RESUMEN
Membrane tension is thought to be a long-range integrator of cell physiology. Membrane tension has been proposed to enable cell polarity during migration through front-back coordination and long-range protrusion competition. These roles necessitate effective tension transmission across the cell. However, conflicting observations have left the field divided as to whether cell membranes support or resist tension propagation. This discrepancy likely originates from the use of exogenous forces that may not accurately mimic endogenous forces. We overcome this complication by leveraging optogenetics to directly control localized actin-based protrusions or actomyosin contractions while simultaneously monitoring the propagation of membrane tension using dual-trap optical tweezers. Surprisingly, actin-driven protrusions and actomyosin contractions both elicit rapid global membrane tension propagation, whereas forces applied to cell membranes alone do not. We present a simple unifying mechanical model in which mechanical forces that engage the actin cortex drive rapid, robust membrane tension propagation through long-range membrane flows.
Asunto(s)
Actinas , Actomiosina , Actinas/metabolismo , Actomiosina/metabolismo , Citoesqueleto de Actina/metabolismo , Membrana Celular/metabolismo , Movimiento Celular/fisiologíaRESUMEN
The cellular cortex provides crucial mechanical support and plays critical roles during cell division and migration. The proteins of the ERM family, comprised of ezrin, radixin, and moesin, are central to these processes by linking the plasma membrane to the actin cytoskeleton. To investigate the contributions of the ERM proteins to leukocyte migration, we generated single and triple ERM knockout macrophages. Surprisingly, we found that even in the absence of ERM proteins, macrophages still form the different actin structures promoting cell migration, such as filopodia, lamellipodia, podosomes, and ruffles. Furthermore, we discovered that, unlike every other cell type previously investigated, the single or triple knockout of ERM proteins does not affect macrophage migration in diverse contexts. Finally, we demonstrated that the loss of ERMs in macrophages does not affect the mechanical properties of their cortex. These findings challenge the notion that ERMs are universally essential for cortex mechanics and cell migration and support the notion that the macrophage cortex may have diverged from that of other cells to allow for their uniquely adaptive cortical plasticity.
Asunto(s)
Movimiento Celular , Proteínas del Citoesqueleto , Macrófagos , Proteínas de la Membrana , Ratones Noqueados , Proteínas de Microfilamentos , Proteínas del Citoesqueleto/metabolismo , Proteínas del Citoesqueleto/genética , Animales , Macrófagos/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas de Microfilamentos/genética , Ratones , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genéticaRESUMEN
Ciliates assemble numerous microtubular structures into complex cortical patterns. During ciliate division, the pattern is duplicated by intracellular segmentation that produces a tandem of daughter cells. In Tetrahymena thermophila, the induction and positioning of the division boundary involves two mutually antagonistic factors: posterior CdaA (cyclin E) and anterior CdaI (Hippo kinase). Here, we characterized the related cdaH-1 allele, which confers a pleiotropic patterning phenotype including an absence of the division boundary and an anterior-posterior mispositioning of the new oral apparatus. CdaH is a Fused or Stk36 kinase ortholog that localizes to multiple sites that correlate with the effects of its loss, including the division boundary and the new oral apparatus. CdaH acts downstream of CdaA to induce the division boundary and drives asymmetric cytokinesis at the tip of the posterior daughter. CdaH both maintains the anterior-posterior position of the new oral apparatus and interacts with CdaI to pattern ciliary rows within the oral apparatus. Thus, CdaH acts at multiple scales, from induction and positioning of structures on the cell-wide polarity axis to local organelle-level patterning.
Asunto(s)
Tetrahymena thermophila , Tetrahymena , Tetrahymena/genética , División Celular/genética , Acetamidas , Tetrahymena thermophila/genética , CitoesqueletoRESUMEN
Proper orientation of the mitotic spindle plays a crucial role in embryos, during tissue development, and in adults, where it functions to dissipate mechanical stress to maintain tissue integrity and homeostasis. While mitotic spindles have been shown to reorient in response to external mechanical stresses, the subcellular cues that mediate spindle reorientation remain unclear. Here, we used a combination of optogenetics and computational modeling to investigate how mitotic spindles respond to inhomogeneous tension within the actomyosin cortex. Strikingly, we found that the optogenetic activation of RhoA only influences spindle orientation when it is induced at both poles of the cell. Under these conditions, the sudden local increase in cortical tension induced by RhoA activation reduces pulling forces exerted by cortical regulators on astral microtubules. This leads to a perturbation of the balance of torques exerted on the spindle, which causes it to rotate. Thus, spindle rotation in response to mechanical stress is an emergent phenomenon arising from the interaction between the spindle positioning machinery and the cell cortex.
Asunto(s)
Microtúbulos , Huso Acromático , Estrés Mecánico , Actomiosina/metabolismo , Simulación por Computador , Citoplasma , Microtúbulos/metabolismo , Optogenética , Huso Acromático/fisiología , Proteína de Unión al GTP rhoA/metabolismoRESUMEN
The abLIM1 is a nonerythroid actin-binding protein critical for stable plasma membrane-cortex interactions under mechanical tension. Its depletion by RNA interference results in sparse, poorly interconnected cortical actin networks and severe blebbing of migrating cells. Its isoforms, abLIM-L, abLIM-M, and abLIM-S, contain, respectively four, three, and no LIM domains, followed by a C terminus entirely homologous to erythroid cortex protein dematin. How abLIM1 functions, however, remains unclear. Here we show that abLIM1 is a liquid-liquid phase separation (LLPS)-dependent self-organizer of actin networks. Phase-separated condensates of abLIM-S-mimicking ΔLIM or the major isoform abLIM-M nucleated, flew along, and cross-linked together actin filaments (F-actin) to produce unique aster-like radial arrays and interconnected webs of F-actin bundles. Interestingly, ΔLIM condensates facilitated actin nucleation and network formation even in the absence of Mg2+. Our results suggest that abLIM1 functions as an LLPS-dependent actin nucleator and cross-linker and provide insights into how LLPS-induced condensates could self-construct intracellular architectures of high connectivity and plasticity.
Asunto(s)
Actinas , Proteínas con Dominio LIM , Proteínas de Microfilamentos , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Humanos , Proteínas con Dominio LIM/genética , Proteínas con Dominio LIM/metabolismo , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferencia de ARNRESUMEN
The cytoskeleton of eukaryotic cells is primarily composed of networks of filamentous proteins, F-actin, microtubules, and intermediate filaments. Interactions among the cytoskeletal components are important in determining cell structure and in regulating cell functions. For example, F-actin and microtubules work together to control cell shape and polarity, while the subcellular organization and transport of vimentin intermediate filament (VIF) networks depend on their interactions with microtubules. However, it is generally thought that F-actin and VIFs form two coexisting but separate networks that are independent due to observed differences in their spatial distribution and functions. In this paper, we present a closer investigation of both the structural and functional interplay between the F-actin and VIF cytoskeletal networks. We characterize the structure of VIFs and F-actin networks within the cell cortex using structured illumination microscopy and cryo-electron tomography. We find that VIFs and F-actin form an interpenetrating network (IPN) with interactions at multiple length scales, and VIFs are integral components of F-actin stress fibers. From measurements of recovery of cell contractility after transient stretching, we find that the IPN structure results in enhanced contractile forces and contributes to cell resilience. Studies of reconstituted networks and dynamic measurements in cells suggest direct and specific associations between VIFs and F-actin. From these results, we conclude that VIFs and F-actin work synergistically, both in their structure and in their function. These results profoundly alter our understanding of the contributions of the components of the cytoskeleton, particularly the interactions between intermediate filaments and F-actin.
Asunto(s)
Citoplasma/metabolismo , Filamentos Intermedios/metabolismo , Vimentina/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/química , Actinas/metabolismo , Animales , Biopolímeros/metabolismo , Células Cultivadas , Tomografía con Microscopio Electrónico/métodos , Filamentos Intermedios/química , Ratones , Vimentina/químicaRESUMEN
Cytokinesis is a mechanism that separates dividing cells via constriction of a supramolecular structure, the contractile ring. In animal cells, three modes of symmetry-breaking of cytokinesis result in unilateral cytokinesis, asymmetric cell division, and oriented cell division. Each mode of cytokinesis plays a significant role in tissue patterning and morphogenesis by the mechanisms that control the orientation and position of the contractile ring relative to the body axis. Despite its significance, the mechanisms involved in the symmetry-breaking of cytokinesis remain unclear in many cell types. Classical embryologists have identified that the geometric relationship between the mitotic spindle and cell cortex induces cytokinesis asymmetry; however, emerging evidence suggests that a concerted flow of compressional cell-cortex materials (cortical flow) is a spindle-independent driving force in spatial cytokinesis control. This review provides an overview of both classical and emerging mechanisms of cytokinesis asymmetry and their roles in animal development.
Asunto(s)
Citocinesis , Huso Acromático , Citoesqueleto de Actina , Animales , División Celular , Huso Acromático/metabolismoRESUMEN
Just under the plasma membrane of most animal cells lies a dense meshwork of actin filaments called the cortical cytoskeleton. In insulin-secreting pancreatic ß cells, a long-standing model posits that the cortical actin layer primarily acts to restrict access of insulin granules to the plasma membrane. Here we test this model and find that stimulating ß cells with pro-secretory stimuli (glucose and/or KCl) has little impact on the cortical actin layer. Chemical perturbations of actin polymerization, by either disrupting or enhancing filamentation, dramatically enhance glucose-stimulated insulin secretion. Using scanning electron microscopy, we directly visualize the cortical cytoskeleton, allowing us to validate the effect of these filament-disrupting chemicals. We find the state of the cortical actin layer does not correlate with levels of insulin secretion, suggesting filament disruptors act on insulin secretion independently of the cortical cytoskeleton.
Asunto(s)
Citoesqueleto de Actina , Actinas , Secreción de Insulina , Células Secretoras de Insulina , Animales , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Glucosa/farmacología , Insulina/metabolismo , Células Secretoras de Insulina/metabolismoRESUMEN
Septins are a family of filament-forming GTP-binding proteins that regulate fundamental cellular activities, such as cytokinesis and cell polarity. In general, septin filaments function as barriers and scaffolds on the cell cortex. However, little is known about the mechanism that governs the recruitment and localization of the septin complex to the cell cortex. Here, we identified the Cdc42 GTPase-activating protein Rga6 as a key protein involved in promoting the localization of the septin complex to the cell cortex in the fission yeast Schizosaccharomyces pombe. Rga6 interacts with the septin complex and partially colocalizes with the septin complex on the cell cortex. Live-cell microscopy analysis further showed septin enrichment at the cortical regions adjacent to the growing cell tip. The septin enrichment likely plays a crucial role in confining active Cdc42 to the growing cell tip. Hence, our findings support a model whereby Rga6 regulates polarized cell growth partly through promoting targeted localization of the septin complex on the cell cortex. This article has an associated First Person interview with the first author of the paper.
Asunto(s)
Proteínas Activadoras de GTPasa , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Septinas , Citocinesis/genética , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Septinas/genética , Septinas/metabolismoRESUMEN
Many animal cell shape changes are driven by gradients in the contractile tension of the actomyosin cortex, a thin cytoskeletal network supporting the plasma membrane. Elucidating cortical tension control is thus essential for understanding cell morphogenesis. Increasing evidence shows that alongside myosin activity, actin network organisation and composition are key to cortex tension regulation. However, owing to a poor understanding of how cortex composition changes when tension changes, which cortical components are important remains unclear. In this article, we compared cortices from cells with low and high cortex tensions. We purified cortex-enriched fractions from cells in interphase and mitosis, as mitosis is characterised by high cortical tension. Mass spectrometry analysis identified 922 proteins consistently represented in both interphase and mitotic cortices. Focusing on actin-related proteins narrowed down the list to 238 candidate regulators of the mitotic cortical tension increase. Among these candidates, we found that there is a role for septins in mitotic cell rounding control. Overall, our study provides a comprehensive dataset of candidate cortex regulators, paving the way for systematic investigations of the regulation of cell surface mechanics. This article has an associated First Person interview with the first author of the paper.
Asunto(s)
Actinas , Proteómica , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animales , Humanos , Interfase , MitosisRESUMEN
Insulin secretion in pancreatic ß-cells is regulated by cortical complexes that are enriched at the sites of adhesion to extracellular matrix facing the vasculature. Many components of these complexes, including bassoon, RIM, ELKS and liprins, are shared with neuronal synapses. Here, we show that insulin secretion sites also contain the non-neuronal proteins LL5ß (also known as PHLDB2) and KANK1, which, in migrating cells, organize exocytotic machinery in the vicinity of integrin-based adhesions. Depletion of LL5ß or focal adhesion disassembly triggered by myosin II inhibition perturbed the clustering of secretory complexes and attenuated the first wave of insulin release. Although previous analyses in vitro and in neurons have suggested that secretory machinery might assemble through liquid-liquid phase separation, analysis of endogenously labeled ELKS in pancreatic islets indicated that its dynamics is inconsistent with such a scenario. Instead, fluorescence recovery after photobleaching and single-molecule imaging showed that ELKS turnover is driven by binding and unbinding to low-mobility scaffolds. Both the scaffold movements and ELKS exchange were stimulated by glucose treatment. Our findings help to explain how integrin-based adhesions control spatial organization of glucose-stimulated insulin release.
Asunto(s)
Células Secretoras de Insulina , Proteínas del Citoesqueleto/metabolismo , Exocitosis , Glucosa/metabolismo , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismoRESUMEN
The development of complex forms of multicellular organisms depends on the spatial arrangement of cellular architecture and functions. The interior design of the cell is patterned by spatially biased distributions of molecules and biochemical reactions in the cytoplasm and/or on the plasma membrane. In recent years, a dynamic change in the cytoplasmic fluid flow has emerged as a key physical process of driving long-range transport of molecules to particular destinations within the cell. Here, recent experimental advances in the understanding of the generation of the various types of cytoplasmic flows and contributions to intracellular patterning are reviewed with a particular focus on feedback mechanisms between the mechanical properties of fluid flow and biochemical signaling during animal cell polarization.
Asunto(s)
Polaridad Celular/inmunología , Citoplasma/metabolismo , Humanos , Transducción de SeñalRESUMEN
Rho signaling with its major targets the formin Dia, Rho kinase (Rok) and non-muscle myosin II (MyoII, encoded by zip in flies) control turnover, amount and contractility of actomyosin. Much less investigated has been a potential function for the distribution of F-actin plus and minus ends. In syncytial Drosophila embryos, Rho1 signaling is high between actin caps, i.e. the cortical intercap region. Capping protein binds to free plus ends of F-actin to prevent elongation of the filament. Capping protein has served as a marker to visualize the distribution of F-actin plus ends in cells and in vitro. In the present study, we probed the distribution of plus ends with capping protein in syncytial Drosophila embryos. We found that capping proteins are specifically enriched in the intercap region similar to Dia and MyoII but distinct from overall F-actin. The intercap enrichment of Capping protein was impaired in dia mutants and embryos, in which Rok and MyoII activation was inhibited. Our observations reveal that Dia and Rok-MyoII control Capping protein enrichment and support a model that Dia and Rok-MyoII control the organization of cortical actin cytoskeleton downstream of Rho1 signaling. This article has an associated First Person interview with the first authors of the paper.
Asunto(s)
Proteínas de Drosophila , Forminas , Quinasas Asociadas a rho , Citoesqueleto de Actina/genética , Actinas/genética , Animales , Drosophila/genética , Proteínas de Drosophila/genética , Forminas/genética , Proteínas de la Membrana , Cadenas Pesadas de Miosina , Quinasas Asociadas a rho/genéticaRESUMEN
The cytoskeletal protein actin polymerizes into filaments that are essential for the mechanical stability of mammalian cells. In vitro experiments showed that direct interactions between actin filaments and lipid bilayers are possible and that the net charge of the bilayer as well as the presence of divalent ions in the buffer play an important role. In vivo, colocalization of actin filaments and divalent ions are suppressed, and cells rely on linker proteins to connect the plasma membrane to the actin network. Little is known, however, about why this is the case and what microscopic interactions are important. A deeper understanding is highly beneficial, first, to obtain understanding in the biological design of cells and, second, as a possible basis for the building of artificial cortices for the stabilization of synthetic cells. Here, we report the results of coarse-grained molecular dynamics simulations of monomeric and filamentous actin in the vicinity of differently charged lipid bilayers. We observe that charges on the lipid head groups strongly determine the ability of actin to adsorb to the bilayer. The inclusion of divalent ions leads to a reversal of the binding affinity. Our in silico results are validated experimentally by reconstitution assays with actin on lipid bilayer membranes and provide a molecular-level understanding of the actin-membrane interaction.
Asunto(s)
Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Actinas/química , Células Artificiales , Membrana Celular/química , Membrana Celular/metabolismo , Fenómenos Químicos , Biología Computacional , Simulación por Computador , Citoesqueleto/química , Citoesqueleto/metabolismo , Iones/química , Iones/metabolismo , Modelos Moleculares , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica , Electricidad EstáticaRESUMEN
This chapter discusses our current knowledge on the major segregation events that lead to the individualization of the building blocks of vertebrate organisms, starting with the segregation between "outer" and "inner" cells, the separation of the germ layers and the maintenance of their boundaries during gastrulation, and finally the emergence of the primary axial structure, the notochord. The amphibian embryo is used as the prototypical model, to which fish and mouse development are compared. This comparison highlights a striking conservation of the basic processes. It suggests that simple principles may account for the formation of divergent structures. One of them is based on the non-adhesive nature of the apical domain of epithelial cells, exploited to segregate superficial and deep cell populations as a result of asymmetric division. The other principle involves differential expression of contact cues, such as ephrins and protocadherins, to build up high tension along adhesive interfaces, which efficiently creates sharp boundaries.
Asunto(s)
Segregación Cromosómica , Embrión de Mamíferos/metabolismo , Embrión no Mamífero/metabolismo , Morfogénesis , Vertebrados/embriología , Animales , Fenómenos BiofísicosRESUMEN
The shape of cells and the control thereof plays a central role in a variety of cellular processes, including endo- and exocytosis, cell division and cell movement. Intra- and extracellular forces control the shapes, and while the shape changes in some processes such as exocytosis are intracellularly-controlled and localized in the cell, movement requires force transmission to the environment, and the feedback from it can affect the cell shape and mode of movement used. The shape of a cell is determined by its cytoskeleton (CSK), and thus shape changes involved in various processes involve controlled remodeling of the CSK. While much is known about individual components involved in these processes, an integrated understanding of how intra- and extracellular signals are coupled to the control of the mechanical changes involved is not at hand for any of them. As a first step toward understanding the interaction between intracellular forces imposed on the membrane and cell shape, we investigate the role of distributed surrogates for cortical forces in producing the observed three-dimensional shapes. We show how different balances of applied forces lead to such shapes, that there are different routes to the same end state, and that state transitions between axisymmetric shapes need not all be axisymmetric. Examples of the force distributions that lead to protrusions are given, and the shape changes induced by adhesion of a cell to a surface are studied. The results provide a reference framework for developing detailed models of intracellular force distributions observed experimentally, and provide a basis for studying how movement of a cell in a tissue or fluid is influenced by its shape.
Asunto(s)
Citoesqueleto , Forma de la Célula , Movimiento CelularRESUMEN
The association of molecules within membrane microdomains is critical for the intracellular organization of cells. During polarization of the C. elegans zygote, both polarity proteins and actomyosin regulators associate within dynamic membrane-associated foci. Recently, a novel class of asymmetric membrane-associated structures was described that appeared to be enriched in phosphatidylinositol 4,5-bisphosphate (PIP2), suggesting that PIP2 domains could constitute signaling hubs to promote cell polarization and actin nucleation. Here, we probe the nature of these domains using a variety of membrane- and actin cortex-associated probes. These data demonstrate that these domains are filopodia, which are stimulated transiently during polarity establishment and accumulate in the zygote anterior. The resulting membrane protrusions create local membrane topology that quantitatively accounts for observed local increases in the fluorescence signal of membrane-associated molecules, suggesting molecules are not selectively enriched in these domains relative to bulk membrane and that the PIP2 pool as revealed by PHPLCδ1 simply reflects plasma membrane localization. Given the ubiquity of 3D membrane structures in cells, including filopodia, microvilli and membrane folds, similar caveats are likely to apply to analysis of membrane-associated molecules in a broad range of systems.
Asunto(s)
Caenorhabditis elegans/embriología , Caenorhabditis elegans/metabolismo , Microdominios de Membrana/metabolismo , Seudópodos/metabolismo , Cigoto/metabolismo , Actinas/metabolismo , Animales , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Proteínas Fluorescentes Verdes/metabolismoRESUMEN
The procedure commonly adopted to characterize cell materials using atomic force microscopy neglects the stress state induced in the cell by the adhesion structures that anchor it to the substrate. In several studies, the cell is considered as made from a single material and no specific information is provided regarding the mechanical properties of subcellular components. Here we present an optimization algorithm to determine separately the material properties of subcellular components of mesenchymal stem cells subjected to nanoindentation measurements. We assess how these properties change if the adhesion structures at the cell-substrate interface are considered or not in the algorithm. In particular, among the adhesion structures, the focal adhesions and the stress fibers were simulated. We found that neglecting the adhesion structures leads to underestimate the cell mechanical properties thus making errors up to 15%. This result leads us to conclude that the action of adhesion structures should be taken into account in nanoindentation measurements especially for cells that include a large number of adhesions to the substrate.
Asunto(s)
Células Madre Mesenquimatosas/fisiología , Microscopía de Fuerza Atómica/métodos , Modelos Biológicos , Algoritmos , Fenómenos Biomecánicos , Adhesión Celular , Análisis de Elementos Finitos , Adhesiones Focales/fisiología , Humanos , Fibras de Estrés/fisiologíaRESUMEN
Eukaryotic cells are sensitive to mechanical forces they experience from the environment. The process of mechanosensation is complex, and involves elements such as the cytoskeleton and active contraction from myosin motors. Ultimately, mechanosensation is connected to changes in gene expression in the cell, known as mechanotransduction. While the involvement of the cytoskeleton in mechanosensation is known, the processes upstream of cytoskeletal changes are unclear. In this paper, by using a microfluidic device that mechanically compresses live cells, we demonstrate that Ca2+ currents and membrane tension-sensitive ion channels directly signal to the Rho GTPase and myosin contraction. In response to membrane tension changes, cells actively regulate cortical myosin contraction to balance external forces. The process is captured by a mechanochemical model where membrane tension, myosin contraction and the osmotic pressure difference between the cytoplasm and extracellular environment are connected by mechanical force balance. Finally, to complete the picture of mechanotransduction, we find that the tension-sensitive transcription factor YAP family of proteins translocate from the nucleus to the cytoplasm in response to mechanical compression.
Asunto(s)
Citoesqueleto/química , Fenómenos Mecánicos , Mecanotransducción Celular/genética , Miosinas/química , Señalización del Calcio/genética , Proteínas de Ciclo Celular , Línea Celular , Membrana Celular/química , Membrana Celular/genética , Citoplasma/química , Citoplasma/genética , Citoesqueleto/genética , Humanos , Dispositivos Laboratorio en un Chip , Contracción Muscular/genética , Miosinas/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Presión Osmótica , Factores de Transcripción/química , Factores de Transcripción/genética , Proteínas de Unión al GTP rho/química , Proteínas de Unión al GTP rho/genéticaRESUMEN
Cytoskeletal networks of actin filaments and myosin motors drive many dynamic cell processes. A key characteristic of these networks is their contractility. Despite intense experimental and theoretical efforts, it is not clear what mechanism favors network contraction over expansion. Recent work points to a dominant role for the nonlinear mechanical response of actin filaments, which can withstand stretching but buckle upon compression. Here, we present an alternative mechanism. We study how interactions between actin and myosin-2 at the single-filament level translate into contraction at the network scale by performing time-lapse imaging on reconstituted quasi-2D networks mimicking the cell cortex. We observe myosin end-dwelling after it runs processively along actin filaments. This leads to transport and clustering of actin filament ends and the formation of transiently stable bipolar structures. Further, we show that myosin-driven polarity sorting produces polar actin asters, which act as contractile nodes that drive contraction in crosslinked networks. Computer simulations comparing the roles of the end-dwelling mechanism and a buckling-dependent mechanism show that the relative contribution of end-dwelling contraction increases as the network mesh-size decreases.