Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Glob Chang Biol ; 30(8): e17468, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39161313

RESUMEN

Climate change has profound impacts on forest ecosystem dynamics and could lead to the emergence of novel ecosystems via changes in species composition, forest structure, and potentially a complete loss of tree cover. Disturbances fundamentally shape those dynamics: the prevailing disturbance regime of a region determines the inherent variability of a system, and its climate-mediated change could accelerate forest transformation. We used the individual-based forest landscape and disturbance model iLand to investigate the resilience of three protected temperate forest landscapes on three continents-selected to represent a gradient from low to high disturbance activity-to changing climate and disturbance regimes. In scenarios of sustained strong global warming, natural disturbances increased across all landscapes regardless of projected changes in precipitation (up to a sevenfold increase in disturbance rate over the 180-year simulation period). Forests in landscapes with historically high disturbance activity had a higher chance of remaining resilient in the future, retaining their structure and composition within the range of variability inherent to the system. However, the risk of regime shift and forest loss was also highest in these systems, suggesting forests may be vulnerable to abrupt change beyond a threshold of increasing disturbance activity. Resilience generally decreased with increasing severity of climate change. Novelty in tree species composition was more common than novelty in forest structure, especially under dry climate scenarios. Forests close to the upper tree line experienced high novelty in structure across all three study systems. Our results highlight common patterns and processes of forest change, while also underlining the diverse and context-specific responses of temperate forest landscapes to climate change. Understanding past and future disturbance regimes can anticipate the magnitude and direction of forest change. Yet, even across a broad gradient of disturbance activity, we conclude that climate change mitigation is the most effective means of maintaining forest resilience.


Asunto(s)
Cambio Climático , Bosques , Árboles , Modelos Teóricos , Conservación de los Recursos Naturales
2.
J Environ Manage ; 357: 120787, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38579470

RESUMEN

The assessment of risk posed by climate change in coastal cities encompasses multiple climate-related hazards. Sea-level rise, coastal flooding and coastal erosion are important hazards, but they are not the only ones. The varying availability and quality of data across cities hinders the ability to conduct holistic and standardized multi-hazard assessments. Indeed, there are far fewer studies on multiple hazards than on single hazards. Also, the comparability of existing methodologies becomes challenging, making it difficult to establish a cohesive understanding of the overall vulnerability and resilience of coastal cities. The use of indicators allows for a standardized and systematic evaluation of baseline hazards across different cities. The methodology developed in this work establishes a framework to assess a wide variety of climate-related hazards across diverse coastal cities, including sea-level rise, coastal flooding, coastal erosion, heavy rainfall, land flooding, droughts, extreme temperatures, heatwaves, cold spells, strong winds and landslides. Indicators are produced and results are compared and mapped for ten European coastal cities. The indicators are meticulously designed to be applicable across different geographical contexts in Europe. In this manner, the proposed approach allows interventions to be prioritized based on the severity and urgency of the specific risks faced by each city.


Asunto(s)
Cambio Climático , Inundaciones , Ciudades , Europa (Continente)
3.
Glob Chang Biol ; 29(5): 1296-1313, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36482280

RESUMEN

Wheat is a major crop worldwide, mainly cultivated for human consumption and animal feed. Grain quality is paramount in determining its value and downstream use. While we know that climate change threatens global crop yields, a better understanding of impacts on wheat end-use quality is also critical. Combining quantitative genetics with climate model outputs, we investigated UK-wide trends in genotypic adaptation for wheat quality traits. In our approach, we augmented genomic prediction models with environmental characterisation of field trials to predict trait values and climate effects in historical field trial data between 2001 and 2020. Addition of environmental covariates, such as temperature and rainfall, successfully enabled prediction of genotype by environment interactions (G × E), and increased prediction accuracy of most traits for new genotypes in new year cross validation. We then extended predictions from these models to much larger numbers of simulated environments using climate scenarios projected under Representative Concentration Pathways 8.5 for 2050-2069. We found geographically varying climate change impacts on wheat quality due to contrasting associations between specific weather covariables and quality traits across the UK. Notably, negative impacts on quality traits were predicted in the East of the UK due to increased summer temperatures while the climate in the North and South-west may become more favourable with increased summer temperatures. Furthermore, by projecting 167,040 simulated future genotype-environment combinations, we found only limited potential for breeding to exploit predictable G × E to mitigate year-to-year environmental variability for most traits except Hagberg falling number. This suggests low adaptability of current UK wheat germplasm across future UK climates. More generally, approaches demonstrated here will be critical to enable adaptation of global crops to near-term climate change.


Asunto(s)
Cambio Climático , Triticum , Humanos , Triticum/genética , Fitomejoramiento , Aclimatación , Reino Unido
4.
Ecol Appl ; 33(2): e2775, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36344448

RESUMEN

The frequency and intensity of forest disturbances, such as drought and fire, are increasing globally, with an increased likelihood of multiple disturbance events occurring in short succession. Disturbances layered over one another may influence the likelihood or intensity of subsequent events (a linked disturbance) or impact response and recovery trajectories (a compound disturbance), with substantial implications for ecological spatiotemporal vulnerability. This study evaluates evidence for disturbance interactions of drought followed by wildfire in a resprouting eucalypt-dominated forest (the Northern Jarrah Forest) in southwestern Australia. Sites were stratified by drought (high, low), from previous modeling and ground validation, and fire severity (high, moderate, unburnt), via remote sensing using the relative difference normalized burn ratio (RdNBR). Evidence of a linked disturbance was assessed via fine fuel consumption and fire severity. Compound disturbance effects were quantified at stand scale (canopy height, quadratic mean diameter, stem density) and stem scale (mortality). There was no evidence of prior drought influencing fine fuel consumption or fire severity and, hence, no evidence of a linked disturbance. However, compound disturbance effects were evident; stands previously affected by drought experienced smaller shifts in canopy height, quadratic mean diameter, and stem density than stands without prior drought impact. At the stem scale, size and fire severity were the strongest determinants of stem survival. Proportional resprouting height was greater in high drought sites than in low drought sites (p < 0.01), meaning, structurally, the low drought stands decreased in height more than the high drought stands. Thus, a legacy of the drought was evident after the wildfire. Although these resprouting eucalypt forests have been regarded as particularly resilient, this study illustrates how multiple disturbances can overwhelm the larger tree component and promote an abundance of smaller stems. We suggest that this is early evidence of a structural destabilization of these forests under a more fire-prone, hotter, and drier future climate.


Asunto(s)
Incendios , Incendios Forestales , Sequías , Bosques , Árboles/química
5.
Oecologia ; 201(4): 1123-1136, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37017733

RESUMEN

Climate change represents a growing ecological challenge. The (sub) arctic and boreal regions of the world experience the most rapid warming, presenting an excellent model system for studying how climate change affects mammals. Moose (Alces alces) are a particularly relevant model species with their circumpolar range. Population declines across the southern edge of this range are linked to rising temperatures. Using a long-term dataset (1988-1997, 2017-2019), we examine the relative strength of direct (thermoregulatory costs) and indirect (food quality) pathways linking temperature, precipitation, and the quality of two important food items (birch and fireweed) to variation in moose calf mass in northern Sweden. The direct effects of temperature consistently showed stronger relationships to moose calf mass than did the indirect effects. The proportion of growing season days where the temperature exceeded a 20 °C threshold showed stronger direct negative relationships to moose calf mass than did mean temperature values. Finally, while annual forb (fireweed) quality was more strongly influenced by temperature and precipitation than were perennial (birch) leaves, this did not translate into a stronger relationship to moose calf weight. The only indirect path with supporting evidence suggested that mean growing season temperatures were positively associated with neutral detergent fiber, which was, in turn, negatively associated with calf mass. While indirect impacts of climate change deserve further investigation, it is important to recognize the large direct impacts of temperature on cold-adapted species.


Asunto(s)
Ciervos , Animales , Estaciones del Año , Temperatura , Cambio Climático , Regiones Árticas
6.
Proc Natl Acad Sci U S A ; 117(43): 26692-26702, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33046645

RESUMEN

Migration may be increasingly used as adaptation strategy to reduce populations' exposure and vulnerability to climate change impacts. Conversely, either through lack of information about risks at destinations or as outcome of balancing those risks, people might move to locations where they are more exposed to climatic risk than at their origin locations. Climate damages, whose quantification informs understanding of societal exposure and vulnerability, are typically computed by integrated assessment models (IAMs). Yet migration is hardly included in commonly used IAMs. In this paper, we investigate how border policy, a key influence on international migration flows, affects exposure and vulnerability to climate change impacts. To this aim, we include international migration and remittance dynamics explicitly in a widely used IAM employing a gravity model and compare four scenarios of border policy. We then quantify effects of border policy on population distribution, income, exposure, and vulnerability and of CO2 emissions and temperature increase for the period 2015 to 2100 along five scenarios of future development and climate change. We find that most migrants tend to move to areas where they are less exposed and vulnerable than where they came from. Our results confirm that migration and remittances can positively contribute to climate change adaptation. Crucially, our findings imply that restrictive border policy can increase exposure and vulnerability, by trapping people in areas where they are more exposed and vulnerable than where they would otherwise migrate. These results suggest that the consequences of migration policy should play a greater part in deliberations about international climate policy.

7.
J Environ Manage ; 348: 119163, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37827081

RESUMEN

Healthy freshwater ecosystems can provide vital ecosystem services (ESs), and this capacity may be hampered due to water quality deterioration and climate change. In the currently available ES modeling tools, ecosystem processes are either absent or oversimplified, hindering the evaluation of impacts of restoration measures on ES provisioning. In this study, we propose an ES modeling tool that integrates lake physics, ecology and service provisioning into a holistic modeling framework. We applied this model to a Dutch quarry lake, to evaluate how nine ESs respond to technological-based (phosphorus (P) reduction) and nature-based measures (wetland restoration). As climate change might be affecting the future effectiveness of restoration efforts, we also studied the climate change impacts on the outcome of restoration measures and provisioning of ESs, using climate scenarios for the Netherlands in 2050. Our results indicate that both phosphorus reduction and wetland restoration mitigated eutrophication symptoms, resulting in increased oxygen concentrations and water transparency, and decreased phytoplankton biomass. Delivery of most ESs was improved, including swimming, P retention, and macrophyte habitat, whereas the ES provisioning that required a more productive system was impaired (sport fishing and bird watching). However, our modeling results suggested hampered effectiveness of restoration measures upon exposure to future climate conditions, which may require intensification of restoration efforts in the future to meet restoration targets. Importantly, ESs provisioning showed non-linear responses to increasing intensity of restoration measures, indicating that effectiveness of restoration measures does not necessarily increase proportionally. In conclusion, the ecosystem service modeling framework proposed in this study, provides a holistic evaluation of lake restoration measures on ecosystem services provisioning, and can contribute to development of climate-robust management strategies.


Asunto(s)
Ecosistema , Lagos , Cambio Climático , Ecología , Fósforo/análisis
8.
Reg Environ Change ; 23(1): 14, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36540304

RESUMEN

While we know that climate change is having different impacts on various ecosystems and regions of the world, we know less how the perception of such impacts varies within a population. In this study, we examine patterns of individual variation in climate change impacts reports using data from a sample (n = 238) drawn from 33 mountainous municipalities of Sierra Nevada, Spain. Sierra Nevada inhabitants report multiple climate change impacts, being the most frequently reported changes in snowfall and snow cover, abundance of terrestrial fauna, freshwater availability, and extreme temperatures. Reports of climate change impacts vary according to informants' sociodemographic characteristics and geographical location. People with life-long bonds with the environment and higher connection and dependence upon ecosystem services report more climate change impacts than other informants, as do people with lower level of schooling. We also found that reports of climate change impacts vary according to geographic areas, which reinforces the idea that climate change generates differentiated impacts even at small geographical scales. Understanding intracultural variation in reports of climate change impacts not only gives an enriched picture of the human dimensions of climate change but might also help design more targeted mitigation and adaptation responses. Supplementary Information: The online version contains supplementary material available at 10.1007/s10113-022-01981-5.

9.
GeoJournal ; 88(3): 3455-3470, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36591569

RESUMEN

Pfumvudza is a Zimbabwean vernacular language term literally referring to the blooming of new leaves during the spring season signalling the beginning of a new farming season. It used to refer, to the conservation agriculture concept, a crop production intensification approach under which farmers ensure the efficient use of resources on a small area of land in order to optimise its management. The research assessed the effectiveness of Pfumvudza as a resilient strategy against climate change induced drought impacts in rural communities Zimbabwe, case of Munyarari ward 20. The descriptive case study was used triangulating data collection methods. The sample size was 96 households who practised Pfumvudza (20% of the target population) and all the 18 households (100%) which did not practise Pfumvudza. These were randomly sampled from five conveniently selected villages in the ward. Four key informants were purposively selected. Data was analysed using SPSS and content analysis. Climate change induced drought impacts greatly affected communal farmers who depended on rain fed agriculture. This led to food insecurity which attracted donor aid year after year. Pfumvudza improved yields and reduced donor aid in the area. Mann-Whitney test results indicated that there was a difference between yields of crops before and after Pfumvudza scheme. Mann-Whitney test results also revealed that there was a significance difference between those who practiced Pfumvudza and those who did not. It was concluded that Pfumvudza increased resilience against climate change induced drought impacts and improved yields in rural communities of Zimbabwe where it was implemented. The research recommends farmers to fully embrace the Pfumvudza strategy so as to realize high yields and improve food security.

10.
Proc Natl Acad Sci U S A ; 116(26): 12907-12912, 2019 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31186360

RESUMEN

While the physical dimensions of climate change are now routinely assessed through multimodel intercomparisons, projected impacts on the global ocean ecosystem generally rely on individual models with a specific set of assumptions. To address these single-model limitations, we present standardized ensemble projections from six global marine ecosystem models forced with two Earth system models and four emission scenarios with and without fishing. We derive average biomass trends and associated uncertainties across the marine food web. Without fishing, mean global animal biomass decreased by 5% (±4% SD) under low emissions and 17% (±11% SD) under high emissions by 2100, with an average 5% decline for every 1 °C of warming. Projected biomass declines were primarily driven by increasing temperature and decreasing primary production, and were more pronounced at higher trophic levels, a process known as trophic amplification. Fishing did not substantially alter the effects of climate change. Considerable regional variation featured strong biomass increases at high latitudes and decreases at middle to low latitudes, with good model agreement on the direction of change but variable magnitude. Uncertainties due to variations in marine ecosystem and Earth system models were similar. Ensemble projections performed well compared with empirical data, emphasizing the benefits of multimodel inference to project future outcomes. Our results indicate that global ocean animal biomass consistently declines with climate change, and that these impacts are amplified at higher trophic levels. Next steps for model development include dynamic scenarios of fishing, cumulative human impacts, and the effects of management measures on future ocean biomass trends.


Asunto(s)
Biomasa , Cambio Climático , Océanos y Mares , Animales , Organismos Acuáticos/fisiología , Explotaciones Pesqueras/estadística & datos numéricos , Peces/fisiología , Cadena Alimentaria , Modelos Teóricos
11.
Environ Manage ; 69(1): 128-139, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34453592

RESUMEN

As ongoing research efforts contribute to elucidating the consequences of climate change as well as adaptation and mitigation options, aligning the current research knowledge with stakeholder opinions and perceptions remains critical for adopting effective climate change policies. This paper utilizes an interactive survey to (1) address the aforementioned gap in studies involving three groups of stakeholders and opinion makers and (2) perform a comparative primary study of the climate change assumptions, risk perceptions, policy preferences, observations, and knowledge of Czech farmers, governmental policy-makers and researchers. This study shows that the stakeholder groups agree that the climate is clearly changing, attribute this change mostly to man-made causes and expect the negative effects to either prevail or be unevenly geographically distributed. The large majority of all three groups consider unmitigated climate change a major threat even by 2050 and agree that preparing in advance is the best sectoral strategy. Importantly, while investment in adaptation measures is considered the most efficient tool for accelerating the implementation of adaptation measures, the CAP and EU rules (as valid in 2016) are believed to hinder such measures. The results of this study have ramifications for the wider region of Central Europe.


Asunto(s)
Cambio Climático , Agricultura Forestal , Agricultura/métodos , Consenso , República Checa , Humanos , Políticas
12.
Environ Manage ; 69(5): 906-918, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35079883

RESUMEN

Homestead forests play an important role in climate change adaptation and mitigation. This study investigated homestead forest owners' perceptions on climate change and associated impacts, as well as the role that homestead forests could play to enhance households' climate adaptation in Bandarban hill district of Bangladesh. Methods involved randomly surveying a total of 176 homestead households at three different hill altitudes: low, medium, and high. We also analyzed the meteorological data on local rainfall and temperature for the period of 1990 to 2019. Results showed that most (76-94%) of the homestead forest owners perceived an increasing erratic pattern of annual temperature and rainfall which was supported by the analysis of local meteorological data. Forest owners´ perceptions towards changes in tree phenology, increase in food insecurity, landslides, and pest infestation, and decrease in crop production, soil fertility, and seasonal streamflow were revealed as pieces of evidence of climate change impacts that varied significantly with hill altitudes and associated ecosystems. About 66% to 97% of the housheolds perceived that homestead forests could play a pivotal role in enhancing their capacity to adapt with the changing climate by supplying diverse products, services, and environmental benefits. Understanding and perceptions of the environmental benefits of homestead forests also significantly varied with the type of households´ construction, income, and literacy of the household members. Our results will help policymakers to ensure these small-scale homestead forests are conserved since they could also provide multiple environmental benefits e.g., carbon sequestration in addition to enhancing community climate adaptation.


Asunto(s)
Cambio Climático , Ecosistema , Bangladesh , Bosques , Árboles
13.
Proc Natl Acad Sci U S A ; 115(24): 6243-6248, 2018 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-29844166

RESUMEN

The Paris Climate Agreement aims to hold global-mean temperature well below 2 °C and to pursue efforts to limit it to 1.5 °C above preindustrial levels. While it is recognized that there are benefits for human health in limiting global warming to 1.5 °C, the magnitude with which those societal benefits will be accrued remains unquantified. Crucial to public health preparedness and response is the understanding and quantification of such impacts at different levels of warming. Using dengue in Latin America as a study case, a climate-driven dengue generalized additive mixed model was developed to predict global warming impacts using five different global circulation models, all scaled to represent multiple global-mean temperature assumptions. We show that policies to limit global warming to 2 °C could reduce dengue cases by about 2.8 (0.8-7.4) million cases per year by the end of the century compared with a no-policy scenario that warms by 3.7 °C. Limiting warming further to 1.5 °C produces an additional drop in cases of about 0.5 (0.2-1.1) million per year. Furthermore, we found that by limiting global warming we can limit the expansion of the disease toward areas where incidence is currently low. We anticipate our study to be a starting point for more comprehensive studies incorporating socioeconomic scenarios and how they may further impact dengue incidence. Our results demonstrate that although future climate change may amplify dengue transmission in the region, impacts may be avoided by constraining the level of warming.


Asunto(s)
Dengue/epidemiología , Dengue/etiología , Dióxido de Carbono/química , Cambio Climático , Calentamiento Global , Humanos , Incidencia , América Latina/epidemiología , Temperatura
14.
Glob Chang Biol ; 26(4): 2599-2612, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31950538

RESUMEN

A paper published in Global Change Biology in 2006 revealed that phenological responses in 1971-2000 matched the warming pattern in Europe, but a lack of chilling and adaptation in farming may have reversed these findings. Therefore, for 1951-2018 in a corresponding data set, we determined changes as linear trends and analysed their variation by plant traits/groups, across season and time as well as their attribution to warming following IPCC methodology. Although spring and summer phases in wild plants advanced less (maximum advances in 1978-2007), more (~90%) and more significant (~60%) negative trends were present, being stronger in early spring, at higher elevations, but smaller for nonwoody insect-pollinated species. These trends were strongly attributable to winter and spring warming. Findings for crop spring phases were similar, but were less pronounced. There were clearer and attributable signs for a delayed senescence in response to winter and spring warming. These changes resulted in a longer growing season, but a constant generative period in wild plants and a shortened one in agricultural crops. Phenology determined by farmers' decisions differed noticeably from the purely climatic driven phases with smaller percentages of advancing (~75%) trends, but farmers' spring activities were the only group with reinforced advancement, suggesting adaptation. Trends in farmers' spring and summer activities were very likely/likely associated with the warming pattern. In contrast, the advance in autumn farming phases was significantly associated with below average summer warming. Thus, under ongoing climate change with decreased chilling the advancing phenology in spring and summer is still attributable to warming; even the farmers' activities in these seasons mirror, to a lesser extent, the warming. Our findings point to adaptation to climate change in agriculture and reveal diverse implications for terrestrial ecosystems; the strong attribution supports the necessary mediation of warming impacts to the general public.

15.
Proc Natl Acad Sci U S A ; 114(25): E4944-E4950, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28584097

RESUMEN

The temporal dynamics of vegetation biomass are of key importance for evaluating the sustainability of arid and semiarid ecosystems. In these ecosystems, biomass and soil moisture are coupled stochastic variables externally driven, mainly, by the rainfall dynamics. Based on long-term field observations in northwestern (NW) China, we test a recently developed analytical scheme for the description of the leaf biomass dynamics undergoing seasonal cycles with different rainfall characteristics. The probabilistic characterization of such dynamics agrees remarkably well with the field measurements, providing a tool to forecast the changes to be expected in biomass for arid and semiarid ecosystems under climate change conditions. These changes will depend-for each season-on the forecasted rate of rainy days, mean depth of rain in a rainy day, and duration of the season. For the site in NW China, the current scenario of an increase of 10% in rate of rainy days, 10% in mean rain depth in a rainy day, and no change in the season duration leads to forecasted increases in mean leaf biomass near 25% in both seasons.


Asunto(s)
Desarrollo de la Planta/fisiología , Hojas de la Planta/crecimiento & desarrollo , Biomasa , China , Cambio Climático , Clima Desértico , Ecosistema , Modelos Estadísticos , Lluvia , Estaciones del Año , Suelo
16.
Sensors (Basel) ; 20(13)2020 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-32630124

RESUMEN

Air quality monitors using low-cost optical PM2.5 sensors can track the dispersion of wildfire smoke; but quantitative hazard assessment requires a smoke-specific adjustment factor (AF). This study determined AFs for three professional-grade devices and four monitors with low-cost sensors based on measurements inside a well-ventilated lab impacted by the 2018 Camp Fire in California (USA). Using the Thermo TEOM-FDMS as reference, AFs of professional monitors were 0.85 for Grimm mini wide-range aerosol spectrometer, 0.25 for TSI DustTrak, and 0.53 for Thermo pDR1500; AFs for low-cost monitors were 0.59 for AirVisual Pro, 0.48 for PurpleAir Indoor, 0.46 for Air Quality Egg, and 0.60 for eLichens Indoor Air Quality Pro Station. We also compared public data from 53 PurpleAir PA-II monitors to 12 nearby regulatory monitoring stations impacted by Camp Fire smoke and devices near stations impacted by the Carr and Mendocino Complex Fires in California and the Pole Creek Fire in Utah. Camp Fire AFs varied by day and location, with median (interquartile) of 0.48 (0.44-0.53). Adjusted PA-II 4-h average data were generally within ±20% of PM2.5 reported by the monitoring stations. Adjustment improved the accuracy of Air Quality Index (AQI) hazard level reporting, e.g., from 14% to 84% correct in Sacramento during the Camp Fire.

17.
Ecol Lett ; 22(6): 999-1008, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30920143

RESUMEN

Climate and other global environmental changes are major threats to ecosystem functioning and biodiversity. However, the importance of plant diversity in mitigating the responses of functioning of natural ecosystems to long-term environmental change remains unclear. Using inventory data of boreal forests of western Canada from 1958 to 2011, we found that aboveground biomass growth increased over time in species-rich forests but decreased in species-poor forests, and importantly, aboveground biomass loss from tree mortality was smaller in species-rich than species-poor forests. A further analysis indicated that growth of species-rich (but not species-poor) forests was statistically positively associated with rising CO2 , and that mortality in species-poor forests increased more as climate moisture availability decreased than it did in species-rich forests. In contrast, growth decreased and mortality increased as the climate warmed regardless of species diversity. Our results suggest that promoting high tree diversity may help reduce the climate and environmental change vulnerability of boreal forests.


Asunto(s)
Cambio Climático , Bosques , Taiga , Canadá , Árboles
18.
Glob Chang Biol ; 25(5): 1653-1664, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30737866

RESUMEN

Prolonged drought and intense heat-related events trigger sudden forest die-off events and have now been reported from all forested continents. Such die-offs are concerning given that drought and heatwave events are forecast to increase in severity and duration as climate change progresses. Quantifying consequences to carbon dynamics and storage from die-off events are critical for determining the current and future mitigation potential of forests. We took stand measurements five times over 2+ years from affected and unaffected plots across the Northern Jarrah Forest, southwestern Australia, following an acute drought/heatwave in 2011. We found a significant loss of live standing carbon (49.3 t ha-1 ), and subsequently a significant increase in the dead standing carbon pool by 6 months post-die-off. Of the persisting live trees, 38% experienced partial mortality contributing to the rapid regrowth and replenishment (82%-88%) of labile carbon pools (foliage, twigs, and branches) within 26 months. Such regrowth was not substantial in terms of net carbon changes within the timeframe of the study but does reflect the resprouting resilience of this forest type. Dead carbon generated by the die-off may persist for centuries given low fragmentation and decay rates resulting in low biogenic emission rates relative to other forest types. However, future fire may threaten persistence of both dead and live pools via combustion and mortality of live tissue and impaired regrowth capacity. Resprouting forests are commonly regarded as resilient systems, however, a changing climate could see vulnerable portions of forests become carbon sources rather than carbon sinks.


Asunto(s)
Secuestro de Carbono , Sequías , Bosques , Árboles/fisiología , Australia , Carbono/análisis , Cambio Climático , Incendios , Árboles/química , Árboles/crecimiento & desarrollo
19.
Proc Natl Acad Sci U S A ; 113(39): 10759-68, 2016 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-27638214

RESUMEN

For half a century, the process of economic integration of the Amazon has been based on intensive use of renewable and nonrenewable natural resources, which has brought significant basin-wide environmental alterations. The rural development in the Amazonia pushed the agricultural frontier swiftly, resulting in widespread land-cover change, but agriculture in the Amazon has been of low productivity and unsustainable. The loss of biodiversity and continued deforestation will lead to high risks of irreversible change of its tropical forests. It has been established by modeling studies that the Amazon may have two "tipping points," namely, temperature increase of 4 °C or deforestation exceeding 40% of the forest area. If transgressed, large-scale "savannization" of mostly southern and eastern Amazon may take place. The region has warmed about 1 °C over the last 60 y, and total deforestation is reaching 20% of the forested area. The recent significant reductions in deforestation-80% reduction in the Brazilian Amazon in the last decade-opens up opportunities for a novel sustainable development paradigm for the future of the Amazon. We argue for a new development paradigm-away from only attempting to reconcile maximizing conservation versus intensification of traditional agriculture and expansion of hydropower capacity-in which we research, develop, and scale a high-tech innovation approach that sees the Amazon as a global public good of biological assets that can enable the creation of innovative high-value products, services, and platforms through combining advanced digital, biological, and material technologies of the Fourth Industrial Revolution in progress.


Asunto(s)
Agricultura , Cambio Climático , Conservación de los Recursos Naturales , Brasil , Bosques , Geografía , Producto Interno Bruto , Actividades Humanas , Humanos , Internacionalidad , Transpiración de Plantas/fisiología , Factores de Riesgo , Estaciones del Año
20.
For Ecol Manage ; 445: 37-47, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35645457

RESUMEN

Forest ecosystems provide a wide variety of ecosystem services to society. In harsh mountain environments, the regulating services of forests are of particular importance. Managing mountain forests for regulating services is a cost- and labor intensive endeavor. Yet, also unmanaged forests regulate the environment. In the context of evidence-based decision making it is thus important to scrutinize if current management recommendations improve the supply of regulating ecosystem services over unmanaged development trajectories. A further issue complicating decision making in the context of regulating ecosystem services is their high sensitivity to climate change. Climate-mediated increases in natural disturbances, for instance, could strongly reduce the supply of regulating services from forests in the future. Given the profound environmental changes expected for the coming decades it remains unclear whether forest management will still be able to significantly control the future trajectories of mountain forest development, or whether the management effect will be superseded by a much stronger climate and disturbance effect. Here, our objectives were (i) to quantify the future regulating service supply from a 6456 ha landscape in the Stubai valley in Tyrol, Austria, and (ii) to assess the relative importance of management, climate, and natural disturbances on the future supply of regulating ecosystem services. We focused our analysis on climate regulation, water regulation, and erosion regulation, and used the landscape simulation model iLand to quantify their development under different climate scenarios and management strategies. Our results show that unmanaged forests are efficient in providing regulating ecosystem services. Both climate regulation and erosion regulation were higher in unmanaged systems compared to managed systems, while water regulation was slightly enhanced by management. Overall, direct effects of climate change had a stronger influence on the future supply of regulating services than management and natural disturbances. The ability of management to control ecosystem service supply decreased sharply with the severity of future climate change. This finding highlights that forest management could be severely stymied in the future if climate change continues to proceed at its current rate. An improved quantitative understanding of the drivers of future ecosystem service supply is needed to more effectively combine targeted management efforts and natural ecosystem dynamics towards sustaining the benefits society derives from forests in a rapidly changing world.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA