Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cereb Cortex ; 34(5)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38741267

RESUMEN

The role of the left temporoparietal cortex in speech production has been extensively studied during native language processing, proving crucial in controlled lexico-semantic retrieval under varying cognitive demands. Yet, its role in bilinguals, fluent in both native and second languages, remains poorly understood. Here, we employed continuous theta burst stimulation to disrupt neural activity in the left posterior middle-temporal gyrus (pMTG) and angular gyrus (AG) while Italian-Friulian bilinguals performed a cued picture-naming task. The task involved between-language (naming objects in Italian or Friulian) and within-language blocks (naming objects ["knife"] or associated actions ["cut"] in a single language) in which participants could either maintain (non-switch) or change (switch) instructions based on cues. During within-language blocks, cTBS over the pMTG entailed faster naming for high-demanding switch trials, while cTBS to the AG elicited slower latencies in low-demanding non-switch trials. No cTBS effects were observed in the between-language block. Our findings suggest a causal involvement of the left pMTG and AG in lexico-semantic processing across languages, with distinct contributions to controlled vs. "automatic" retrieval, respectively. However, they do not support the existence of shared control mechanisms within and between language(s) production. Altogether, these results inform neurobiological models of semantic control in bilinguals.


Asunto(s)
Multilingüismo , Lóbulo Parietal , Habla , Lóbulo Temporal , Estimulación Magnética Transcraneal , Humanos , Masculino , Lóbulo Temporal/fisiología , Femenino , Adulto Joven , Adulto , Lóbulo Parietal/fisiología , Habla/fisiología , Señales (Psicología)
2.
Cerebellum ; 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39215909

RESUMEN

Recent functional MRI studies have implicated the cerebellum in working memory (WM) alongside the prefrontal cortex. Some findings indicate that the right cerebellum is activated during verbal tasks, while the left is engaged during visuospatial tasks, suggesting cerebellar lateralization in WM function. The cerebellum could be a potential target for non-invasive brain stimulation (NIBS) to enhance WM function in cognitive disorders. However, the comprehensive influence of cerebellar lateralization on different types of WM and the effect of stimulation over the unilateral or bilateral cerebellum remain uncertain. This study was to investigate the cerebellum's functional lateralization and its specific impact on various aspects of WM in a causal manner using unilateral or bilateral cerebellar continuous theta burst stimulation (cTBS), a form of inhibitroy NIBS. Twenty-four healthy participants underwent four sessions of cTBS targeting the left, right, or bilateral Crus I of the cerebellum, or a sham condition, in a controlled cross-over design. WM performance was assessed pre- and post-stimulation using neuropsychological tests, including the 3-back task, spatial WM task, and digit span task. Results indicated that cTBS over the bilateral and right cerebellum both led to a greater improvement in 3-back task performance compared to sham stimulation. Additionally, active cTBS over the bilateral cerebellum yielded better performance in the spatial WM task than sham stimulation. However, no significant differences were observed between stimulation conditions for the auditory digit span task. This study may provide novel causal evidence highlighting the specific involvement of the right and bilateral cerebellum in various types of WM. Specifically, the right cerebellum appears crucial for updating and tracking 3-back WM content, while spatial WM processes require the coordinated engagement of both cerebellar hemispheres.

3.
Neuroimage ; 278: 120282, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37468021

RESUMEN

The posterior superior temporal gyrus (pSTG) has been implicated in the integration of auditory feedback and motor system for controlling vocal production. However, the question as to whether and how the pSTG is causally involved in vocal feedback control is currently unclear. To this end, the present study selectively stimulated the left or right pSTG with continuous theta burst stimulation (c-TBS) in healthy participants, then used event-related potentials to investigate neurobehavioral changes in response to altered auditory feedback during vocal pitch regulation. The results showed that, compared to control (vertex) stimulation, c-TBS over the right pSTG led to smaller vocal compensations for pitch perturbations accompanied by smaller cortical N1 and larger P2 responses. Enhanced P2 responses received contributions from the right-lateralized temporal and parietal regions as well as the insula, and were significantly correlated with suppressed vocal compensations. Surprisingly, these effects were not found when comparing c-TBS over the left pSTG with control stimulation. Our findings provide evidence, for the first time, that supports a causal relationship between right, but not left, pSTG and auditory-motor integration for vocal pitch regulation. This lends support to a right-lateralized contribution of the pSTG in not only the bottom-up detection of vocal feedback errors but also the involvement of driving motor commands for error correction in a top-down manner.


Asunto(s)
Habla , Voz , Humanos , Habla/fisiología , Área de Wernicke , Retroalimentación , Percepción de la Altura Tonal/fisiología , Voz/fisiología , Retroalimentación Sensorial/fisiología , Estimulación Acústica/métodos
4.
J Neurochem ; 166(3): 560-571, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37282785

RESUMEN

The glymphatic system is a newly discovered perivascular network where cerebrospinal fluid mixes with interstitial fluid, facilitating clearance of protein solutes and metabolic waste from the parenchyma. The process is strictly dependent on water channel aquaporin-4 (AQP4) expressed on the perivascular astrocytic end-feet. Various factors, such as noradrenaline levels related to the arousal state, influence clearance efficiency, highlighting the possibility that other neurotransmitters additionally modulate this process. To date, the specific role of γ-aminobutyric acid (GABA) in the glymphatic system remains unknown. We used C57BL/6J mice to observe the regulatory effect of GABA on glymphatic pathway by administering a cerebrospinal fluid tracer containing GABA or its GABAA receptor (GABAA R) antagonist through cisterna magna injection. Then, we employed an AQP4 knockout mouse model to explore the regulatory effects of GABA on glymphatic drainage and further study whether transcranial magnetic stimulation-continuous theta burst stimulation (cTBS) could regulate the glymphatic pathway through the GABA system. Our data showed that GABA promotes glymphatic clearance in an AQP4-dependent manner by activating the GABAA R. Furthermore, cTBS was found to modulate the glymphatic pathway by activating the GABA system. Accordingly, we propose that regulating the GABA system by cTBS could modulate glymphatic clearance and provide new insight for clinical prevention and treatment of abnormal protein deposition-related diseases.


Asunto(s)
Encéfalo , Sistema Glinfático , Animales , Ratones , Acuaporina 4/metabolismo , Encéfalo/metabolismo , Líquido Extracelular/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados
5.
Cereb Cortex ; 32(3): 455-466, 2022 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-34240142

RESUMEN

Clinical studies have shown the efficacy of transcranial magnetic stimulation in treating movement disorders in patients with spinocerebellar ataxia (SCA). However, whether similar effects occur for their speech motor disorders remains largely unknown. The present event-related potential study investigated whether and how abnormalities in auditory-vocal integration associated with SCA can be modulated by neuronavigated continuous theta burst stimulation (c-TBS) over the right cerebellum. After receiving active or sham cerebellar c-TBS, 19 patients with SCA were instructed to produce sustained vowels while hearing their voice unexpectedly pitch-shifted by ±200 cents. Behaviorally, active cerebellar c-TBS led to smaller magnitudes of vocal compensations for pitch perturbations than sham stimulation. Parallel modulatory effects were also observed at the cortical level, as reflected by increased P1 and P2 responses but decreased N1 responses elicited by active cerebellar c-TBS. Moreover, smaller magnitudes of vocal compensations were predicted by larger amplitudes of cortical P1 and P2 responses. These findings provide the first neurobehavioral evidence that c-TBS over the right cerebellum produces modulatory effects on abnormal auditory-motor integration for vocal pitch regulation in patients with SCA, offering a starting point for the treatment of speech motor disorders associated with SCA with cerebellar c-TBS.


Asunto(s)
Ataxias Espinocerebelosas , Estimulación Magnética Transcraneal , Cerebelo/fisiología , Retroalimentación Sensorial/fisiología , Humanos , Habla/fisiología , Ataxias Espinocerebelosas/terapia , Ritmo Teta
6.
Neuroimage ; 264: 119767, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36435342

RESUMEN

The supplementary motor area (SMA) has been implicated in the feedforward control of speech production. Whether this region is involved in speech motor control through auditory feedback, however, remains uncertain. The present event-related potential (ERP) study examined the role of the left SMA in vocal pitch regulation in a causal manner by combining auditory feedback manipulations and neuronavigated continuous theta bust stimulation (c-TBS). After receiving c-TBS over the left SMA or the control site (vertex), twenty young adults vocalized the vowel sound /u/ while hearing their voice unexpectedly pitch-shifted -50 or -200 cents. Compared to the control stimulation, c-TBS over the left SMA led to decreased vocal compensations for pitch perturbations of -50 and -200 cents. A significant decrease of N1 and P2 responses to -200 cents perturbations was also found when comparing active and control stimulation. Major neural generators of decreased P2 responses included the right-lateralized superior and middle temporal gyrus and angular gyrus. Notably, a significant correlation was found between active-control differences in the vocal compensation and P2 responses for the -200 cents perturbations. These findings provide neurobehavioral evidence for a causal link between the left SMA and auditory-motor integration for vocal pitch regulation, suggesting that the left SMA receives auditory feedback information and mediates vocal compensations for feedback errors in a bottom-up manner.


Asunto(s)
Corteza Motora , Voz , Adulto Joven , Humanos , Percepción de la Altura Tonal/fisiología , Estimulación Acústica , Estimulación Magnética Transcraneal , Voz/fisiología , Habla/fisiología , Retroalimentación Sensorial/fisiología
7.
Exp Brain Res ; 240(6): 1743-1755, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35389072

RESUMEN

Earlier research suggested that after 210 practice trials, the supplementary motor area (SMA) is involved in executing all responses of familiar 6-key sequences in a discrete sequence production (DSP) task (Verwey, Lammens, and van Honk, 2002). This was indicated by slowing of each response 20 and 25 min after the SMA had been stimulated for 20 min using repetitive transcranial magnetic stimulation (rTMS). The present study used a similar approach to assess the effects of TMS to the more posterior SMAproper at the end of practice and also 24 h later. As expected stimulation of SMAproper with 20 min of 1 Hz rTMS and 40 s of continuous theta burst stimulation (cTBS) immediately after practice slowed sequence execution relative to a sham TMS condition, but stimulation on the day following practice did not cause slowing. This indicates that offline consolidation makes learning robust against stimulation of SMAproper. Execution of all responses in the sequence was disrupted 0, 20, and 40 min after rTMS, but after cTBS, this occurred only after 40 min. The results suggest that it is implicit sequence knowledge that is processed by the SMAproper and that consolidates.


Asunto(s)
Corteza Motora , Estimulación Magnética Transcraneal , Potenciales Evocados Motores , Humanos , Aprendizaje , Corteza Motora/fisiología , Estimulación Magnética Transcraneal/métodos
8.
Neuromodulation ; 25(4): 569-577, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35667772

RESUMEN

OBJECTIVES: The efficacy of repetitive transcranial magnetic stimulation (rTMS) in clinically relevant neuroplasticity research depends on the degree to which stimulation induces robust, reliable effects. The high degree of interindividual and intraindividual variability observed in response to rTMS protocols, such as continuous theta burst stimulation (cTBS), therefore represents an obstacle to its utilization as treatment for neurological disorders. Brain-derived neurotrophic factor (BDNF) is a protein involved in human synaptic and neural plasticity, and a common polymorphism in the BDNF gene (Val66Met) may influence the capacity for neuroplastic changes that underlie the effects of cTBS and other rTMS protocols. While evidence from healthy individuals suggests that Val66Met polymorphism carriers may show diminished or facilitative effects of rTMS compared to their homozygous Val66Val counterparts, this has yet to be demonstrated in the patient populations where neuromodulatory therapies are most relevant. MATERIALS AND METHODS: We examined the effects of BDNF Val66Met polymorphism on cTBS aftereffects in stroke patients. We compared approximately 30 log-transformed motor-evoked potentials (LnMEPs) obtained per time point: at baseline and at 0, 10, 20, and 30 min after cTBS-600, from 18 patients with chronic stroke using single TMS pulses. We used linear mixed-effects regression with trial-level data nested by subject for higher statistical power. RESULTS: We found a significant interaction between BDNF genotype and pre-/post-cTBS LnMEPs. Val66Val carriers showed decrease in cortical excitability, whereas Val66Met carriers exhibited a modest increase in cortical excitability for 20 min poststimulation, followed by inhibition 30 min after cTBS-600. CONCLUSIONS: Our findings strongly suggest that BDNF genotype differentially affects neuroplastic responses to TMS in individuals with chronic stroke. This provides novel insight into potential sources of variability in cTBS response in patients, which has important implications for optimizing the utility of this neuromodulation approach. Incorporating BDNF polymorphism genetic screening to stratify patients prior to use of cTBS as a neuromodulatory technique in therapy or research may optimize response rates.


Asunto(s)
Corteza Motora , Accidente Cerebrovascular , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Potenciales Evocados Motores/fisiología , Humanos , Corteza Motora/fisiología , Polimorfismo Genético/genética , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/terapia , Estimulación Magnética Transcraneal/métodos
9.
Eur J Neurosci ; 53(10): 3404-3415, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33754397

RESUMEN

Repetitive transcranial magnetic stimulation (rTMS) is an increasingly used, non-invasive brain stimulation technique in neuroscience research and clinical practice with a broad spectrum of suggested applications. Among other parameters, the choice of stimulus intensity and intracranial electric field strength substantially impacts rTMS outcome. This review provides a systematic overview of the intensity selection approaches and stimulation intensities used in human rTMS studies. We also examined whether studies report sufficient information to reproduce stimulus intensities for basic science research models. We performed a systematic review by focusing on original studies published between 1991 and 2020. We included conventional (e.g., 1 or 10 Hz) and patterned protocols (e.g., continuous or intermittent theta burst stimulation). We identified 3,784 articles in total, and we manually processed a representative portion (20%) of randomly selected articles. The majority of the analyzed studies (90% of entries) used the motor threshold (MT) approach and stimulation intensities from 80% to 120% of the MT. For continuous and intermittent theta burst stimulation, the most frequent stimulation intensity was 80% of the active MT. Most studies (92% of entries) did not report sufficient information to reproduce the stimulation intensity. Only a minority of studies (1.03% of entries) estimated the rTMS-induced electric field strengths. We formulate easy-to-follow recommendations to help scientists and clinicians report relevant information on stimulation intensity. Future standardized reporting guidelines may facilitate the use of basic science approaches aiming at better understanding the molecular, cellular, and neuronal mechanisms of rTMS.


Asunto(s)
Encéfalo , Estimulación Magnética Transcraneal , Humanos , Proyectos de Investigación
10.
Hum Brain Mapp ; 42(6): 1670-1681, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33314545

RESUMEN

Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive neuromodulation technique with great potential in the treatment of Parkinson's disease (PD). This study aimed to investigate the clinical efficacy of accelerated rTMS and to understand the underlying neural mechanism. In a double-blinded way, a total of 42 patients with PD were randomized to receive real (n = 22) or sham (n = 20) continuous theta-burst stimulation (cTBS) on the left supplementary motor area (SMA) for 14 consecutive days. Patients treated with real cTBS, but not with sham cTBS, showed a significant improvement in Part III of the Unified PD Rating Scale (p < .0001). This improvement was observed as early as 1 week after the start of cTBS treatment, and maintained 8 weeks after the end of the treatment. These findings indicated that the treatment response was swift with a long-lasting effect. Imaging analyses showed that volume of the left globus pallidus (GP) increased after cTBS treatment. Furthermore, the volume change of GP was mildly correlated with symptom improvement and associated with the baseline fractional anisotropy of SMA-GP tracts. Together, these findings implicated that the accelerated cTBS could effectively alleviate motor symptoms of PD, maybe by modulating the motor circuitry involving the SMA-GP pathway.


Asunto(s)
Globo Pálido/patología , Corteza Motora/fisiopatología , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/terapia , Estimulación Magnética Transcraneal , Imagen de Difusión Tensora , Femenino , Globo Pálido/diagnóstico por imagen , Globo Pálido/fisiopatología , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Corteza Motora/diagnóstico por imagen , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/fisiopatología , Estimulación Magnética Transcraneal/métodos , Resultado del Tratamiento
11.
BMC Neurol ; 21(1): 369, 2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34560841

RESUMEN

BACKGROUND: Repetitive transcranial magnetic stimulation (rTMS) has been reported to treat muscle spasticity in post-stroke patients. The purpose of this study was to explore whether combined low-frequency rTMS (LF-rTMS) and cerebellar continuous theta burst stimulation (cTBS) could provide better relief than different modalities alone for muscle spasticity and limb dyskinesia in stroke patients. METHODS: This study recruited ninety stroke patients with hemiplegia, who were divided into LF-rTMS+cTBS group (n=30), LF-rTMS group (n=30) and cTBS group (three pulse bursts at 50 Hz, n=30). The LF-rTMS group received 1 Hz rTMS stimulation of the motor cortical (M1) region on the unaffected side of the brain, the cTBS group received cTBS stimulation to the cerebellar region, and the LF-rTMS+cTBS group received 2 stimuli as described above. Each group received 4 weeks of stimulation followed by rehabilitation. Muscle spasticity, motor function of limb and activity of daily living (ADL) were evaluated by modified Ashworth Scale (MAS), Fugl-Meyer Assessment (FMA) and Modified Barthel Index (MBI) scores, respectively. RESULTS: The MAS score was markedly decreased, FMA and MBI scores were markedly increased in the three groups after therapy than before therapy. In addition, after therapy, LF-rTMS+cTBS group showed lower MAS score, higher FMA and MBI scores than the LF-rTMS group and cTBS group. CONCLUSION: Muscle spasticity and limb dyskinesia of the three groups are all significantly improved after therapy. Combined LF-rTMS and cTBS treatment is more effective in improving muscle spasticity and limb dyskinesia of patients after stroke than LF-rTMS and cTBS treatment alone.


Asunto(s)
Discinesias , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Humanos , Espasticidad Muscular/etiología , Espasticidad Muscular/terapia , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/terapia , Estimulación Magnética Transcraneal , Resultado del Tratamiento , Extremidad Superior
12.
Cereb Cortex ; 30(8): 4515-4527, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32147719

RESUMEN

The dorsolateral prefrontal cortex (DLPFC) has been implicated in auditory-motor integration for accurate control of vocal production, but its precise role in this feedback-based process remains largely unknown. To this end, the present event-related potential study applied a transcranial magnetic stimulation (TMS) protocol, continuous theta-burst stimulation (c-TBS), to disrupt cortical activity in the left DLPFC as young adults vocalized vowel sounds while hearing their voice unexpectedly shifted upwards in pitch. The results showed that, as compared to the sham condition, c-TBS over left DLPFC led to significantly larger vocal compensations for pitch perturbations that were accompanied by significantly smaller cortical P2 responses. Source localization analyses revealed that this brain activity pattern was the result of reduced activation in the left superior frontal gyrus and right inferior parietal lobule (supramarginal gyrus). These findings demonstrate c-TBS-induced modulatory effects of DLPFC on the neurobehavioral processing of vocal pitch regulation, suggesting that disrupting prefrontal function may impair top-down inhibitory control mechanisms that prevent speech production from being excessively influenced by auditory feedback, resulting in enhanced vocal compensations for feedback perturbations. This is the first study that provides direct evidence for a causal role of the left DLPFC in auditory feedback control of vocal production.


Asunto(s)
Atención/fisiología , Retroalimentación Sensorial/fisiología , Corteza Prefrontal/fisiología , Habla/fisiología , Femenino , Humanos , Masculino , Percepción de la Altura Tonal/fisiología , Estimulación Magnética Transcraneal , Adulto Joven
13.
J Stroke Cerebrovasc Dis ; 30(7): 105795, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33887662

RESUMEN

OBJECTIVE: This randomized controlled study examined the effect of continuous theta burst stimulation (cTBS) and low frequency repetitive transcranial magnetic stimulation (rTMS) on upper extremity spasticity and functional recovery in chronic ischemic stroke patients. MATERIALS AND METHODS: Twenty chronic ischemic stroke patients were randomized into three groups as real rTMS group (n = 7), real cTBS group (n = 7) and sham cTBS group (n = 6), in which real rTMS with physical therapy (PT), real cTBS with PT and sham cTBS with PT were applied in 10 sessions, respectively. The evaluation parameters were assessed at pre-treatment, post-treatment and follow up at 4 weeks. RESULTS: Ten sessions of real rTMS or real cTBS combined with PT were found beneficial in motor functional recovery and daily living activities both at post-treatment and follow up at 4 weeks (p Ë‚ 0.05). In the sham cTBS group, functional improvement was not significant (p > 0.05). In addition, in the real rTMS group, elbow flexor, pronator, wrist flexor and finger flexor spasticity were significantly decreased; in the real cTBS group, significant decrease was observed in the elbow flexor and wrist flexor spasticity (p Ë‚ 0.05). In comparison with sham cTBS group, only in the real cTBS group, significant improvement was observed in the level of wrist flexor spasticity at follow up at 4 weeks (p Ë‚ 0.017). CONCLUSIONS: In this study, it was observed that real cTBS or real rTMS combined with PT provided improvement on upper extremity motor functions and daily living activities in chronic ischemic stroke patients, but improvement in spasticity was limited.


Asunto(s)
Encéfalo/fisiopatología , Accidente Cerebrovascular Isquémico/terapia , Actividad Motora , Ritmo Teta , Estimulación Magnética Transcraneal , Extremidad Superior/inervación , Anciano , Enfermedad Crónica , Terapia Combinada , Evaluación de la Discapacidad , Método Doble Ciego , Femenino , Estado Funcional , Humanos , Accidente Cerebrovascular Isquémico/diagnóstico , Accidente Cerebrovascular Isquémico/fisiopatología , Masculino , Persona de Mediana Edad , Modalidades de Fisioterapia , Recuperación de la Función , Factores de Tiempo , Estimulación Magnética Transcraneal/efectos adversos , Resultado del Tratamiento , Turquía
14.
Medicina (Kaunas) ; 57(8)2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34440949

RESUMEN

Background and Objectives: Tinnitus is a condition that negatively affects the quality of life and is difficult to treat. Theta burst stimulation (TBS), a new method of repetitive transcranial magnetic stimulation (rTMS), is a promising treatment approach because it shows stronger and more prolonged effects in a shorter time of stimulation than other rTMS protocols. However, the therapeutic effect of TBS for tinnitus was inconsistent. We hypothesized that more stimulation would be more effective. Therefore, this study aimed to explore the safety and effectiveness of multiple daily rounds of TBS over five consecutive days. Materials and Methods: The continuous TBS (cTBS) protocol is 300 pulses/day, but we applied 8 sessions of 300 pulses in a day (total 2400 pulses/day). A total of 15 patients with tinnitus were randomly assigned to treatment and sham groups. Outcome measurements were taken three times: before and after 5-day of stimulation; at a 1-3 month follow-up visit. Outcome measurements were the degree of annoyance due to ear fullness, duration of tinnitus, visual analog scales of tinnitus for annoyance, Tinnitus Handicap Inventory, pitch, loudness, minimum masking level, and residual inhibition. Results: Five-day cTBS was completed without adverse events. We did not find any significant therapeutic effect in the treatment group, but we needed to be cautious to interpret our result due to the small sample size. Conclusions: In conclusion, multiple rounds of cTBS in a day may be safe. Further research is needed in a larger sample size to determine the effectiveness and confirm the safety.


Asunto(s)
Acúfeno , Humanos , Dimensión del Dolor , Calidad de Vida , Proyectos de Investigación , Acúfeno/terapia , Estimulación Magnética Transcraneal , Resultado del Tratamiento
15.
Ideggyogy Sz ; 74(1-2): 41-49, 2021 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-33497056

RESUMEN

BACKGROUND AND PURPOSE: Transcranial magnetic stimulation is a non-invasive procedure that uses robust magnetic fields to create an electrical current in the cerebral cortex. Dual stimulation consists of administering subthre-shold conditioning stimulation (CS), then suprathreshold test stimulation (TS). When the interstimulus interval (ISI) is 1-6 msec, the motor evoked potential (MEP) decreases in amplitude; this decrease is termed "short interval intracortical inhibition" (SICI); when the ISI is 7-30 msec, an increase in MEP amplitude occurs, termed "short interval intracortical facilitation" (SICF). Continuous theta burst stimulation (cTBS), often applied at a frequency of 50 Hz, has been shown to decrease cortical excitability. The primary objective is to determine which duration of cTBS achieves better inhibition or excitation. The secondary objective is to compare 50 Hz cTBS to 30 Hz and 100 Hz cTBS. METHODS: The resting motor threshold (rMT), MEP, SICI, and SICF were studied in 30 healthy volunteers. CS and TS were administered at 80%-120% and 70%-140% of rMT at 2 and 3-millisecond (msec) intervals for SICI, and 10- and 12-msec intervals for SICF. Ten individuals in each group received 30, 50, or 100 Hz, followed by administration of rMT, MT-MEP, SICI, SICF immediately and at 30 minutes. RESULTS: Greater inhibition was achieved with 3 msec than 2 msec in SICI, whereas better facilitation occurred at 12 msec than 10 msec in SICF. At 30 Hz, cTBS augmented inhibition and suppressed facilitation, while 50 Hz yielded less inhibition and greater inter-individual variability. At 100 Hz, cTBS provided slight facilitation in MEP amplitudes with less interindividual variability. SICI and SICF did not differ significantly between 50 Hz and 100 Hz cTBS. CONCLUSION: Our results suggest that performing SICI and SICF for 3 and 12 msec, respectively, and CS and TS at 80%-120% of rMT, demonstrate safer inhibition and facilitation. Recently, TBS has been used in the treatment of various neurological diseases, and we recommend preferentially 30 Hz over 50 Hz cTBS for better inhibition with greater safety and less inter-individual variability.


Asunto(s)
Estimulación Magnética Transcraneal , Potenciales Evocados Motores , Voluntarios Sanos , Humanos , Corteza Motora , Inhibición Neural
16.
Cogn Affect Behav Neurosci ; 20(5): 1090-1102, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32839957

RESUMEN

We recently proposed a neurocognitive model of distancing-an emotion regulation tactic-with a focus on the lateral parietal cortex. Although this brain area has been implicated in both cognitive control and self-projection processes during distancing, fMRI work suggests that these processes may be dissociable here. This preregistered (NCT03698591) study tested the contribution of left temporoparietal junction (TPJ) to distancing using repetitive transcranial magnetic stimulation. We hypothesized that inhibiting left TPJ would decrease the efficiency of distancing but not distraction, another regulation tactic with similar cognitive control requirements, thus implicating this region in the self-projection processes unique to distancing. Active and sham continuous theta burst stimulation (cTBS) were applied to 30 healthy adults in a single-session crossover design. Tactic efficiency was measured using online reports of valence and effort. The stimulation target was established from the group TPJ fMRI activation peak in an independent sample using the same distancing task, and anatomical MRI scans were used for individual targeting. Analyses employed both repeated-measures ANOVA and analytic procedures tailored to crossover designs. Irrespective of cTBS, distancing led to greater decreases in negative valence over time relative to distraction, and distancing effort decreased over time while distraction effort remained stable. Exploratory analyses also revealed that active cTBS made distancing more effortful, but not distraction. Thus, left TPJ seems to support self-projection processes in distancing, and these processes may be facilitated by repeated use. These findings help to clarify the role of lateral parietal cortex in distancing and inform applications of distancing and distraction.


Asunto(s)
Afecto/fisiología , Atención/fisiología , Regulación Emocional/fisiología , Lóbulo Parietal/fisiología , Reconocimiento Visual de Modelos/fisiología , Estimulación Magnética Transcraneal , Adolescente , Adulto , Estudios Cruzados , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Adulto Joven
17.
J Neural Transm (Vienna) ; 127(1): 17-25, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31844983

RESUMEN

The study of the physiological effects underlying brain response to transcranial magnetic stimulation is important to understand its impact on neurorehabilitation. We aim to analyze the impact of a transcranial magnetic stimulation protocol, the continuous theta burst (cTBS), on human neurophysiology, particularly on contralateral motor rhythms. cTBS was applied in 20 subjects over the primary motor cortex. We recorded brain electrical activity pre- and post-cTBS with electroencephalography both at rest and while performing motor tasks, to evaluate changes in brain oscillatory patterns such as mu and beta rhythms. Moreover, we measured motor-evoked potentials before and after cTBS to assess its impact on brain's excitability. On the hemisphere contralateral to the protocol, we did observe a significant increase in mu (p = 0.027) and beta (p = 0.006) rhythms from pre- to post-cTBS, at the beginning of arm elevation. The topology of action planning and motor execution suggests that cTBS produced an inhibitory effect that propagated to the contralateral hemisphere, thereby precluding the expected/desired excitation for therapy purposes. This novel approach provides support for the notion that this protocol induces inhibitory changes in contralateral motor rhythms, by decreasing desynchronization, contradicting the ipsilateral inhibition vs. contralateral disinhibition hypothesis. Our results have implications for personalized cTBS usage as a rehabilitation intervention, suggesting that an unexpected propagation of inhibition can occur.


Asunto(s)
Ondas Encefálicas/fisiología , Potenciales Evocados Motores/fisiología , Actividad Motora/fisiología , Corteza Motora/fisiología , Inhibición Neural/fisiología , Estimulación Magnética Transcraneal , Adulto , Anciano , Brazo/fisiología , Ritmo beta/fisiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Rehabilitación Neurológica
18.
Exp Brain Res ; 238(11): 2581-2588, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32886136

RESUMEN

Binocular disparity, a primary cue for stereoscopic depth perception, is widely represented in visual cortex. However, the functional specialization in the disparity processing network remains unclear. Using magnetic resonance imaging-guided transcranial magnetic stimulation, we studied the causal contributions of V3A and MT+ to stereoscopic depth perception. Subjects viewed random-dot stereograms forming transparent planes with various interplane disparities. Their smallest detectable disparity and largest detectable disparity were measured in two experiments. We found that the smallest detectable disparity was affected by V3A, but not MT+ , stimulation. On the other hand, the largest detectable disparity was affected by both V3A and MT+ stimulation. Our results suggest different roles of V3A and MT+ in stereoscopic depth processing.


Asunto(s)
Percepción de Profundidad , Corteza Visual , Humanos , Imagen por Resonancia Magnética , Estimulación Luminosa , Disparidad Visual
19.
Eur J Neurosci ; 50(10): 3599-3613, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31410900

RESUMEN

Non-invasive reversible perturbation techniques of brain output such as continuous theta burst stimulation (cTBS), commonly used to modulate cortical excitability in humans, allow investigation of possible roles in functional recovery played by distinct intact cortical areas following stroke. To evaluate the potential of cTBS, the behavioural effects of this non-invasive transient perturbation of the hand representation of the primary motor cortex (M1) in non-human primates (two adult macaques) were compared with an invasive focal transient inactivation based on intracortical microinfusion of GABA-A agonist muscimol. The effects on the contralateral arm produced by cTBS or muscimol were directly compared based on a manual dexterity task performed by the monkeys, the "reach and grasp" drawer task, allowing quantitative assessment of the grip force produced between the thumb and index finger and exerted on the drawer's knob. cTBS only induced modest to moderate behavioural effects, with substantial variability on manual dexterity whereas the intracortical muscimol microinfusion completely impaired manual dexterity, producing a strong and clear cortical inhibition of the M1 hand area. In contrast, cTBS induced mixed inhibitory and facilitatory/excitatory perturbations of M1, though with predominant inhibition. Although cTBS impacted on manual dexterity, its effects appear too limited and variable in order to use it as a reliable proof of cortical vicariation mechanism (cortical area replacing another one) underlying functional recovery following a cortical lesion in the motor control domain, in contrast to potent pharmacological block generated by muscimol infusion, whose application is though limited to an animal model such as non-human primate.


Asunto(s)
Estimulación Encefálica Profunda/métodos , Mano/fisiología , Corteza Motora/fisiología , Destreza Motora , Ritmo Teta , Animales , Estimulación Encefálica Profunda/efectos adversos , Femenino , Agonistas de Receptores de GABA-A/farmacología , Macaca fascicularis , Masculino , Corteza Motora/efectos de los fármacos , Muscimol/farmacología
20.
Exp Brain Res ; 237(10): 2747-2759, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31435693

RESUMEN

Patients with lesions of the prefrontal cortex (PFC) show increased distractibility and impairments in inhibiting cortical responses to irrelevant stimuli. This study was designed to test the role of the PFC in the early modality-specific modulation of event-related potentials (ERPs) generated during a sensory selection task. The task required participants to make a scaled motor response to the amplitudes of visual and tactile stimuli presented individually or concurrently. Task relevance was manipulated and continuous theta burst stimulation (cTBS) was used to transiently inhibit PFC activity to test the contribution of the PFC to modulation of sensory gating. Electroencephalography (EEG) was collected from participants both before and after cTBS was applied. The somatosensory-evoked N70 ERP was shown to be modulated by task relevance before but not after cTBS was applied to the PFC, and downregulating PFC activity through the use of cTBS abolished any relevancy differences in N70 amplitude. In conclusion, this study demonstrated that early modality-specific changes in cortical somatosensory processing are modulated by attention, and that this effect is subserved by prefrontal cortical activity.


Asunto(s)
Atención/fisiología , Potenciales Evocados Somatosensoriales/fisiología , Corteza Prefrontal/fisiología , Tacto/fisiología , Adulto , Electroencefalografía/métodos , Femenino , Humanos , Masculino , Filtrado Sensorial/fisiología , Corteza Somatosensorial/fisiología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA