syk: spleen tyrosine kinase; Co-HP: Cobalt-hematoporphyrin.


Asunto(s)
Glicoproteínas de Membrana , Trombosis , Animales , Humanos , Ratones , Carragenina/efectos adversos , Carragenina/metabolismo , Glicoproteínas de Membrana/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Cola (estructura animal)/metabolismo , Agregación Plaquetaria , Plaquetas/metabolismo , Activación Plaquetaria , Quinasa Syk/metabolismo , Fosforilación , Proteínas Portadoras/metabolismo , Trombosis/metabolismo
8.
J Biomed Sci ; 29(1): 52, 2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35820906

RESUMEN

BACKGROUND: Coronavirus-induced disease 19 (COVID-19) infects more than three hundred and sixty million patients worldwide, and people with severe symptoms frequently die of acute respiratory distress syndrome (ARDS). Recent studies indicated that excessive neutrophil extracellular traps (NETs) contributed to immunothrombosis, thereby leading to extensive intravascular coagulopathy and multiple organ dysfunction. Thus, understanding the mechanism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced NET formation would be helpful to reduce thrombosis and prevent ARDS in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. METHODS: We incubated SARS-CoV-2 with neutrophils in the presence or absence of platelets to observe NET formation. We further isolated extracellular vesicles from COVID-19 patients' sera (COVID-19-EVs) to examine their ability to induce NET formation. RESULTS: We demonstrated that antagonistic mAbs against anti-CLEC5A mAb and anti-TLR2 mAb can inhibit COVID-19-EVs-induced NET formation, and generated clec5a-/-/tlr2-/- mice to confirm the critical roles of CLEC5A and TLR2 in SARS-CoV-2-induced lung inflammation in vivo. We found that virus-free extracellular COVID-19 EVs induced robust NET formation via Syk-coupled C-type lectin member 5A (CLEC5A) and TLR2. Blockade of CLEC5A inhibited COVID-19 EVs-induced NETosis, and simultaneous blockade of CLEC5A and TLR2 further suppressed SARS-CoV-2-induced NETosis in vitro. Moreover, thromboinflammation was attenuated dramatically in clec5a-/-/tlr2-/- mice. CONCLUSIONS: This study demonstrates that SARS-CoV-2-activated platelets produce EVs to enhance thromboinflammation via CLEC5A and TLR2, and highlight the importance of CLEC5A and TLR2 as therapeutic targets to reduce the risk of ARDS in COVID-19 patients.


Asunto(s)
COVID-19 , Lectinas Tipo C , Neutrófilos , Neumonía , Síndrome de Dificultad Respiratoria , SARS-CoV-2 , Trombosis , Animales , Plaquetas/inmunología , Plaquetas/patología , Plaquetas/virología , COVID-19/sangre , COVID-19/inmunología , Humanos , Lectinas Tipo C/inmunología , Ratones , Neutrófilos/inmunología , Neutrófilos/patología , Neutrófilos/virología , Neumonía/inmunología , Neumonía/patología , Neumonía/virología , Receptores de Superficie Celular , Síndrome de Dificultad Respiratoria/inmunología , Síndrome de Dificultad Respiratoria/virología , SARS-CoV-2/inmunología , Trombosis/sangre , Trombosis/inmunología , Trombosis/virología , Receptor Toll-Like 2/inmunología
9.
Platelets ; 33(8): 1293-1300, 2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-35535424

RESUMEN

Src tyrosine kinases and spleen tyrosine kinase (Syk) have recently been shown to contribute to sustained platelet aggregation on collagen under arterial shear. In the present study, we have investigated whether Src and Syk are required for aggregation under minimal shear following activation of glycoprotein VI (GPVI) and have extended this to C-type lectin-like receptor-2 (CLEC-2) which signals through the same pathway. Aggregation was induced by the GPVI ligand collagen-related peptide (CRP) and the CLEC-2 ligand rhodocytin and monitored by light transmission aggregometry (LTA). Aggregation and tyrosine phosphorylation by both receptors were sustained for up to 50 min. The addition of inhibitors of Src, Syk or Bruton's tyrosine kinase (Btk) at 150 sec, by which time aggregation was maximal, induced rapid loss of tyrosine phosphorylation of their downstream proteins, but only Src kinase inhibition caused a weak (~10%) reversal in light transmission. A similar effect was observed when the inhibitors were combined with apyrase and indomethacin or glycoprotein IIb-IIIa (GPIIb-IIIa) antagonist, eptifibatide. On the other hand, activation of GPIIb-IIIa by GPVI in a diluted platelet suspension, as measured by binding of fluorescein isothiocyanate-labeled antibody specific for the activated GPIIb-IIIa (FITC-PAC1), was reversed on the addition of Src and Syk inhibitors showing that integrin activation is rapidly reversible in the absence of outside-in signals. The results demonstrate that Src but not Syk and Btk contribute to sustained aggregation as monitored by LTA, possibly as a result of inhibition of outside-in signaling from GPIIb-IIIa to the cytoskeleton through a Syk-independent pathway. This is in contrast to the role of Syk in supporting sustained aggregation on collagen under arterial shear.


Asunto(s)
Agregación Plaquetaria , Glicoproteínas de Membrana Plaquetaria , Agammaglobulinemia Tirosina Quinasa/metabolismo , Apirasa/farmacología , Plaquetas/metabolismo , Colágeno/farmacología , Eptifibatida/farmacología , Fluoresceína-5-Isotiocianato/metabolismo , Fluoresceína-5-Isotiocianato/farmacología , Humanos , Indometacina/metabolismo , Indometacina/farmacología , Péptidos y Proteínas de Señalización Intracelular , Lectinas Tipo C/metabolismo , Ligandos , Inhibidores de Agregación Plaquetaria/farmacología , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Glicoproteínas de Membrana Plaquetaria/metabolismo , Proteínas Tirosina Quinasas , Quinasa Syk/metabolismo , Tirosina/metabolismo , Tirosina/farmacología , Familia-src Quinasas/metabolismo
10.
Platelets ; 33(6): 935-944, 2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-35073814

RESUMEN

C-type lectin-like receptor 2 (CLEC-2) is a platelet-activated receptor expressed on the surface of platelet membranes. Soluble CLEC-2 (sCLEC-2) has been receiving attention as a predictive marker for thrombotic predisposition. The present study examined the relationship between sCLEC-2 level and degree of coagulation disorder in septic patients. Seventy septic patients were divided into the sepsis-induced disseminated intravascular coagulation (DIC) (SID) group (n = 44) and non-SID group (n = 26). The sCLEC-2 levels were compared between the two groups. Because we suspected that the sCLEC-2 level was affected by the platelet count, we calculated the sCLEC-2/platelet count ratio (C2PAC index). We further divided septic patients into four groups using the Japanese Association for Acute Medicine (JAAM) DIC scoring system (DIC scores: 0-1, 2-3, 4-5, and 6-8). The C2PAC index was significantly higher in the SID group (2.6 ± 1.7) compared with the non-SID group (1.2 ± 0.5) (P < .001). The C2PAC indexes in the four JAAM DIC score groups were 0.9 ± 0.3, 1.1 ± 0.3, 1.7 ± 0.7, and 3.6 ± 1.0, respectively, and this index increased significantly as the DIC score increased (P < .001). According to the receiver-operating curve analysis, the area under the curve (AUC) and optimal cutoff value for the diagnosis of SID were 0.8051 and 1.4 (sensitivity, 75.0%; specificity, 76.9%), respectively. When the C2PAC index and D-dimer level, one of the main fibrinolytic markers, were selected as predictive markers for SID diagnosis in stepwise multiple logistic regression analysis, it was possible to diagnose SID with a high probability (AUC, 0.9528; sensitivity, 0.9545; specificity, 0.8846). The C2PAC index is a useful predictor of SID progression and diagnosis in septic patients.


Asunto(s)
Trastornos de la Coagulación Sanguínea , Coagulación Intravascular Diseminada , Lectinas Tipo C , Glicoproteínas de Membrana , Sepsis , Biomarcadores/sangre , Trastornos de la Coagulación Sanguínea/complicaciones , Coagulación Intravascular Diseminada/diagnóstico , Coagulación Intravascular Diseminada/etiología , Humanos , Lectinas Tipo C/sangre , Glicoproteínas de Membrana/sangre , Recuento de Plaquetas , Sepsis/complicaciones , Sepsis/diagnóstico
11.
Cancer Sci ; 112(6): 2299-2313, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33735501

RESUMEN

Podoplanin is a key molecule for enhancing tumor-induced platelet aggregation. Podoplanin interacts with CLEC-2 on platelets via PLatelet Aggregation-inducing domains (PLAGs). Among our generated antibodies, those targeting the fourth PLAG domain (PLAG4) strongly suppress podoplanin-CLEC-2 binding and podoplanin-expressing tumor growth and metastasis. We previously performed a single-dose toxicity study of PLAG4-targeting anti-podoplanin-neutralizing antibodies and found no acute toxicity in cynomolgus monkeys. To confirm the therapeutic efficacy and toxicity of podoplanin-targeting antibodies, a syngeneic mouse model that enables repeated dose toxicity tests is needed. Replacement of mouse PLAG1-PLAG4 domains with human homologous domains drastically decreased the platelet-aggregating activity. Therefore, we searched the critical domain of the platelet-aggregating activity in mouse podoplanin and found that the mouse PLAG4 domain played a critical role in platelet aggregation, similar to the human PLAG4 domain. Human/mouse chimeric podoplanin, in which a limited region containing mouse PLAG4 was replaced with human homologous region, exhibited a similar platelet-aggregating activity to wild-type mouse podoplanin. Thus, we generated knock-in mice with human/mouse chimeric podoplanin expression (PdpnKI/KI mice). Our previously established PLAG4-targeting antibodies could suppress human/mouse chimeric podoplanin-mediated platelet aggregation and tumor growth in PdpnKI/KI mice. Repeated treatment of PdpnKI/KI mice with antibody-dependent cell-mediated cytotoxicity activity-possessing PG4D2 antibody did not result in toxicity or changes in hematological and biochemical parameters. Our results suggest that anti-podoplanin-neutralizing antibodies could be used safely as novel anti-tumor agents. Our generated PdpnKI/KI mice are useful for investigating the efficacy and toxicity of human podoplanin-targeting drugs.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Neutralizantes/uso terapéutico , Antineoplásicos/uso terapéutico , Glicoproteínas de Membrana/metabolismo , Animales , Anticuerpos Monoclonales/farmacología , Anticuerpos Neutralizantes/farmacología , Antineoplásicos/farmacología , Línea Celular Tumoral , Humanos , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Activación Plaquetaria/efectos de los fármacos , Agregación Plaquetaria/efectos de los fármacos , Dominios Proteicos , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
12.
J Biomed Sci ; 28(1): 46, 2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-34116654

RESUMEN

Dysregulated formation of neutrophil extracellular traps (NETs) is observed in acute viral infections. Moreover, NETs contribute to the pathogenesis of acute viral infections, including those caused by the dengue virus (DV) and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Furthermore, excessive NET formation (NETosis) is associated with disease severity in patients suffering from SARS-CoV-2-induced multiple organ injuries. Dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) and other members of C-type lectin family (L-SIGN, LSECtin, CLEC10A) have been reported to interact with viral glycans to facilitate virus spreading and exacerbates inflammatory reactions. Moreover, spleen tyrosine kinase (Syk)-coupled C-type lectin member 5A (CLEC5A) has been shown as the pattern recognition receptor for members of flaviviruses, and is responsible for DV-induced cytokine storm and Japanese encephalomyelitis virus (JEV)-induced neuronal inflammation. Moreover, DV activates platelets via CLEC2 to release extracellular vesicles (EVs), including microvesicles (MVs) and exosomes (EXOs). The DV-activated EXOs (DV-EXOs) and MVs (DV-MVs) stimulate CLEC5A and Toll-like receptor 2 (TLR2), respectively, to enhance NET formation and inflammatory reactions. Thus, EVs from virus-activated platelets (PLT-EVs) are potent endogenous danger signals, and blockade of C-type lectins is a promising strategy to attenuate virus-induced NETosis and intravascular coagulopathy.


Asunto(s)
COVID-19/inmunología , Virus de la Encefalitis Japonesa (Especie)/inmunología , Encefalitis Japonesa/inmunología , Trampas Extracelulares/inmunología , Lectinas Tipo C/inmunología , SARS-CoV-2/inmunología , Plaquetas/inmunología , Plaquetas/patología , COVID-19/patología , Síndrome de Liberación de Citoquinas/inmunología , Síndrome de Liberación de Citoquinas/patología , Encefalitis Japonesa/patología , Humanos , Activación Plaquetaria/inmunología , Transducción de Señal/inmunología
13.
Platelets ; 32(3): 352-367, 2021 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-32129691

RESUMEN

C-type lectin-like receptor 2 (CLEC-2) is considered as a potential drug target in settings of wound healing, inflammation, and infection. A potential barrier to this is evidence that CLEC-2 and its ligand podoplanin play a critical role in preventing lymphatic vessel blood filling in mice throughout life. In this study, this aspect of CLEC-2/podoplanin function is investigated in more detail using new and established mouse models of CLEC-2 and podoplanin deficiency, and models of acute and chronic vascular remodeling. We report that CLEC-2 expression on platelets is not required to maintain a barrier between the blood and lymphatic systems in unchallenged mice, post-development. However, under certain conditions of chronic vascular remodeling, such as during tumorigenesis, deficiency in CLEC-2 can lead to lymphatic vessel blood filling. These data provide a new understanding of the function of CLEC-2 in adult mice and confirm the essential nature of CLEC-2-driven platelet activation in vascular developmental programs. This work expands our understanding of how lymphatic blood filling is prevented by CLEC-2-dependent platelet function and provides a context for the development of safe targeting strategies for CLEC-2 and podoplanin.


Asunto(s)
Lectinas Tipo C/metabolismo , Sistema Linfático/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Ratones
14.
Platelets ; 32(6): 744-752, 2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-33406951

RESUMEN

GPVI and CLEC-2 have emerged as promising targets for long-term prevention of both arterial thrombosis and thrombo-inflammation with a decreased bleeding risk relative to current drugs. However, while there are potent blocking antibodies of both receptors, their protein nature comes with decreased bioavailability, making formulation for oral medication challenging. Small molecules are able to overcome these limitations, but there are many challenges in developing antagonists of nanomolar potency, which is necessary when considering the structural features that underlie the interaction of CLEC-2 and GPVI with their protein ligands. In this review, we describe current small-molecule inhibitors for both receptors and strategies to overcome such limitations, including considerations when it comes to in silico drug design and the importance of complex compound library selection.


Asunto(s)
Plaquetas/metabolismo , Ensayos Analíticos de Alto Rendimiento/métodos , Lectinas Tipo C/antagonistas & inhibidores , Activación Plaquetaria/genética , Glicoproteínas de Membrana Plaquetaria/antagonistas & inhibidores , Animales , Humanos , Modelos Moleculares
15.
Platelets ; 32(1): 29-41, 2021 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-33307909

RESUMEN

Antiplatelet medications comprise the cornerstone of treatment for diseases that involve arterial thrombosis, including acute coronary syndromes (ACS), stroke and peripheral arterial disease. However, antiplatelet medications may cause bleeding and, furthermore, thrombotic events may still recur despite treatment. The interaction of collagen with GPVI receptors on the surface of platelets has been identified as one of the major players in the pathophysiology of arterial thrombosis that occurs following atherosclerotic plaque rupture. Promisingly, GPVI deficiency in humans appears to have a minimal impact on bleeding. These findings together suggest that targeting platelet GPVI may provide a novel treatment strategy that provides additional antithrombotic efficacy with minimal disruption of normal hemostasis compared to conventional antiplatelet medications. CLEC-2 is gaining interest as a therapeutic target for a variety of thrombo-inflammatory disorders including deep vein thrombosis (DVT) with treatment also predicted to cause minimal disruption to hemostasis. GPVI and CLEC-2 signal through Src, Syk and Tec family tyrosine kinases, providing additional strategies for inhibiting both receptors. In this review, we summarize the evidence regarding GPVI and CLEC-2 and strategies for inhibiting these receptors to inhibit platelet recruitment and activation in thrombotic diseases.


Asunto(s)
Lectinas Tipo C/efectos de los fármacos , Glicoproteínas de Membrana/efectos de los fármacos , Inhibidores de Agregación Plaquetaria/uso terapéutico , Glicoproteínas de Membrana Plaquetaria/efectos de los fármacos , Proteínas Tirosina Quinasas/efectos de los fármacos , Humanos , Inhibidores de Agregación Plaquetaria/farmacología
16.
Platelets ; 32(6): 733-743, 2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-33819136

RESUMEN

The platelet C-type lectin-like receptor CLEC-2 drives inflammation-driven venous thrombosis in mouse models of thrombo-inflammatory disease with a minimal effect on hemostasis identifying it as a target for a new class of antiplatelet agent. Here, we discuss how the protein structure and dynamic arrangement of CLEC-2 on the platelet membrane helps the receptor, which has a single YxxL motif (known as a hemITAM), to trigger intracellular signaling. CLEC-2 exists as a monomer and homo-dimer within resting platelets and forms higher-order oligomers following ligand activation, a process that is mediated by the multivalent nature of its ligands and the binding of the tandem SH2 domains of Syk to the phosphorylated hemITAM and concomitantly to PIP2 or PIP3 to localize it to the membrane. We propose that a low level of active Syk is present at the membrane in resting platelets due to phosphorylation by Src family kinases and that clustering of receptors disturbs the equilibrium between kinases and phosphatases, triggering phosphorylation of the CLEC-2 hemITAM and recruitment of Syk. Knowledge of the structure of CLEC-2 and the mechanism of platelet activation has important implications for development of therapeutics.


Asunto(s)
Lectinas Tipo C/metabolismo , Animales , Dimerización , Modelos Animales de Enfermedad , Humanos , Ratones
17.
Platelets ; 32(8): 1018-1030, 2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34266346

RESUMEN

Charge interactions play a critical role in the activation of the innate immune system by damage- and pathogen-associated molecular pattern receptors. The ability of these receptors to recognize a wide spectrum of ligands through a common mechanism is critical in host defense. In this article, we argue that platelet glycoprotein receptors that signal through conserved tyrosine-based motifs function as pattern recognition receptors (PRRs) for charged endogenous and exogenous ligands, including sulfated polysaccharides, charged proteins and nanoparticles. This is exemplified by GPVI, CLEC-2 and PEAR1 which are activated by a wide spectrum of endogenous and exogenous ligands, including diesel exhaust particles, sulfated polysaccharides and charged surfaces. We propose that this mechanism has evolved to drive rapid activation of platelets at sites of injury, but that under some conditions it can drive occlusive thrombosis, for example, when blood comes into contact with infectious agents or toxins. In this Opinion Article, we discuss mechanisms behind charge-mediated platelet activation and opportunities for designing nanoparticles and related agents such as dendrimers as novel antithrombotics.


Asunto(s)
Plaquetas/metabolismo , Nanopartículas/metabolismo , Activación Plaquetaria/inmunología , Glicoproteínas de Membrana Plaquetaria/metabolismo , Receptores de Reconocimiento de Patrones/metabolismo , Humanos , Ligandos , Transducción de Señal
18.
Platelets ; 32(8): 1103-1107, 2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-33251920

RESUMEN

Binding of podoplanin to the C-type lectin-like receptor 2 (CLEC-2) promotes platelet activation and soluble CLEC-2 (sCLEC-2) is shed from activated platelets. The role of sCLEC-2 in the plasma is unknown. The expression level and plasma concentration of sCLEC-2 could be affected by variants of the corresponding gene, CLEC1B. Here, we genotyped SNVs in the promoter and coding region of CLEC1B and determined plasma levels of sCLEC-2 in healthy individuals. We genotyped 516 healthy blood donors for 7 SNVs (rs10505743, rs11053538, rs4764178, rs76016091, rs2273986, rs2273987, rs521040) by using PCR methods and calculated haplotypes from the SNV genotypes. For 313 of the donors we measured the sCLEC-2 concentration in EDTA plasma samples by using a commercial ELISA. SNV typing revealed allele frequencies comparable to database information. None of the SNVs showed significant correlation with sCLEC-2 plasma levels. Haplotype analysis indicated 6 haplotypes with frequencies >1% and haplotype h3 was the most frequent (33.8%). Donors homozygous for h3 (n = 37) showed significantly lower sCLEC-2 plasma levels (median 0.95 ng/mL) than donors being h3 negative or heterozygous (n = 276; 1.44 ng/mL; p = .0203). We found that the sCLEC-2 plasma concentration is variable in healthy individuals and the CLEC1B genotype contributes to the expression level.


Asunto(s)
Lectinas Tipo C/metabolismo , Glicoproteínas de Membrana/metabolismo , Plasma/metabolismo , Genotipo , Haplotipos , Voluntarios Sanos , Humanos
19.
J Neurochem ; 154(2): 190-204, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32048302

RESUMEN

Neuroinflammation accompanied by microglial activation triggers multiple cell death after traumatic brain injury (TBI). The secondary injury caused by inflammation may persist for a long time. Recently, platelet C-type lectin-like 2 receptor (CLEC-2) has been shown to regulate inflammation in certain diseases. However, its possible effects on TBI remain poorly understood. Here, we aimed to investigate the role of platelet CLEC-2 in the pathological process of neuroinflammation after TBI. In this study, mice were subjected to sham or controlled cortical impact injury, and arbitrarily received recombinant platelet CLEC-2. In parallel, BV2 cells were treated with lipopolysaccharide (LPS) to mimic microglial activation after TBI. Primary endothelial cells were also subjected to LPS in order to replicate the inflammatory damage caused by TBI. We used western blot analysis, reverse transcription polymerase chain reaction (RT-PCR), and immunostaining to evaluate the role of platelet CLEC-2 in TBI. In conditional knock out platelet CLEC-2 mice, trauma worsened the integrity of the blood-brain barrier and amplified the release of inflammatory cytokines. In wild type mice subjected to controlled cortical impact injury, recombinant platelet CLEC-2 administration altered the secretion of inflammatory cytokines, reduced brain edema, and improved neurological function. In vitro, the polarization phenotype of microglia induced by LPS was transformed by recombinant platelet CLEC-2, and this conversion depended on the mammalian target of rapamycin (mTOR) pathway. Endothelial cell injury by LPS was ameliorated when microglia expressed mostly M2 phenotype markers. In conclusion, platelet CLEC-2 regulates trauma-induced neuroinflammation and restores blood-brain barrier integrity.


Asunto(s)
Plaquetas/metabolismo , Barrera Hematoencefálica/patología , Lesiones Traumáticas del Encéfalo/patología , Inflamación/patología , Lectinas Tipo C/metabolismo , Animales , Lesiones Traumáticas del Encéfalo/metabolismo , Modelos Animales de Enfermedad , Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos ICR , Ratones Noqueados
20.
Br J Haematol ; 188(5): 641-651, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31696941

RESUMEN

Acute respiratory distress syndrome (ARDS) is characterized by a rapid-onset respiratory failure with a mortality rate of approximately 40%. This physiologic inflammatory process is mediated by disruption of the alveolar-vascular interface, leading to pulmonary oedema and impaired oxygen exchange, which often warrants mechanical ventilation to increase survival in the acute setting. One of the least understood aspects of ARDS is the role of the platelets in this process. Platelets, which protect vascular integrity, play a pivotal role in the progression and resolution of ARDS. The recent substantiation of the age-old theory that megakaryocytes are found in the lungs has rejuvenated interest in and raised new questions about the importance of platelets for pulmonary function. In addition to primary haemostasis, platelets provide a myriad of inflammatory functions that are poised to aid the innate immune system. This review focuses on the evidence for regulatory roles of platelets in pulmonary inflammation, with an emphasis on two receptors, CLEC-2 and TLT-1. Studies of these receptors identify novel pathways through which platelets may regulate vascular integrity and inflammation in the lungs, thereby influencing the development of ARDS.


Asunto(s)
Plaquetas , Lectinas Tipo C/metabolismo , Pulmón , Glicoproteínas de Membrana/metabolismo , Receptores Inmunológicos/metabolismo , Síndrome de Dificultad Respiratoria , Transducción de Señal , Animales , Plaquetas/metabolismo , Plaquetas/patología , Humanos , Inflamación/metabolismo , Inflamación/patología , Pulmón/metabolismo , Pulmón/patología , Megacariocitos/metabolismo , Megacariocitos/patología , Síndrome de Dificultad Respiratoria/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA