Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Microb Cell Fact ; 22(1): 153, 2023 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-37574555

RESUMEN

BACKGROUND: The omnipresence of population heterogeneity in industrial bioprocesses originates from prevailing dynamic bioprocess conditions, which promote differences in the expression of cellular characteristics. Despite the awareness, the concrete consequences of this phenomenon remain poorly understood. RESULTS: Therefore, for the first time, a L-phenylalanine overproducing Escherichia coli quadruple reporter strain was established for monitoring of general stress response, growth behavior, oxygen limitation and product formation of single cells based on mTagBFP2, mEmerald, CyOFP1, and mCardinal2 expression measured by flow cytometry. This strain was applied for the fed-batch production of L-phenylalanine from glycerol and ammonia in a stirred-tank bioreactor at homogeneous conditions compared to the same process in a novel two-compartment bioreactor. This two-compartment bioreactor consists of a stirred-tank bioreactor with an initial volume of 0.9 L (homogeneous zone) with a coiled flow inverter with a fixed working volume of 0.45 L as a bypass (limitation zone) operated at a mean hydraulic residence time of 102 s. The product formation was similar in both bioreactor setups with maximum L-phenylalanine concentrations of 21.1 ± 0.6 g L-1 demonstrating the consistency of this study's microbial L-phenylalanine production. However, cell growth was vulnerable to repetitive exposure to the dynamically changing conditions in the two-compartment bioreactor with maximum biomass yields reduced by 21%. The functionality of reporter molecules was approved in the stirred-tank bioreactor cultivation, in which expressed fluorescence levels of all four markers were in accordance with respective process state variables. Additional evaluation of the distributions on single-cell level revealed the presence of population heterogeneity in both bioprocesses. Especially for the marker of the general stress response and the product formation, the corresponding histograms were characterized by bimodal shapes and broad distributions. These phenomena were pronounced particularly at the beginning and the end of the fed-batch process. CONCLUSIONS: The here shown findings confirm multiple reporter strains to be a noninvasive tool for monitoring cellular characteristics and identifying potential subpopulations in bioprocesses. In combination with experiments in scale-down setups, these can be utilized for a better physiological understanding of bioprocesses and support future scale-up procedures.


Asunto(s)
Reactores Biológicos , Escherichia coli , Escherichia coli/metabolismo , Fermentación , Biomasa , Oxígeno/metabolismo
2.
Biotechnol Bioeng ; 116(4): 857-869, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30450694

RESUMEN

Continuous processing for the production of monoclonal antibodies (mAb) gains more and more importance. Several solutions exist for all the necessary production steps, leading to the possibility to build fully continuous processes. Low pH viral inactivation is a part of the standard platform process for mAb production. Consequently, Klutz et al. introduced the coiled flow inverter (CFI) as a tool for continuous low pH viral inactivation. Besides theoretical calculations of viral reduction, no viral clearance study has been presented so far. In addition, the validation of continuous viral clearance is often neglected in the already existing studies for continuous processing. This study shows in detail the development and execution of a virus study for continuous low pH viral inactivation inside a CFI. The concept presented is also valid for adaptation to other continuous viral clearance steps. The development of this concept includes the technical rationale for an experimental setup, a valid spiking procedure, and finally a sampling method. The experimental results shown represent a viral study using xenotropic murine leukemia virus as a model virus. Two different protein A (ProtA) chromatography setups with varying pH levels were tested. In addition, one of these setups was tested against a batch experiment utilizing the same process material. The results show that sufficient low pH viral inactivation (decadic logarithm reduction value >4) was achieved in all experiments. Complete viral inactivation took place within the first 14.5 min for both continuous studies and the batch study, hence showing similar results. This study therefore represents a successful virus study concept and experiment for a continuous viral inactivation step. Moreover, it was shown that the transfer from batch results to the continuous process is possible. This is accomplished by the narrow residence time distribution of the CFI, showing how close the setup approaches the ideal plug flow and with that batch operation.


Asunto(s)
Biotecnología/instrumentación , Inactivación de Virus , Animales , Anticuerpos Monoclonales/metabolismo , Línea Celular , Diseño de Equipo , Concentración de Iones de Hidrógeno , Virus de la Leucemia Murina/aislamiento & purificación , Virus de la Leucemia Murina/fisiología , Ratones
3.
MethodsX ; 8: 101246, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34434769

RESUMEN

Metal-organic frameworks (MOFs), particularly Zirconium based, have a wide variety of potential applications, such as catalysis and separation. However, these are held back by traditionally only being synthesised in long batch reactions, which causes the process to be expensive and limit the amount of reaction control available, leading to potential batch to batch variation in the products, such as particle size distributions. Microfluidics allows for batch reactions to be performed with enhanced mass/heat transfer, with the coiled flow inverter reactor (CFIR) setup narrowing the residence time distribution, which is key in controlling the particle size and crystallinity. In this work, a Zirconium based MOF, UiO-67, has been synthesised continuously using a microfluidic CFIR, which has allowed for the product to be formed in 30 min, a fraction of the traditional batch heating time of 24 h. The microfluidicially synthesised UiO-67 is also smaller product with a narrower particle size distribution (≈200 nm to ≈400 nm) than its batch counterpart (~500 nm to over 3 µm).

4.
Biotechnol Prog ; 33(4): 998-1009, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27977908

RESUMEN

Affordability of biopharmaceuticals continues to be a challenge, particularly in developing economies. This has fuelled advancements in manufacturing that can offer higher productivity and better economics without sacrificing product quality in the form of an integrated continuous manufacturing platform. While platform processes for monoclonal antibodies have existed for more than a decade, development of an integrated continuous manufacturing process for bacterial proteins has received relatively scant attention. In this study, we propose an end-to-end integrated continuous downstream process (from inclusion bodies to unformulated drug substance) for a therapeutic protein expressed in Escherichia coli as inclusion body. The final process consisted of a continuous refolding in a coiled flow inverter reactor directly coupled to a three-column periodic counter-current chromatography for capture of the product followed by a three-column con-current chromatography for polishing. The continuous bioprocessing train was run uninterrupted for 26 h to demonstrate its capability and the resulting output was analyzed for the various critical quality attributes, namely product purity (>99%), high molecular weight impurities (<0.5%), host cell proteins (<100 ppm), and host cell DNA (<10 ppb). All attributes were found to be consistent over the period of operation. The developed assembly offers smaller facility footprint, higher productivity, fewer hold steps, and significantly higher equipment and resin utilization. The complexities of process integration in the context of continuous processing have been highlighted. We hope that the study presented here will promote development of highly efficient, universal, end-to-end, fully continuous platforms for manufacturing of biotherapeutics. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:998-1009, 2017.


Asunto(s)
Reactores Biológicos , Escherichia coli/metabolismo , Cuerpos de Inclusión/metabolismo , Receptores de Factor Estimulante de Colonias de Granulocito/biosíntesis , Distribución en Contracorriente , Humanos , Replegamiento Proteico , Receptores de Factor Estimulante de Colonias de Granulocito/química , Receptores de Factor Estimulante de Colonias de Granulocito/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA