Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 237
Filtrar
Más filtros

Intervalo de año de publicación
1.
J Pharmacol Sci ; 156(3): 161-170, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39313274

RESUMEN

Claudin-18 splice variant 2 (CLDN18.2), a tight junction protein, is a highly cell type-specific antigen that is expressed by differentiated gastric mucosa cells. The expression of CLDN18.2 in gastric mucosa cells may be retained upon malignant transformation and is displayed on the surface of several tumors, including gastric/gastroesophageal junction adenocarcinoma. Zolbetuximab is a genetically engineered, highly purified chimeric (mouse/human IgG1) antibody directed against CLDN18.2. Nausea and vomiting were observed as adverse events of zolbetuximab. To investigate the mechanism of nausea and vomiting in humans, we evaluated emesis (retching and vomiting) and conducted histopathologic assessment in ferrets after the administration of zolbetuximab. Emesis was frequently observed in all ferrets treated with zolbetuximab in the first hour after administration. Histopathologic assessment revealed the surface of the gastric mucosa was the primary site of emesis-associated tissue damage. The effect of antiemetics (dexamethasone, ondansetron, fosaprepitant, and olanzapine) on emesis induced by zolbetuximab was investigated. Fosaprepitant showed suppressive effects on emesis, and use of dexamethasone or concomitant use of fosaprepitant with other antiemetics tended to alleviate gastric tissue damage. The onset of emesis in humans receiving zolbetuximab may be associated with damage in the gastric mucosa, and antiemetics may mitigate gastrointestinal adverse events.


Asunto(s)
Antieméticos , Hurones , Mucosa Gástrica , Vómitos , Animales , Vómitos/inducido químicamente , Antieméticos/farmacología , Antieméticos/uso terapéutico , Mucosa Gástrica/efectos de los fármacos , Mucosa Gástrica/patología , Anticuerpos Monoclonales/efectos adversos , Anticuerpos Monoclonales/farmacología , Morfolinas/farmacología , Masculino , Dexametasona/efectos adversos , Náusea/inducido químicamente , Femenino
2.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34810264

RESUMEN

Calcium (Ca2+) homeostasis is maintained through coordination between intestinal absorption, renal reabsorption, and bone remodeling. Intestinal and renal (re)absorption occurs via transcellular and paracellular pathways. The latter contributes the bulk of (re)absorption under conditions of adequate intake. Epithelial paracellular permeability is conferred by tight-junction proteins called claudins. However, the molecular identity of the paracellular Ca2+ pore remains to be delineated. Claudins (Cldn)-2 and -12 confer Ca2+ permeability, but deletion of either claudin does not result in a negative Ca2+ balance or increased calciotropic hormone levels, suggesting the existence of additional transport pathways or parallel roles for the two claudins. To test this, we generated a Cldn2/12 double knockout mouse (DKO). These animals have reduced intestinal Ca2+ absorption. Colonic Ca2+ permeability is also reduced in DKO mice and significantly lower than single-null animals, while small intestine Ca2+ permeability is unaltered. The DKO mice display significantly greater urinary Ca2+ wasting than Cldn2 null animals. These perturbations lead to hypocalcemia and reduced bone mineral density, which was not observed in single-KO animals. Both claudins were localized to colonic epithelial crypts and renal proximal tubule cells, but they do not physically interact in vitro. Overexpression of either claudin increased Ca2+ permeability in cell models with endogenous expression of the other claudin. We find claudin-2 and claudin-12 form partially redundant, independent Ca2+ permeable pores in renal and colonic epithelia that enable paracellular Ca2+ (re)absorption in these segments, with either one sufficient to maintain Ca2+ balance.


Asunto(s)
Calcio/metabolismo , Claudinas/genética , Hipocalcemia/metabolismo , Animales , Calcificación Fisiológica , Cationes , Genotipo , Células HEK293 , Homeostasis , Humanos , Técnicas In Vitro , Ratones , Ratones Noqueados , Permeabilidad
3.
Artículo en Inglés | MEDLINE | ID: mdl-39276851

RESUMEN

Regulation of salt and water balance occupies a dominant role in the physiology of many animals and often relies on the function of the renal system. In the mammalian kidney, epithelial ion and water transport requires high degree of coordination between the transcellular and paracellular pathways, the latter being defined by the intercellular tight junctions (TJs). TJs seal the paracellular pathway in a highly specialized manner, either by forming a barrier against the passage of solutes and/or water or by allowing the passage of ions and/or water through them. This functional TJ plasticity is now known to be provided by the members of the claudin family of tetraspan proteins. Unlike mammalian nephron, the renal structures of insects, the Malpighian tubules, lack TJs and instead have smooth septate junctions (sSJs) as paracellular barrier forming junctions. Many questions regarding the molecular and functional properties of sSJs remain open but research on model species have begun to inform our understanding. The goal of this commentary is to highlight key concepts and most recent findings that have emerged from the molecular and functional dissection of paracellular barriers in the mammalian and insect renal epithelia.

4.
Int J Mol Sci ; 25(8)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38673838

RESUMEN

Oesophageal cancer (OC) is the sixth leading cause of cancer-related death worldwide. OC is highly aggressive, primarily due to its late stage of diagnosis and poor prognosis for patients' survival. Therefore, the establishment of new biomarkers that will be measured with non-invasive techniques at low cost is a critical issue in improving the diagnosis of OC. In this review, we summarize several original studies concerning the potential significance of selected chemokines and their receptors, including inflammatory proteins such as interleukin-6 (IL-6) and C-reactive protein (CRP), hematopoietic growth factors (HGFs), claudins (CLDNs), matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs), adamalysines (ADAMs), as well as DNA- and RNA-based biomarkers, in OC. The presented results indicate the significant correlation between the CXCL12, CXCR4, CXCL8/CXCR2, M-CSF, MMP-2, MMP-9 ADAM17, ADAMTS-6, and CLDN7 levels and tumor stage, as well as the clinicopathological parameters of OC, such as the presence of lymph node and/or distant metastases. CXCL12, CXCL8/CXCR2, IL-6, TIMP-2, ADAM9, and ADAMTS-6 were prognostic factors for the overall survival of OC patients. Furthermore, IL-6, CXCR4, CXCL8, and MMP-9 indicate higher diagnostic utility based on the area under the ROC curve (AUC) than well-established OC tumor markers, whereas CLDN18.2 can be used in novel targeted therapies for OC patients.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Esofágicas , Humanos , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/diagnóstico , Neoplasias Esofágicas/patología , Biomarcadores de Tumor/metabolismo , Pronóstico
5.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38732086

RESUMEN

The ability of the immune system to combat pathogens relies on processes like antigen sampling by dendritic cells and macrophages migrating through endo- and epithelia or penetrating them with their dendrites. In addition, other immune cell subtypes also migrate through the epithelium after activation. For paracellular migration, interactions with tight junctions (TJs) are necessary, and previous studies reported TJ protein expression in several immune cells. Our investigation aimed to characterize, in more detail, the expression profiles of TJ proteins in different immune cells in both naïve and activated states. The mRNA expression analysis revealed distinct expression patterns for TJ proteins, with notable changes, mainly increases, upon activation. At the protein level, LSR appeared predominant, being constitutively present in naïve cell membranes, suggesting roles as a crucial interaction partner. Binding experiments suggested the presence of claudins in the membrane only after stimulation, and claudin-8 translocation to the membrane occurred after stimulation. Our findings suggest a dynamic TJ protein expression in immune cells, implicating diverse functions in response to stimulation, like interaction with TJ proteins or regulatory roles. While further analysis is needed to elucidate the precise roles of TJ proteins, our findings indicate important non-canonical functions of TJ proteins in immune response.


Asunto(s)
Granulocitos , Sistema Inmunológico , Macrófagos , Receptores de Lipoproteína , Proteínas de Uniones Estrechas , Factores de Transcripción , Proteínas de Uniones Estrechas/metabolismo , Humanos , Colon , Organoides , Células HT29 , Granulocitos/metabolismo , Macrófagos/metabolismo , Sistema Inmunológico/metabolismo , Cultivo Primario de Células
6.
Int J Mol Sci ; 25(11)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38891789

RESUMEN

This review addresses the role of tight junction proteins at the blood-brain barrier (BBB). Their expression is described, and their role in physiological and pathological processes at the BBB is discussed. Based on this, new approaches are depicted for paracellular drug delivery and diagnostics in the treatment of cerebral diseases. Recent data provide convincing evidence that, in addition to its impairment in the course of diseases, the BBB could be involved in the aetiology of CNS disorders. Further progress will be expected based on new insights in tight junction protein structure and in their involvement in signalling pathways.


Asunto(s)
Barrera Hematoencefálica , Proteínas de Uniones Estrechas , Uniones Estrechas , Barrera Hematoencefálica/metabolismo , Humanos , Proteínas de Uniones Estrechas/metabolismo , Animales , Uniones Estrechas/metabolismo , Enfermedades del Sistema Nervioso Central/metabolismo , Transducción de Señal
7.
Int J Mol Sci ; 25(3)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38338705

RESUMEN

This study investigates the intricate composition and spatial distribution of tight junction complex proteins during early mouse neurulation. The analyses focused on the cranial neural tube, which gives rise to all head structures. Neurulation brings about significant changes in the neuronal and non-neuronal ectoderm at a cellular and tissue level. During this process, precise coordination of both epithelial integrity and epithelial dynamics is essential for accurate tissue morphogenesis. Tight junctions are pivotal for epithelial integrity, yet their complex composition in this context remains poorly understood. Our examination of various tight junction proteins in the forebrain region of mouse embryos revealed distinct patterns in the neuronal and non-neuronal ectoderm, as well as mesoderm-derived mesenchymal cells. While claudin-4 exhibited exclusive expression in the non-neuronal ectoderm, we demonstrated a neuronal ectoderm specific localization for claudin-12 in the developing cranial neural tube. Claudin-5 was uniquely present in mesenchymal cells. Regarding the subcellular localization, canonical tight junction localization in the apical junctions was predominant for most tight junction complex proteins. ZO-1 (zona occludens protein-1), claudin-1, claudin-4, claudin-12, and occludin were detected at the apical junction. However, claudin-1 and occludin also appeared in basolateral domains. Intriguingly, claudin-3 displayed a non-canonical localization, overlapping with a nuclear lamina marker. These findings highlight the diverse tissue and subcellular distribution of tight junction proteins and emphasize the need for their precise regulation during the dynamic processes of forebrain development. The study can thereby contribute to a better understanding of the role of tight junction complex proteins in forebrain development.


Asunto(s)
Proteínas de Uniones Estrechas , Uniones Estrechas , Ratones , Animales , Proteínas de Uniones Estrechas/metabolismo , Claudina-4/metabolismo , Claudina-1/metabolismo , Ocludina/metabolismo , Claudina-3/metabolismo , Uniones Estrechas/metabolismo , Proteína de la Zonula Occludens-1/metabolismo , Claudinas/metabolismo
8.
Int J Mol Sci ; 25(3)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38338808

RESUMEN

Peyer's patches (PPs) are part of the gut-associated lymphatic tissue (GALT) and represent the first line of the intestinal immunological defense. They consist of follicles with lymphocytes and an overlying subepithelial dome with dendritic cells and macrophages, and they are covered by the follicle-associated epithelium (FAE). A sealed paracellular pathway in the FAE is crucial for the controlled uptake of luminal antigens. Quercetin is the most abundant plant flavonoid and has a barrier-strengthening effect on tight junctions (TJs), a protein complex that regulates the paracellular pathway. In this study, we aimed to analyze the effect of quercetin on porcine PPs and the surrounding villus epithelium (VE). We incubated both tissue types for 4 h in Ussing chambers, recorded the transepithelial electrical resistance (TEER), and measured the unidirectional tracer flux of [3H]-mannitol. Subsequently, we analyzed the expression, protein amount, and localization of three TJ proteins, claudin 1, claudin 2, and claudin 4. In the PPs, we could not detect an effect of quercetin after 4 h, neither on TEER nor on the [3H]-mannitol flux. In the VE, quercetin led to a higher TEER value, while the [3H]-mannitol flux was unchanged. The pore-forming claudin 2 was decreased while the barrier-forming claudin 4 was increased and the expression was upregulated. Claudin 1 was unchanged and all claudins could be located in the paracellular membrane by immunofluorescence microscopy. Our study shows the barrier-strengthening effect of quercetin in porcine VE by claudin 4 upregulation and a claudin 2 decrease. Moreover, it underlines the different barrier properties of PPs compared to the VE.


Asunto(s)
Ganglios Linfáticos Agregados , Quercetina , Animales , Porcinos , Quercetina/farmacología , Quercetina/metabolismo , Ganglios Linfáticos Agregados/metabolismo , Claudina-4/metabolismo , Claudina-2/metabolismo , Claudina-1/metabolismo , Intestino Delgado/metabolismo , Claudinas/metabolismo , Uniones Estrechas/metabolismo , Manitol/farmacología
9.
J Biol Chem ; 298(9): 102357, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35952760

RESUMEN

Strains of Clostridium perfringens produce a two-domain enterotoxin (CpE) that afflicts humans and domesticated animals, causing prevalent gastrointestinal illnesses. CpE's C-terminal domain (cCpE) binds cell surface receptors, followed by a restructuring of its N-terminal domain to form a membrane-penetrating ß-barrel pore, which is toxic to epithelial cells of the gut. The claudin family of membrane proteins are known receptors for CpE and also control the architecture and function of cell-cell contacts (tight junctions) that create barriers to intercellular molecular transport. CpE binding and assembly disables claudin barrier function and induces cytotoxicity via ß-pore formation, disrupting gut homeostasis; however, a structural basis of this process and strategies to inhibit the claudin-CpE interactions that trigger it are both lacking. Here, we used a synthetic antigen-binding fragment (sFab) library to discover two sFabs that bind claudin-4 and cCpE complexes. We established these sFabs' mode of molecular recognition and binding properties and determined structures of each sFab bound to claudin-4-cCpE complexes using cryo-EM. The structures reveal that the sFabs bind a shared epitope, but conform distinctly, which explains their unique binding equilibria. Mutagenesis of antigen/sFab interfaces observed therein result in binding changes, validating the structures, and uncovering the sFab's targeting mechanism. From these insights, we generated a model for CpE's claudin-bound ß-pore that predicted sFabs would not prevent cytotoxicity, which we then verified in vivo. Taken together, this work demonstrates the development and mechanism of claudin/cCpE-binding sFabs that provide a framework and strategy for obstructing claudin/CpE assembly to treat CpE-linked gastrointestinal diseases.


Asunto(s)
Claudinas , Enterotoxinas , Animales , Claudina-3/genética , Claudina-3/metabolismo , Claudina-4/genética , Claudina-4/metabolismo , Claudinas/metabolismo , Clostridium perfringens , Enterotoxinas/metabolismo , Epítopos/metabolismo , Humanos , Unión Proteica
10.
Curr Issues Mol Biol ; 45(7): 6040-6054, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37504297

RESUMEN

BACKGROUND: Breast cancers are heterogeneous and are classified according to the expression of ER, PR and HER2 receptors to distinct groups with prognostic and therapeutic implications. Within the triple-negative group, with no expression of these three receptors, molecular heterogeneity exists but is currently not exploited in the clinic. The claudin-low phenotype is present in a subset of triple-negative breast cancers and constitutes together with basal-like cancers the most extensive groups within triple-negative breast cancers. Suppression of epithelial cell adhesion molecules in claudin-low cancers is also a hallmark of Epithelial Mesenchymal Transition (EMT). METHODS: The groups of claudin-low and claudin-non-suppressed breast cancers from the extensive publicly available genomic cohorts of the METABRIC study were examined to delineate and compare their molecular landscape. Genetic and epigenetic alterations of key factors involved in EMT and potentially associated with the pathogenesis of the claudin-low phenotype were analyzed in the two groups. RESULTS: Claudin-low cancers displayed up-regulation of several core transcription factors of EMT at the mRNA level, compared with claudin-non-suppressed breast cancers. Global promoter DNA methylation was increased in both groups of triple-negative cancers and in claudin-low ER-positive cancers compared with the rest of ER-positive cancers. Histone modifier enzymes, including methyltransferases, demethylases, acetyltransferases and deacetylases displayed amplifications more frequently in claudin-non-suppressed triple-negative cancers than in claudin-low counterparts and the expression of some of these enzymes differed significantly between the two groups. CONCLUSION: Claudin-low and claudin-non-suppressed triple-negative breast cancers differ in their landscape of EMT core regulators and epigenetic regulators. These differences may be explored as targets for therapeutic interventions specific to the two groups of triple-negative breast cancers.

11.
Curr Issues Mol Biol ; 45(11): 8670-8686, 2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37998722

RESUMEN

Metastatic colon cancer remains incurable despite improvements in survival outcomes. New therapies based on the discovery of colon cancer genomic subsets could improve outcomes. Colon cancers from genomic studies with publicly available data were examined to define the expression and regulation of the major tight junction proteins claudins and occludin in genomic groups. Putative regulations of the promoters of tight junction genes by colon-cancer-deregulated pathways were evaluated in silico. The effect of claudin mRNA expression levels on survival of colon cancer patients was examined. Common mutations in colon-cancer-related genes showed variable prevalence in genomically identified groups. Claudin genes were rarely mutated in colon cancer patients. Genomically identified groups of colon cancer displayed distinct regulation of claudins and occludin at the mRNA level. Claudin gene promoters possessed clustered sites of binding sequences for transcription factors TCF4 and SMADs, consistent with a key regulatory role of the WNT and TGFß pathways in their expression. Although an effect of claudin mRNA expression on survival of colon cancer patients as a whole was not prominent, survival of genomic subsets was significantly influenced by claudin mRNA expression. mRNA expression of the main tight junction genes showed differential regulation in various genomically defined subgroups of colon cancer. These data pinpoint a distinct role of claudins and pathways that regulate them in these subgroups and suggest that subgroups of colon cancer should be considered in future efforts to therapeutically target claudins.

12.
Curr Issues Mol Biol ; 45(11): 9284-9305, 2023 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-37998758

RESUMEN

The gut epithelium is a polarized monolayer that exhibits apical and basolateral membrane surfaces. Monolayer cell components are joined side by side via protein complexes known as tight junction proteins (TJPs), expressed at the most apical extreme of the basolateral membrane. The gut epithelium is a physical barrier that determinates intestinal permeability, referred to as the measurement of the transit of molecules from the intestinal lumen to the bloodstream or, conversely, from the blood to the gut lumen. TJPs play a role in the control of intestinal permeability that can be disrupted by stress through signal pathways triggered by the ligation of receptors with stress hormones like glucocorticoids. Preclinical studies conducted under in vitro and/or in vivo conditions have addressed underlying mechanisms that account for the impact of stress on gut permeability. These mechanisms may provide insights for novel therapeutic interventions in diseases in which stress is a risk factor, like irritable bowel syndrome. The focus of this study was to review, in an integrative context, the neuroendocrine effects of stress, with special emphasis on TJPs along with intestinal permeability.

13.
J Membr Biol ; 256(1): 51-61, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35737002

RESUMEN

Epithelial barriers constitute a fundamental requirement in every organism, as they allow the separation of different environments and set boundaries against noxious and other adverse effectors. In many inflammatory and degenerative diseases, epithelial barrier function is impaired because of a disturbance of the paracellular seal. Recently, the Xenopus laevis oocyte has been established as a heterologous expression model for the analysis of transmembrane tight junction protein interactions and is currently considered to be a suitable screening model for barrier effectors. A prerequisite for this application is a physiological anchoring of claudins to the cytoskeleton via the major scaffolding protein tjp1 (tight junction protein 1, ZO-1). We have analyzed the oocyte model with regard to the interaction of heterologously expressed claudins and tjp1. Our experiments have revealed endogenous tjp1 expression in protein and mRNA analyses of unfertilized Xenopus laevis oocytes expressing human claudin 1 (CLDN1) to claudin 5 (CLDN5). The amphibian cell model can therefore be used for the analysis of claudin interactions.


Asunto(s)
Claudinas , Oocitos , Animales , Humanos , Claudinas/genética , Claudinas/metabolismo , Xenopus laevis/metabolismo , Proteína de la Zonula Occludens-1/genética , Proteína de la Zonula Occludens-1/metabolismo , Claudina-1/genética , Claudina-1/metabolismo , Oocitos/metabolismo , Uniones Estrechas/metabolismo
14.
Int J Mol Sci ; 25(1)2023 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-38203447

RESUMEN

Endothelial cells in brain capillaries are crucial for the function of the blood-brain barrier (BBB), and members of the tight junction protein family of claudins are regarded to be primarily responsible for barrier properties. Thus, the analysis of bioactive substances that can affect the BBB's permeability is of great importance and may be useful for the development of new therapeutic strategies for brain pathologies. In our study, we tested the hypothesis that the application of the glucocorticoid prednisolone affects the murine blood-brain barrier in vivo. Isolated brain tissue of control and prednisolone-injected mice was examined by employing immunoblotting and confocal laser scanning immunofluorescence microscopy, and the physiological and behavioral effects were analyzed. The control tissue samples revealed the expression of barrier-forming tight junction proteins claudin-1, -3, and -5 and of the paracellular cation and water-channel-forming protein claudin-2. Prednisolone administration for 7 days at doses of 70 mg/kg caused physiological and behavioral effects and downregulated claudin-1 and -3 and the channel-forming claudin-2 without altering their localization in cerebral blood vessels. Changes in the expression of these claudins might have effects on the ionic and acid-base balance in brain tissue, suggesting the relevance of our findings for therapeutic options in disorders such as cerebral edema and psychiatric failure.


Asunto(s)
Claudinas , Prednisolona , Animales , Ratones , Prednisolona/farmacología , Claudina-2 , Claudina-1 , Células Endoteliales , Encéfalo
15.
Int J Mol Sci ; 24(2)2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36675266

RESUMEN

The damaging effect of ionizing radiation (IR) exposure results in the disturbance of the gut natural barrier, followed by the development of severe gastrointestinal injury. However, the dose and application segment are known to determine the effects of IR. In this study, we demonstrated the dose- and segment-specificity of tight junction (TJ) alteration in IR-induced gastrointestinal injury in rats. Male Wistar rats were subjected to a total-body X-ray irradiation at doses of 2 or 10 Gy. Isolated jejunum and colon segments were tested in an Ussing chamber 72 h after exposure. In the jejunum, 10-Gy IR dramatically altered transepithelial resistance, short-circuit current and permeability for sodium fluorescein. These changes were accompanied by severe disturbance of histological structure and total rearrangement of TJ content (increased content of claudin-1, -2, -3 and -4; multidirectional changes in tricellulin and occludin). In the colon of 10-Gy irradiated rats, lesions of barrier and transport functions were less pronounced, with only claudin-2 and -4 altered among TJ proteins. The 2-Gy IR did not change electrophysiological characteristics or permeability in the colon or jejunum, although slight alterations in jejunum histology were noted, emphasized with claudin-3 increase. Considering that TJ proteins are critical for maintaining epithelial barrier integrity, these findings may have implications for countermeasures in gastrointestinal acute radiation injury.


Asunto(s)
Traumatismos por Radiación , Proteínas de Uniones Estrechas , Ratas , Masculino , Animales , Proteínas de Uniones Estrechas/metabolismo , Mucosa Intestinal/metabolismo , Ratas Wistar , Uniones Estrechas/metabolismo , Ocludina/metabolismo , Radiación Ionizante , Traumatismos por Radiación/metabolismo , Permeabilidad
16.
Int J Mol Sci ; 25(1)2023 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-38203449

RESUMEN

Ionizing radiation (IR) causes disturbances in the functions of the gastrointestinal tract. Given the therapeutic potential of ouabain, a specific ligand of the Na,K-ATPase, we tested its ability to protect against IR-induced disturbances in the barrier and transport properties of the jejunum and colon of rats. Male Wistar rats were subjected to 6-day intraperitoneal injections of vehicle or ouabain (1 µg/kg/day). On the fourth day of injections, rats were exposed to total-body X-ray irradiation (10 Gy) or a sham irradiation. Isolated tissues were examined 72 h post-irradiation. Electrophysiological characteristics and paracellular permeability for sodium fluorescein were measured in an Ussing chamber. Histological analysis and Western blotting were also performed. In the jejunum tissue, ouabain exposure did not prevent disturbances in transepithelial resistance, paracellular permeability, histological characteristics, as well as changes in the expression of claudin-1, -3, -4, tricellulin, and caspase-3 induced by IR. However, ouabain prevented overexpression of occludin and the pore-forming claudin-2. In the colon tissue, ouabain prevented electrophysiological disturbances and claudin-2 overexpression. These observations may reveal a mechanism by which circulating ouabain maintains tight junction integrity under IR-induced intestinal dysfunction.


Asunto(s)
Claudina-2 , Ouabaína , Masculino , Ratas , Animales , Ouabaína/farmacología , Ratas Wistar , ATPasa Intercambiadora de Sodio-Potasio , Intestinos
17.
Int J Mol Sci ; 24(5)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36901695

RESUMEN

Cation and anion transport in the colonocyte apical membrane is highly spatially organized along the cryptal axis. Because of lack of experimental accessibility, information about the functionality of ion transporters in the colonocyte apical membrane in the lower part of the crypt is scarce. The aim of this study was to establish an in vitro model of the colonic lower crypt compartment, which expresses the transit amplifying/progenitor (TA/PE) cells, with accessibility of the apical membrane for functional study of lower crypt-expressed Na+/H+ exchangers (NHEs). Colonic crypts and myofibroblasts were isolated from human transverse colonic biopsies, expanded as three-dimensional (3D) colonoids and myofibroblast monolayers, and characterized. Filter-grown colonic myofibroblast-colonic epithelial cell (CM-CE) cocultures (myofibroblasts on the bottom of the transwell and colonocytes on the filter) were established. The expression pattern for ion transport/junctional/stem cell markers of the CM-CE monolayers was compared with that of nondifferentiated (EM) and differentiated (DM) colonoid monolayers. Fluorometric pHi measurements were performed to characterize apical NHEs. CM-CE cocultures displayed a rapid increase in transepithelial electrical resistance (TEER), paralleled by downregulation of claudin-2. They maintained proliferative activity and an expression pattern resembling TA/PE cells. The CM-CE monolayers displayed high apical Na+/H+ exchange activity, mediated to >80% by NHE2. Human colonoid-myofibroblast cocultures allow the study of ion transporters that are expressed in the apical membrane of the nondifferentiated colonocytes of the cryptal neck region. The NHE2 isoform is the predominant apical Na+/H+ exchanger in this epithelial compartment.


Asunto(s)
Miofibroblastos , Intercambiadores de Sodio-Hidrógeno , Humanos , Intercambiadores de Sodio-Hidrógeno/metabolismo , Miofibroblastos/metabolismo , Técnicas de Cocultivo , Membrana Celular/metabolismo , Células Epiteliales/metabolismo , Concentración de Iones de Hidrógeno
18.
Biochem Biophys Res Commun ; 619: 137-143, 2022 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-35760010

RESUMEN

Acute myeloid leukemia (AML) is the most common acute leukemia affecting adults. The tight junction protein CLDN4 is closely related to the development of various epithelial cell carcinomas. However, whether CLDN4 contributes to AML development remains unclear. For the first time, we found that expression of CLDN4 is aberrantly up-regulated in AML cells. Knockdown of CLDN4 expression resulted in a dramatic decreased cell growth, elevated apoptosis of AML cells. Further, we revealed that knockdown of CLDN4 inhibits mRNA expression of PIK3R3 and MAP2K2, thus suppresses activation of AKT and ERK1/2. More importantly, activating AKT branch by SC79 partially compromised CLDN4 knockdown induced cell viability inhibition. In addition, we found that higher expression of CLDN4 is connected to worse survival and is an independent indicator of shorter disease free survival (DFS) in AML patients. Together, our results indicate that CLDN4 contributes to AML pathogenesis, and suggests that targeting CLDN4 is a promising option for AML treatment.


Asunto(s)
Leucemia Mieloide Aguda , Proteínas Proto-Oncogénicas c-akt , Adulto , Apoptosis/genética , Línea Celular Tumoral , Proliferación Celular , Claudina-4/metabolismo , Humanos , Leucemia Mieloide Aguda/patología , Sistema de Señalización de MAP Quinasas , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
19.
FASEB J ; 35(11): e21982, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34694654

RESUMEN

Activation of the basolateral calcium sensing receptor (CaSR) in the renal tubular thick ascending limb (TAL) increases claudin-14 expression, which reduces paracellular calcium (Ca2+ ) permeability, thus increasing urinary Ca2+ excretion. However, the upstream signaling pathway contributing to altered CLDN14 gene expression is unknown. To delineate this pathway, we identified and then cloned the CaSR responsive region including the promoter of mouse Cldn14 into a luciferase reporter vector. This 1500 bp sequence upstream of the 5' UTR of Cldn14 variant 1, conferred increased reporter activity in the presence of high extracellular Ca2+ (5 mM) relative to a lower (0.5 mM) concentration. Assessment of Cldn14 reporter activity in response to increased extracellular Ca2+ in the presence or absence of specific inhibitors confirmed signaling through PLC and p38, but not JNK. Overexpression of SP1 attenuated Cldn14 reporter activity in response to CasR signaling. SP1 is expressed in the TAL and phosphorylation was attenuated by CaSR signaling. Finally, activating mutations in the CaSR increased Cldn14 reporter activity while a dominant negative mutation in the CaSR inhibited it. Together, these studies suggest that basolateral activation of the CASR leads to increased Cldn14 expression via a PLC- stimulated p38 pathway that prevents Sp1 mediated repression.


Asunto(s)
Calcio/metabolismo , Claudinas/fisiología , Túbulos Renales/metabolismo , Receptores Sensibles al Calcio/metabolismo , Animales , Células HEK293 , Células HeLa , Humanos , Ratones , Ratones Endogámicos C57BL , Ratas , Factor de Transcripción Sp1/metabolismo , Fosfolipasas de Tipo C/metabolismo
20.
Br J Nutr ; : 1-23, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35912696

RESUMEN

Expression levels of genes (RT-qPCR) related to Ca and P homeostasis (transporters and claudins (CLDN)) were determined in porcine jejunal and colonic mucosa. Forty growing pigs (BW 30.4±1.3 kg) received a low and high Ca content (2.0 and 9.6 g/kg, respectively) diet with or without microbial phytase (500 FTU/kg) for 21 days. Dietary Ca intake enhanced serum Ca and alkaline phosphatase concentration and reduced P, 1,25(OH)2D3, and parathyroid hormone concentration. Jejunal TRPV5 mRNA expression was decreased (32%) with phytase inclusion only, while colonic transient receptor potential vanilloid 5 (TRPV5) mRNA was reduced by dietary Ca (34%) and phytase (44%). Both jejunal and colonic TRPV6 mRNA expression was reduced (30%) with microbial phytase. Calbindin-D9k mRNA expression was lower in colonic but not jejunal mucosa with high dietary Ca (59%) and microbial phytase (37%). None of the mRNAs encoding the Na-P cotransporters (NaPi-IIc, PiT-1, PiT-2) were affected. Jejunal, but not colonic expression of the phosphate transporter XPR1, was slightly downregulated with dietary Ca. Dietary Ca downregulated colonic CLDN-4 (20%) and -10 (40%) expression while CLDN-7 was reduced by phytase inclusion in pigs fed low dietary Ca. Expression of colonic CLDN-12 tended to be increased by phytase. In jejunal mucosa, dietary Ca increased CLDN-2 expression (48%) and decreased CLDN-10 (49%) expression, while phytase slightly upregulated CLDN-12 expression. In conclusion, compared to a Ca deficient phytase-free diet, high dietary Ca and phytase intake in pigs downregulate jejunal and colonic genes related to transcellular Ca absorption and upregulate Ca pore-forming claudins.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA