Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 172(1-2): 121-134.e14, 2018 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-29307490

RESUMEN

Chronic Pseudomonas aeruginosa infections evade antibiotic therapy and are associated with mortality in cystic fibrosis (CF) patients. We find that in vitro resistance evolution of P. aeruginosa toward clinically relevant antibiotics leads to phenotypic convergence toward distinct states. These states are associated with collateral sensitivity toward several antibiotic classes and encoded by mutations in antibiotic resistance genes, including transcriptional regulator nfxB. Longitudinal analysis of isolates from CF patients reveals similar and defined phenotypic states, which are associated with extinction of specific sub-lineages in patients. In-depth investigation of chronic P. aeruginosa populations in a CF patient during antibiotic therapy revealed dramatic genotypic and phenotypic convergence. Notably, fluoroquinolone-resistant subpopulations harboring nfxB mutations were eradicated by antibiotic therapy as predicted by our in vitro data. This study supports the hypothesis that antibiotic treatment of chronic infections can be optimized by targeting phenotypic states associated with specific mutations to improve treatment success in chronic infections.


Asunto(s)
Fibrosis Quística/microbiología , Farmacorresistencia Bacteriana , Evolución Molecular , Fenotipo , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa/genética , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Proteínas Bacterianas/genética , Fibrosis Quística/complicaciones , Proteínas de Unión al ADN/genética , Humanos , Masculino , Persona de Mediana Edad , Mutación , Infecciones por Pseudomonas/complicaciones , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/patogenicidad , Selección Genética , Factores de Transcripción/genética
2.
J Virol ; 98(3): e0147623, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38376991

RESUMEN

The ability of virulent bacteriophages to lyse bacteria influences bacterial evolution, fitness, and population structure. Knowledge of both host susceptibility and resistance factors is crucial for the successful application of bacteriophages as biological control agents in clinical therapy, food processing, and agriculture. In this study, we isolated 12 bacteriophages termed SPLA phage which infect the foodborne pathogen Salmonella enterica. To determine phage host range, a diverse collection of Enterobacteriaceae and Salmonella enterica was used and genes involved in infection by six SPLA phages were identified using Salmonella Typhimurium strain ST4/74. Candidate host receptors included lipopolysaccharide (LPS), cellulose, and BtuB. Lipopolysaccharide was identified as a susceptibility factor for phage SPLA1a and mutations in LPS biosynthesis genes spontaneously emerged during culture with S. Typhimurium. Conversely, LPS was a resistance factor for phage SPLA5b which suggested that emergence of LPS mutations in culture with SPLA1a represented collateral sensitivity to SPLA5b. We show that bacteria-phage co-culture with SPLA1a and SPLA5b was more successful in limiting the emergence of phage resistance compared to single phage co-culture. Identification of host susceptibility and resistance genes and understanding infection dynamics are critical steps in the rationale design of phage cocktails against specific bacterial pathogens.IMPORTANCEAs antibiotic resistance continues to emerge in bacterial pathogens, bacterial viruses (phage) represent a potential alternative or adjunct to antibiotics. One challenge for their implementation is the predisposition of bacteria to rapidly acquire resistance to phages. We describe a functional genomics approach to identify mechanisms of susceptibility and resistance for newly isolated phages that infect and lyse Salmonella enterica and use this information to identify phage combinations that exploit collateral sensitivity, thus increasing efficacy. Collateral sensitivity is a phenomenon where resistance to one class of antibiotics increases sensitivity to a second class of antibiotics. We report a functional genomics approach to rationally design a phage combination with a collateral sensitivity dynamic which resulted in increased efficacy. Considering such evolutionary trade-offs has the potential to manipulate the outcome of phage therapy in favor of resolving infection without selecting for escape mutants and is applicable to other virus-host interactions.


Asunto(s)
Bacteriófagos , Microbiología Ambiental , Salmonella enterica , Antibacterianos/uso terapéutico , Bacteriófagos/aislamiento & purificación , Sensibilidad Colateral al uso de Fármacos , Lipopolisacáridos , Salmonella enterica/virología , Terapia de Fagos , Infecciones por Salmonella/terapia , Humanos
3.
Drug Resist Updat ; 73: 101065, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38367548

RESUMEN

AIMS: To investigate the collateral sensitivity (CS) of ABCB1-positive multidrug resistant (MDR) colorectal cancer cells to the survivin inhibitor MX106-4C and the mechanism. METHODS: Biochemical assays (MTT, ATPase, drug accumulation/efflux, Western blot, RT-qPCR, immunofluorescence, flow cytometry) and bioinformatic analyses (mRNA-sequencing, reversed-phase protein array) were performed to investigate the hypersensitivity of ABCB1 overexpressing colorectal cancer cells to MX106-4C and the mechanisms. Synergism assay, long-term selection, and 3D tumor spheroid test were used to evaluate the anti-cancer efficacy of MX106-4C. RESULTS: MX106-4C selectively killed ABCB1-positive colorectal cancer cells, which could be reversed by an ABCB1 inhibitor, knockout of ABCB1, or loss-of-function ABCB1 mutation, indicating an ABCB1 expression and function-dependent mechanism. MX106-4C's selective toxicity was associated with cell cycle arrest and apoptosis through ABCB1-dependent survivin inhibition and activation on caspases-3/7 as well as modulation on p21-CDK4/6-pRb pathway. MX106-4C had good selectivity against ABCB1-positive colorectal cancer cells and retained this in multicellular tumor spheroids. In addition, MX106-4C could exert a synergistic anti-cancer effect with doxorubicin or re-sensitize ABCB1-positive cancer cells to doxorubicin by reducing ABCB1 expression in the cell population via long-term exposure. CONCLUSIONS: MX106-4C selectively kills ABCB1-positive MDR colorectal cancer cells via a novel ABCB1-dependent survivin inhibition mechanism, providing a clue for designing CS compound as an alternative strategy to overcome ABCB1-mediated colorectal cancer MDR.


Asunto(s)
Antineoplásicos , Neoplasias Colorrectales , Humanos , Survivin/genética , Survivin/metabolismo , Survivin/farmacología , Resistencia a Múltiples Medicamentos/genética , Sensibilidad Colateral al uso de Fármacos , Resistencia a Antineoplásicos/genética , Línea Celular Tumoral , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Antineoplásicos/uso terapéutico , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/farmacología
4.
Proc Natl Acad Sci U S A ; 119(15): e2109370119, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35385351

RESUMEN

Collateral sensitivity is an evolutionary trade-off whereby acquisition of the adaptive phenotype of resistance to an antibiotic leads to the nonadaptive increased susceptibility to another. The feasibility of harnessing such a trade-off to design evolutionary-based approaches for treating bacterial infections has been studied using model strains. However, clinical application of collateral sensitivity requires its conservation among strains presenting different mutational backgrounds. Particularly relevant is studying collateral sensitivity robustness of already-antibiotic-resistant mutants when challenged with a new antimicrobial, a common situation in clinics that has hardly been addressed. We submitted a set of diverse Pseudomonas aeruginosa antibiotic-resistant mutants to short-term evolution in the presence of different antimicrobials. Ciprofloxacin selects different clinically relevant resistance mutations in the preexisting resistant mutants, which gave rise to the same, robust, collateral sensitivity to aztreonam and tobramycin. We then experimentally determined that alternation of ciprofloxacin with aztreonam is more efficient than ciprofloxacin­tobramycin alternation in driving the extinction of the analyzed antibiotic-resistant mutants. Also, we show that the combinations ciprofloxacin­aztreonam or ciprofloxacin­tobramycin are the most effective strategies for eliminating the tested P. aeruginosa antibiotic-resistant mutants. These findings support that the identification of conserved collateral sensitivity patterns may guide the design of evolution-based strategies to treat bacterial infections, including those due to antibiotic-resistant mutants. Besides, this is an example of phenotypic convergence in the absence of parallel evolution that, beyond the antibiotic-resistance field, could facilitate the understanding of evolution processes, where the selective forces giving rise to new, not clearly adaptive phenotypes remain unclear.


Asunto(s)
Antibacterianos , Ciprofloxacina , Sensibilidad Colateral al uso de Fármacos , Farmacorresistencia Bacteriana , Infecciones por Pseudomonas , Pseudomonas aeruginosa , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Ciprofloxacina/farmacología , Ciprofloxacina/uso terapéutico , Sensibilidad Colateral al uso de Fármacos/genética , Farmacorresistencia Bacteriana/genética , Humanos , Pruebas de Sensibilidad Microbiana , Mutación , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/genética
5.
Drug Resist Updat ; 68: 100961, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37004351

RESUMEN

AIMS: The acquisition of resistance to one antibiotic may confer an increased sensitivity to another antibiotic in bacteria, which is an evolutionary trade-off between different resistance mechanisms, defined as collateral sensitivity (CS). Exploiting the role of CS in treatment design could be an effective method to suppress or even reverse resistance evolution. METHODS: Using experimental evolution, we systematically studied the CS between aminoglycosides and tetracyclines in carbapenem-resistant Klebsiella pneumoniae (CRKP) and explored the underlying mechanisms through genomic and transcriptome analyses. The application of CS-based therapies for resistance suppression, including combination therapy and alternating antibiotic therapy, was further evaluated in vitro and in vivo. RESULTS: Reciprocal CS existed between tetracyclines and aminoglycosides in CRKP. The increased sensitivity of aminoglycoside-resistant strains to tetracyclines was associated with the alteration of bacterial membrane potential, whereas the unbalanced oxidation-reduction process of tetracycline-resistant strains may lead to an increased bacterial sensitivity to aminoglycosides. CS-based combination therapy could efficiently constrain the evolution of CRKP resistance in vitro and in vivo. In addition, alternating antibiotic therapy can re-sensitize CRKP to previously resistant drugs, thereby maintaining the trade-off. CONCLUSIONS: These results provide new insights into constraining the evolution of CRKP resistance through CS-based therapies.


Asunto(s)
Enterobacteriaceae Resistentes a los Carbapenémicos , Infecciones por Klebsiella , Humanos , Aminoglicósidos/farmacología , Aminoglicósidos/uso terapéutico , Klebsiella pneumoniae/genética , Tetraciclinas/farmacología , Tetraciclinas/uso terapéutico , Sensibilidad Colateral al uso de Fármacos , Carbapenémicos/farmacología , Carbapenémicos/uso terapéutico , Infecciones por Klebsiella/tratamiento farmacológico , Infecciones por Klebsiella/microbiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Pruebas de Sensibilidad Microbiana
6.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34408017

RESUMEN

Epigenetic regulators play key roles in cancer and are increasingly being targeted for treatment. However, for many, little is known about mechanisms of resistance to the inhibition of these regulators. We have generated a model of resistance to inhibitors of protein arginine methyltransferase 5 (PRMT5). This study was conducted in KrasG12D;Tp53-null lung adenocarcinoma (LUAD) cell lines. Resistance to PRMT5 inhibitors (PRMT5i) arose rapidly, and barcoding experiments showed that this resulted from a drug-induced transcriptional state switch, not selection of a preexisting population. This resistant state is both stable and conserved across variants arising from distinct LUAD lines. Moreover, it brought with it vulnerabilities to other chemotherapeutics, especially the taxane paclitaxel. This paclitaxel sensitivity depended on the presence of stathmin 2 (STMN2), a microtubule regulator that is specifically expressed in the resistant state. Remarkably, STMN2 was also essential for resistance to PRMT5 inhibition. Thus, a single gene is required for both acquisition of resistance to PRMT5i and collateral sensitivity to paclitaxel in our LUAD cells. Accordingly, the combination of PRMT5i and paclitaxel yielded potent and synergistic killing of the murine LUAD cells. Importantly, the synergy between PRMT5i and paclitaxel also extended to human cancer cell lines. Finally, analysis of The Cancer Genome Atlas patient data showed that high STMN2 levels correlate with complete regression of tumors in response to taxane treatment. Collectively, this study reveals a recurring mechanism of PRMT5i resistance in LUAD and identifies collateral sensitivities that have potential clinical relevance.


Asunto(s)
Antineoplásicos/farmacología , Resistencia a Antineoplásicos , Paclitaxel/farmacología , Proteína-Arginina N-Metiltransferasas/antagonistas & inhibidores , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular , Sinergismo Farmacológico , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Ratones , Mutación , Estatmina/genética , Estatmina/metabolismo
7.
Mol Biol Evol ; 39(3)2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-35291010

RESUMEN

Trade-offs of antibiotic resistance evolution, such as fitness cost and collateral sensitivity (CS), could be exploited to drive evolution toward antibiotic susceptibility. Decline of resistance may occur when resistance to other drug leads to CS to the first one and when compensatory mutations, or genetic reversion of the original ones, reduce fitness cost. Here we describe the impact of antibiotic-free and sublethal environments on declining ceftazidime resistance in different Pseudomonas aeruginosa resistant mutants. We determined that decline of ceftazidime resistance occurs within 450 generations, which is caused by newly acquired mutations and not by reversion of the original ones, and that the original CS of these mutants is preserved. In addition, we observed that the frequency and degree of this decline is contingent on genetic background. Our results are relevant to implement evolution-based therapeutic approaches, as well as to redefine global policies of antibiotic use, such as drug cycling.


Asunto(s)
Antibacterianos , Ceftazidima , Antibacterianos/farmacología , Ceftazidima/farmacología , Farmacorresistencia Bacteriana/genética , Antecedentes Genéticos , Pseudomonas aeruginosa/genética
8.
BMC Cancer ; 23(1): 24, 2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36609245

RESUMEN

BACKGROUND: P-glycoprotein (P-gp), a member of the ATP Binding Cassette B1 subfamily (ABCB1), confers resistance to clinically relevant anticancer drugs and targeted chemotherapeutics. However, paradoxically P-glycoprotein overexpressing drug resistant cells are "collaterally sensitive" to non-toxic drugs that stimulate its ATPase activity. METHODS: Cell viability assays were used to determine the effect of low concentrations of tamoxifen on the proliferation of multidrug resistant cells (CHORC5 and MDA-Doxo400), expressing P-gp, their parental cell lines (AuxB1 and MDA-MB-231) or P-gp-CRISPR knockout clones of AuxB1 and CHORC5 cells. Western blot analysis was used to estimate P-gp expression in different cell lines. Apoptosis of tamoxifen-induced cell death was estimated by flow cytometry using Annexin-V-FITC stained cells. Oxidative stress of tamoxifen treated cells was determined by measuring levels of reactive oxygen species and reduced thiols using cell-permeant 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) and 5,5-dithio-bis-(2-nitrobenzoic acid) DTNB, respectively. RESULTS: In this report, we show that P-gp-expressing drug resistant cells (CHORC5 and MDA-Doxo400) are collaterally sensitive to the anti-estrogen tamoxifen or its metabolite (4-hydroxy-tamoxifen). Moreover, P-gp-knockout clones of CHORC5 cells display complete reversal of collateral sensitivity to tamoxifen. Drug resistant cells exposed to low concentrations of tamoxifen show significant rise in reactive oxygen species, drop of reduced cellular thiols and increased apoptosis. Consistent with the latter, CHORC5 cells expressing high levels of human Bcl-2 (CHORC5-Bcl-2) show significant resistance to tamoxifen. In addition, the presence of the antioxidant N-acetylcysteine or P-gp ATPase inhibitor, PSC-833, reverse the collateral sensitivity of resistant cells to tamoxifen. By contrast, the presence of rotenone (specific inhibitor of mitochondria complex I) synergizes with tamoxifen. CONCLUSION: This study demonstrates the use of tamoxifen as collateral sensitivity drug that can preferentially target multidrug resistant cells expressing P-gp at clinically achievable concentrations. Given the widespread use of tamoxifen in the treatment of estrogen receptor-positive breast cancers, this property of tamoxifen may have clinical applications in treatment of P-gp-positive drug resistant breast tumors.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP , Resistencia a Múltiples Medicamentos , Humanos , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores de Estrógenos/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Tamoxifeno/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Adenosina Trifosfatasas/metabolismo , Resistencia a Antineoplásicos , Línea Celular Tumoral
9.
Int J Mol Sci ; 24(8)2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37108055

RESUMEN

Understanding the consequences in bacterial physiology of the acquisition of drug resistance is needed to identify and exploit the weaknesses derived from it. One of them is collateral sensitivity, a potentially exploitable phenotype that, unfortunately, is not always conserved among different isolates. The identification of robust, conserved collateral sensitivity patterns is then relevant for the translation of this knowledge into clinical practice. We have previously identified a robust fosfomycin collateral sensitivity pattern of Pseudomonas aeruginosa that emerged in different tobramycin-resistant clones. To go one step further, here, we studied if the acquisition of resistance to tobramycin is associated with robust collateral sensitivity to fosfomycin among P. aeruginosa isolates. To that aim, we analyzed, using adaptive laboratory evolution approaches, 23 different clinical isolates of P. aeruginosa presenting diverse mutational resistomes. Nine of them showed collateral sensitivity to fosfomycin, indicating that this phenotype is contingent on the genetic background. Interestingly, collateral sensitivity to fosfomycin was linked to a larger increase in tobramycin minimal inhibitory concentration. Further, we unveiled that fosA low expression, rendering a higher intracellular accumulation of fosfomycin, and a reduction in the expression of the P. aeruginosa alternative peptidoglycan-recycling pathway enzymes, might be on the basis of the collateral sensitivity phenotype.


Asunto(s)
Fosfomicina , Tobramicina , Tobramicina/farmacología , Fosfomicina/farmacología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Pseudomonas aeruginosa , Sensibilidad Colateral al uso de Fármacos , Genómica , Pruebas de Sensibilidad Microbiana
10.
Mol Cancer ; 21(1): 126, 2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35689207

RESUMEN

BACKGROUND: Development of resistance to targeted therapies has tempered initial optimism that precision oncology would improve poor outcomes for cancer patients. Resistance mechanisms, however, can also confer new resistance-specific vulnerabilities, termed collateral sensitivities. Here we investigated anaplastic lymphoma kinase (ALK) inhibitor resistance in neuroblastoma, a childhood cancer frequently affected by activating ALK alterations. METHODS: Genome-wide forward genetic CRISPR-Cas9 based screens were performed to identify genes associated with ALK inhibitor resistance in neuroblastoma cell lines. Furthermore, the neuroblastoma cell line NBLW-R was rendered resistant by continuous exposure to ALK inhibitors. Genes identified to be associated with ALK inhibitor resistance were further investigated by generating suitable cell line models. In addition, tumor and liquid biopsy samples of four patients with ALK-mutated neuroblastomas before ALK inhibitor treatment and during tumor progression under treatment were genomically profiled. RESULTS: Both genome-wide CRISPR-Cas9-based screens and preclinical spontaneous ALKi resistance models identified NF1 loss and activating NRASQ61K mutations to confer resistance to chemically diverse ALKi. Moreover, human neuroblastomas recurrently developed de novo loss of NF1 and activating RAS mutations after ALKi treatment, leading to therapy resistance. Pathway-specific perturbations confirmed that NF1 loss and activating RAS mutations lead to RAS-MAPK signaling even in the presence of ALKi. Intriguingly, NF1 loss rendered neuroblastoma cells hypersensitive to MEK inhibition. CONCLUSIONS: Our results provide a clinically relevant mechanistic model of ALKi resistance in neuroblastoma and highlight new clinically actionable collateral sensitivities in resistant cells.


Asunto(s)
Neuroblastoma , Medicina de Precisión , Quinasa de Linfoma Anaplásico/genética , Línea Celular Tumoral , Niño , Humanos , Mutación , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/genética , Neuroblastoma/patología , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Transducción de Señal
11.
Biochem Biophys Res Commun ; 608: 23-29, 2022 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-35381425

RESUMEN

Multidrug resistant tumor cells show collaterally sensitive to a range of non-toxic drugs. In this report, we describe the isolation of several P-glycoprotein-knockout cell clones, using CRISPR/Cas9, from Chinese hamster multidrug resistant model cell line and its parental cells (e.g., CHORC5 and AuxB1, respectively). All three P-glycoprotein-knockout clones of CHORC5 cells show complete loss of resistance to anti-cancer drugs (e.g., colchicine and doxorubicin), while gaining resistance to well characterized collateral sensitivity drugs (e.g., verapamil, progesterone and NSC73306). A correlation between P-glycoprotein and Sorcin expression levels and a possible role for the latter in low grade resistance to colchicine and doxorubicin was observed. Furthermore, we show that P-glycoprotein expression is necessary for the ROS-mediated mechanism of collateral sensitivity. However, expectantly, P-glycoprotein-knockout clones of CHORC5 cells revealed a dramatic increase in the accumulation of Rhodamine 123, Mito tracker red and doxorubicin, but not Hoechst 33342. The latter findings and their significance to P-glycoprotein collateral sensitivity remain to be determined.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP , Sensibilidad Colateral al uso de Fármacos , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Animales , Células CHO , Colchicina , Cricetinae , Doxorrubicina/farmacología , Resistencia a Medicamentos , Verapamilo
12.
Drug Resist Updat ; 58: 100778, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34403910

RESUMEN

Drug resistance remains the major cause of cancer treatment failure especially at the late stage of the disease. However, based on their versatile chemistry, metal and metalloid compounds offer the possibility to design fine-tuned drugs to circumvent and even specifically target drug-resistant cancer cells. Based on the paramount importance of platinum drugs in the clinics, two main areas of drug resistance reversal strategies exist: overcoming resistance to platinum drugs as well as multidrug resistance based on ABC efflux pumps. The current review provides an overview of both aspects of drug design and discusses the open questions in the field. The areas of drug resistance covered in this article involve: 1) Altered expression of proteins involved in metal uptake, efflux or intracellular distribution, 2) Enhanced drug efflux via ABC transporters, 3) Altered metabolism in drug-resistant cancer cells, 4) Altered thiol or redox homeostasis, 5) Altered DNA damage recognition and enhanced DNA damage repair, 6) Impaired induction of apoptosis and 7) Altered interaction with the immune system. This review represents the first collection of metal (including platinum, ruthenium, iridium, gold, and copper) and metalloid drugs (e.g. arsenic and selenium) which demonstrated drug resistance reversal activity. A special focus is on compounds characterized by collateral sensitivity of ABC transporter-overexpressing cancer cells. Through this approach, we wish to draw the attention to open research questions in the field. Future investigations are warranted to obtain more insights into the mechanisms of action of the most potent compounds which target specific modalities of drug resistance.


Asunto(s)
Antineoplásicos , Metaloides , Neoplasias , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Resistencia a Múltiples Medicamentos/genética , Resistencia a Antineoplásicos/genética , Humanos , Metaloides/farmacología , Neoplasias/tratamiento farmacológico , Neoplasias/genética
13.
Molecules ; 27(7)2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35408466

RESUMEN

An efficient method applying acyl chlorides as reagents was developed for the acylation of the hindered hydroxy group of dialkyl α-hydroxy-benzylphosphonates. The procedure did not require any catalyst. A few acylations were also performed with the SC-enantiomer of dimethyl α-hydroxy-benzylphosphonate, and the optical purity was retained. A part of the acyloxyphosphonates was tested against eight tumor cell lines of different tissue origin at c = 50 µM concentration. The compounds elicited moderate cytostatic effect against breast, skin, prostate, colon, and lung carcinomas; a melanoma cell line; and against Kaposi's sarcoma cell lines. Then, dose-dependent cytotoxicity was assayed, and benzoylation of the α-hydroxy group was identified as a moiety that increases anticancer cytotoxicity across all cell lines. Surprisingly, a few analogues were more toxic to multidrug resistant cancer cell lines, thus evading P-glycoprotein mediated drug extrusion.


Asunto(s)
Antineoplásicos , Resistencia a Múltiples Medicamentos , Línea Celular Tumoral , Resistencia a Antineoplásicos , Ensayos de Selección de Medicamentos Antitumorales , Estereoisomerismo , Relación Estructura-Actividad
14.
Mol Biol Evol ; 37(5): 1394-1406, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31851309

RESUMEN

Evolutionary adaptation of bacteria to nonantibiotic selective forces, such as osmotic stress, has been previously associated with increased antibiotic resistance, but much less is known about potentially sensitizing effects of nonantibiotic stressors. In this study, we use laboratory evolution to investigate adaptation of Enterococcus faecalis, an opportunistic bacterial pathogen, to a broad collection of environmental agents, ranging from antibiotics and biocides to extreme pH and osmotic stress. We find that nonantibiotic selection frequently leads to increased sensitivity to other conditions, including multiple antibiotics. Using population sequencing and whole-genome sequencing of single isolates from the evolved populations, we identify multiple mutations in genes previously linked with resistance to the selecting conditions, including genes corresponding to known drug targets or multidrug efflux systems previously tied to collateral sensitivity. Finally, we hypothesized based on the measured sensitivity profiles that sequential rounds of antibiotic and nonantibiotic selection may lead to hypersensitive populations by harnessing the orthogonal collateral effects of particular pairs of selective forces. To test this hypothesis, we show experimentally that populations evolved to a sequence of linezolid (an oxazolidinone antibiotic) and sodium benzoate (a common preservative) exhibit increased sensitivity to more stressors than adaptation to either condition alone. The results demonstrate how sequential adaptation to drug and nondrug environments can be used to sensitize bacteria to antibiotics and highlight new potential strategies for exploiting shared constraints governing adaptation to diverse environmental challenges.


Asunto(s)
Sensibilidad Colateral al uso de Fármacos/genética , Farmacorresistencia Bacteriana/genética , Enterococcus faecalis/genética , Selección Genética , Estrés Fisiológico/genética , Antibacterianos , Linezolid , Benzoato de Sodio , Triclosán
15.
Antimicrob Agents Chemother ; 65(8): e0061121, 2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-34097494

RESUMEN

Antibiotic collateral sensitivity, in which acquired resistance to one drug leads to decreased resistance to a different drug, occurs in Burkholderia multivorans. Here, we observed that treatment of extensively drug-resistant variants evolved from a cystic fibrosis (CF) sputum sample isolate with either meropenem or sulfamethoxazole-trimethoprim, depending on past resistance phenotypes, resulted in increased sensitivity to five different classes of antibiotics. We further identified mutations, including putative resistance-nodulation-division efflux pump regulators and uncharacterized pumps, that may be involved in this phenotype in B. multivorans.


Asunto(s)
Infecciones por Burkholderia , Complejo Burkholderia cepacia , Burkholderia , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Burkholderia/genética , Infecciones por Burkholderia/tratamiento farmacológico , Complejo Burkholderia cepacia/genética , Resistencia a Medicamentos , Humanos , Pruebas de Sensibilidad Microbiana
16.
Biochem Biophys Res Commun ; 570: 148-153, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34284140

RESUMEN

P-glycoprotein, member of the B-subfamily of the ATP-binding cassette (ABC) superfamily (e.g., ABCB1), has been demonstrated to confer resistance to clinically relevant anticancer drugs. Paradoxically, ABCB1-expressing multidrug resistant (MDR) cells are hypersensitivity or collateral sensitivity to non-toxic drugs. In this report, we demonstrate the capacity of trifluoperazine (TFP), a calmodulin inhibitor, to confer a collateral sensitivity onto ABCB1-overexpressing MDR cells. We show TFP-induced collateral sensitivity to be linked to ABCB1 expression and ATPase activity, as such phenotype is abolished in ABCB1-knockout MDR cells (CHORC5ΔABCB1 clones A1-A3) or with inhibitors of ABCB1 ATPase. TFP-induced collateral sensitivity is mediated by apoptotic cell death, due to enhanced oxidative stress. The findings in this study show for first time the use TFP as a collateral sensitivity drug, at clinically relevant concentrations. Moreover, given the use of trifluoperazine in the treatment for symptoms of schizophrenia and the role of ABCB1 transporter in tissue blood barriers and other physiologic functions, the finding in this study may have implications beyond cancer chemotherapy.


Asunto(s)
Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Fenotiazinas/farmacología , Trifluoperazina/farmacología , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Macrólidos/farmacología , Oxidación-Reducción/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
17.
Bioorg Chem ; 106: 104460, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33229118

RESUMEN

A small library of derivatives carrying a polycyclic scaffold recently identified by us as a new privileged structure in medicinal chemistry was designed and synthesized, aiming at obtaining potent MDR reverting agents also endowed with antitumor properties. In particular, as a follow-up of our previous studies, attention was focused on the role of the spacer connecting the polycyclic core with a properly selected nitrogen-containing group. A relevant increase in reverting potency was observed, going from the previously employed but-2-ynyl- to a pent-3-ynylamino moiety, as in compounds 3d and 3e, while the introduction of a triazole ring proved to differently impact on the activity of the compounds. The docking results supported the data obtained by biological tests, showing, for the most active compounds, the ability to establish specific bonds with P-glycoprotein. Moreover, a multifaceted anticancer profile and dual in vitro activity was observed for all compounds, showing both revertant and antitumor effects on leukemic cells. In this respect, 3c emerged as a "triple-target" agent, endowed with a relevant reverting potency, a considerable antiproliferative activity and a collateral sensitivity profile.


Asunto(s)
Antracenos/farmacología , Antineoplásicos/farmacología , Hidrocarburos Aromáticos con Puentes/farmacología , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Succinimidas/farmacología , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Antracenos/síntesis química , Antracenos/metabolismo , Antineoplásicos/síntesis química , Antineoplásicos/metabolismo , Apoptosis/efectos de los fármacos , Hidrocarburos Aromáticos con Puentes/síntesis química , Hidrocarburos Aromáticos con Puentes/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Unión Proteica , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Relación Estructura-Actividad , Succinimidas/síntesis química , Succinimidas/metabolismo
18.
Lett Appl Microbiol ; 73(2): 168-175, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33893654

RESUMEN

The susceptibility of Acinetobacter baumannii exposed to primary antibiotic can be either increased or decreased when exposed to secondary antibiotic. This study was designed to assess the relative fitness, collateral susceptibility and collateral resistance of polymyxin B- (PMB-) adapted A. baumannii to ciprofloxacin (CIP), meropenem (MER), PMB, tetracycline (TET) and tobramycin (TOB). Strains of wild-type A. baumannii KACC 12454 (ABKACC ), wild-type A. baumannii CCARM 12088 (ABCCARM ), PMB-adapted ABKACC , PMB-adapted ABCCARM , stabilized ABKACC and stabilized ABCCARM were used in this study. Compared to the wild-type ABKACC , the MICs of PMB were increased from 2 to 128 µg ml-1 against PMB-adapted ABKACC , while MICs of CIP, MER, TET and TOB were decreased from 2 to 1 µg ml-1 , 16 to 1 µg ml-1 , 16 to 2 µg ml-1 and 64 to 16 µg ml-1 , respectively. The PMB-adapted ABCCARM was resistant to CIP (32 µg ml-1 ) and PMB (64 µg ml-1 ) compared to the wild-type ABCCARM . The resistance of stabilized ABKACC and ABCCARM to all antibiotics was lost after antibiotic-free culture in the exception of CIP and TET. The susceptibilities of wild-type, PMB-adapted and stabilized ABKACC and ABCCARM to CIP, MER, PMB, TET and TOB were increased in the presence of ß-lactamase and efflux pump inhibitors. The high levels of relative fitness were observed for stabilized ABKACC , PMB-adapted ABCCARM and stabilized ABCCARM . The stabilized ABKACC and PMB-adapted ABCCARM were highly heteroresistance to PMB and TET, respectively. The PMB-adapted ABKACC and ABCCARM showed various antibiotic patterns, known as collateral susceptibility and collateral resistance. The results provide useful information for designing effective antibiotic regimens that can enhance the antibiotic activity against A. baumannii infections.


Asunto(s)
Acinetobacter baumannii/efectos de los fármacos , Adaptación Biológica , Antibacterianos/farmacología , Sensibilidad Colateral al uso de Fármacos , Infecciones por Acinetobacter/tratamiento farmacológico , Infecciones por Acinetobacter/microbiología , Ciprofloxacina/farmacología , Farmacorresistencia Bacteriana Múltiple , Humanos , Meropenem/farmacología , Pruebas de Sensibilidad Microbiana , Polimixina B/farmacología , Tetraciclina/farmacología , Tobramicina/farmacología , beta-Lactamasas/farmacología
19.
Proc Natl Acad Sci U S A ; 115(29): E6863-E6870, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-29967165

RESUMEN

We describe noncovalent, reversible asparagine ethylenediamine (AsnEDA) inhibitors of the Plasmodium falciparum proteasome (Pf20S) ß5 subunit that spare all active subunits of human constitutive and immuno-proteasomes. The compounds are active against erythrocytic, sexual, and liver-stage parasites, against parasites resistant to current antimalarials, and against P. falciparum strains from patients in Africa. The ß5 inhibitors synergize with a ß2 inhibitor in vitro and in mice and with artemisinin. P. falciparum selected for resistance to an AsnEDA ß5 inhibitor surprisingly harbored a point mutation in the noncatalytic ß6 subunit. The ß6 mutant was resistant to the species-selective Pf20S ß5 inhibitor but remained sensitive to the species-nonselective ß5 inhibitors bortezomib and carfilzomib. Moreover, resistance to the Pf20S ß5 inhibitor was accompanied by increased sensitivity to a Pf20S ß2 inhibitor. Finally, the ß5 inhibitor-resistant mutant had a fitness cost that was exacerbated by irradiation. Thus, used in combination, multistage-active inhibitors of the Pf20S ß5 and ß2 subunits afford synergistic antimalarial activity with a potential to delay the emergence of resistance to artemisinins and each other.


Asunto(s)
Antimaláricos/química , Plasmodium falciparum/enzimología , Complejo de la Endopetidasa Proteasomal/química , Inhibidores de Proteasoma/química , Proteínas Protozoarias/antagonistas & inhibidores , Artemisininas/química , Bortezomib/química , Farmacorresistencia Microbiana , Humanos , Lactonas/química , Oligopéptidos/química , Proteínas Protozoarias/química
20.
Chem Biodivers ; 18(2): e2000775, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33314614

RESUMEN

P-Glycoprotein (P-gp) overexpression is considered to be the leading cause of multidrug resistance (MDR) and failure of chemotherapy for leukemia. In this study, seventeen thiosemicarbazone-containing compounds were prepared and evaluated as potential antileukemia agents against drug resistant K562/A02 cell overexpressing P-gp. Among them, N-hydroxy-6-({(2E)-2-[(3-nitrophenyl)methylidene]hydrazinecarbothioyl}amino)hexanamide could significantly inhibit K562/A02 cells proliferation with an IC50 value of 0.96 µM. Interestingly, N-hydroxy-6-({(2E)-2-[(3-nitrophenyl)methylidene]hydrazinecarbothioyl}amino)hexanamide could dose-dependently increase ROS levels of drug resistant K562/A02 cells, thus displaying a potential collateral sensitivity (CS)-inducing effect and selectively killing K562/A02 cells. Furthermore, N-hydroxy-6-({(2E)-2-[(3-nitrophenyl)methylidene]hydrazinecarbothioyl}amino)hexanamide possessed potent inhibitory effect on HDAC1 and HDAC6, and could promote K562/A02 cells apoptosis via dose-dependently increasing Bax expression, reducing Bcl-2 protein level, and inducing the cleavage of PARP and caspase3. These present findings suggest that N-hydroxy-6-({(2E)-2-[(3-nitrophenyl)methylidene]hydrazinecarbothioyl}amino)hexanamide might be a promising lead to discover novel antileukemia agents against P-gp overexpressing leukemic cells.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Antineoplásicos/química , Antineoplásicos/farmacología , Leucemia/tratamiento farmacológico , Tiosemicarbazonas/química , Tiosemicarbazonas/farmacología , Apoptosis/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Células K562 , Leucemia/genética , Relación Estructura-Actividad , Regulación hacia Arriba/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA