Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.967
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(44): e2306497120, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37844215

RESUMEN

Despite significant research on the effects of stress on the hypothalamic-pituitary-adrenal (HPA) axis, questions remain regarding long-term impacts of large-scale stressors. Leveraging data on exposure to an unanticipated major natural disaster, the 2004 Indian Ocean tsunami, we provide causal evidence of its imprint on hair cortisol levels fourteen years later. Data are drawn from the Study of the Tsunami Aftermath and Recovery, a population-representative longitudinal study of tsunami survivors who were living along the coast of Aceh, Indonesia, when the tsunami hit. Annual rounds of data, collected before, the year after and 2 y after the disaster provide detailed information about tsunami exposures and self-reported symptoms of post-traumatic stress. Hair samples collected 14 y after the tsunami from a sample of adult participants provide measures of cortisol levels, integrated over several months. Hair cortisol concentrations are substantially and significantly lower among females who were living, at the time of the tsunami, in communities directly damaged by the tsunami, in comparison with similar females living in other, nearby communities. Differences among males are small and not significant. Cortisol concentrations are lowest among those females living in damaged communities who reported elevated post-traumatic stress symptoms persistently for two years after the tsunami, indicating that the negative effects of exposure were largest for them. Low cortisol is also associated with contemporaneous reports of poor self-rated general and psychosocial health. Taken together, the evidence points to dysregulation in the HPA axis and "burnout" among these females fourteen years after exposure to the disaster.


Asunto(s)
Agotamiento Psicológico , Sistema Hipotálamo-Hipofisario , Sistema Hipófiso-Suprarrenal , Tsunamis , Adulto , Femenino , Humanos , Masculino , Hidrocortisona , Sistema Hipotálamo-Hipofisario/fisiología , Océano Índico , Estudios Longitudinales , Sistema Hipófiso-Suprarrenal/fisiología , Agotamiento Psicológico/fisiopatología
2.
J Biol Chem ; 300(1): 105519, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38042488

RESUMEN

Corticosteroid-binding globulin (CBG) delivers anti-inflammatory cortisol to inflamed tissues through proteolysis of an exposed reactive center loop (RCL) by neutrophil elastase (NE). We previously demonstrated that RCL-localized Asn347-linked N-glycans impact NE proteolysis, but a comprehensive structure-function characterization of the RCL glycosylation is still required to better understand CBG glycobiology. Herein, we first performed RCL-centric glycoprofiling of serum-derived CBG to elucidate the Asn347-glycans and then used molecular dynamics simulations to study their impact on NE proteolysis. Importantly, we also identified O-glycosylation (di/sialyl T) across four RCL sites (Thr338/Thr342/Thr345/Ser350) of serum CBG close to the NE-targeted Val344-Thr345 cleavage site. A restricted N- and O-glycan co-occurrence pattern on the RCL involving exclusively Asn347 and Thr338 glycosylation was experimentally observed and supported in silico by modeling of a CBG-GalNAc-transferase (GalNAc-T) complex with various RCL glycans. GalNAc-T2 and GalNAc-T3 abundantly expressed by liver and gall bladder, respectively, showed in vitro a capacity to transfer GalNAc (Tn) to multiple RCL sites suggesting their involvement in RCL O-glycosylation. Recombinant CBG was then used to determine roles of RCL O-glycosylation through longitudinal NE-centric proteolysis experiments, which demonstrated that both sialoglycans (disialyl T) and asialoglycans (T) decorating Thr345 inhibit NE proteolysis. Synthetic RCL O-glycopeptides expanded on these findings by showing that Thr345-Tn and Thr342-Tn confer strong and moderate protection against NE cleavage, respectively. Molecular dynamics substantiated that short Thr345-linked O-glycans abrogate NE interactions. In conclusion, we report on biologically relevant CBG RCL glycosylation events, which improve our understanding of mechanisms governing cortisol delivery to inflamed tissues.


Asunto(s)
Elastasa de Leucocito , Transcortina , Glicosilación , Hidrocortisona/metabolismo , Elastasa de Leucocito/metabolismo , Polisacáridos , Proteolisis , Transcortina/genética , Transcortina/química , Transcortina/metabolismo , Humanos
3.
Front Neuroendocrinol ; 72: 101118, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38176541

RESUMEN

Higher prevalence of depression in females might be associated with sex-specific cortisol levels. Evidence exists that cortisol levels differ between healthy females and males, however a sex-specific association in depression has not been systematically assessed. Thus, the current study quantifies the existing literature on different cortisol parameters, i.e., basal cortisol, hair cortisol, cortisol awakening response (CAR), and cortisol stress reactivity comparing depressed females and males as well as sex-specific comparisons with healthy controls. Following an extensive literature research, fifty original articles were included. Depressed females had significantly higher hair cortisol, higher CAR, and lower cortisol stress reactivity compared to depressed males. In comparison with sex-matched controls, female patients had significantly higher evening basal cortisol, higher CAR and lower cortisol stress reactivity, and male patients had significantly higher general, morning and evening basal cortisol. Overall, sex as a fundamental driver of cortisol levels in depression needs to be taken into account.

4.
Front Neuroendocrinol ; 74: 101145, 2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38862092

RESUMEN

Understanding emotions in males is crucial given their higher susceptibility to substance use, interpersonal violence, and suicide compared to females. Steroid hormones are assumed to be critical biological factors that affect and modulate emotion-related behaviors, together with psychological and social factors. This review explores whether males' abilities to recognize emotions of others and regulate their own emotions are associated with testosterone, cortisol, and their interaction. Higher levels of testosterone were associated with improved recognition and heightened sensitivity to threatening faces. In contrast, higher cortisol levels positively impacted emotion regulation ability. Indirect evidence from neuroimaging research suggested a link between higher testosterone levels and difficulties in cognitive emotion regulation. However, this notion must be investigated in future studies using different emotion regulation strategies and considering social status. The present review contributes to the understanding of how testosterone and cortisol affect psychological well-being and emotional behavior in males.

5.
FASEB J ; 38(11): e23719, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38837828

RESUMEN

Chronic disruption of circadian rhythms by night shift work is associated with an increased breast cancer risk. However, little is known about the impact of night shift on peripheral circadian genes (CGs) and circadian-controlled genes (CCGs) associated with breast cancer. Hence, we assessed central clock markers (melatonin and cortisol) in plasma, and peripheral CGs (PER1, PER2, PER3, and BMAL1) and CCGs (ESR1 and ESR2) in peripheral blood mononuclear cells (PBMCs). In day shift nurses (n = 12), 24-h rhythms of cortisol and melatonin were aligned with day shift-oriented light/dark schedules. The mRNA expression of PER2, PER3, BMAL1, and ESR2 showed 24-h rhythms with peak values in the morning. In contrast, night shift nurses (n = 10) lost 24-h rhythmicity of cortisol with a suppressed morning surge but retained normal rhythmic patterns of melatonin, leading to misalignment between cortisol and melatonin. Moreover, night shift nurses showed disruption of rhythmic expressions of PER2, PER3, BMAL1, and ESR2 genes, resulting in an impaired inverse correlation between PER2 and BMAL1 compared to day shift nurses. The observed trends of disrupted circadian markers were recapitulated in additional day (n = 20) and night (n = 19) shift nurses by measurement at early night and midnight time points. Taken together, this study demonstrated the misalignment of cortisol and melatonin, associated disruption of PER2 and ESR2 circadian expressions, and internal misalignment in peripheral circadian network in night shift nurses. Morning plasma cortisol and PER2, BMAL1, and ESR2 expressions in PBMCs may therefore be useful biomarkers of circadian disruption in shift workers.


Asunto(s)
Relojes Circadianos , Ritmo Circadiano , Hidrocortisona , Melatonina , Horario de Trabajo por Turnos , Humanos , Femenino , Melatonina/metabolismo , Melatonina/sangre , Adulto , Horario de Trabajo por Turnos/efectos adversos , Relojes Circadianos/genética , Hidrocortisona/sangre , Hidrocortisona/metabolismo , Ritmo Circadiano/fisiología , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Enfermeras y Enfermeros , Leucocitos Mononucleares/metabolismo , Receptor alfa de Estrógeno/metabolismo , Receptor alfa de Estrógeno/genética , Receptor beta de Estrógeno/metabolismo , Receptor beta de Estrógeno/genética , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Tolerancia al Trabajo Programado/fisiología , Condiciones de Trabajo
6.
Cereb Cortex ; 34(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38642105

RESUMEN

Stress has a major impact on our mental health. Nonetheless, it is still not fully understood how the human brain responds to ongoing stressful events. Here, we aimed to determine the cortical dynamics during the exposure to ecologically valid, standardized stressors. To this end, we conducted 3 experiments in which healthy participants underwent the Trier Social Stress Test (experiments 1 and 2) and the Socially Evaluated Cold Pressor Test (experiment 3) or a respective control manipulation, while we measured their cortical activity using functional near-infrared spectroscopy. Increases in salivary cortisol and subjective stress levels confirmed the successful stress induction in all experiments. Results of experiment 1 showed significantly increased cortical activity, in particular in the dorsolateral prefrontal cortex, during the exposure to the Trier Social Stress Test. Experiment 2 replicated this finding and showed further that this stress-related increase in dorsolateral prefrontal cortex activity was transient and limited to the period of the Trier Social Stress Test. Experiment 3 demonstrated the increased dorsolateral prefrontal cortex activity during the Socially Evaluated Cold Pressor Test, suggesting that this increase is generalizable and not specific to the Trier Social Stress Test. Together, these data show consistently that dorsolateral prefrontal cortex activity is not reduced, as commonly assumed, but increased under stress, which may promote coping with the ongoing stressor.


Asunto(s)
Encéfalo , Corteza Prefontal Dorsolateral , Humanos , Mapeo Encefálico/métodos , Pruebas Psicológicas , Corteza Prefrontal , Estrés Psicológico , Hidrocortisona
7.
J Neurosci ; 43(43): 7198-7212, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37813570

RESUMEN

Stress can powerfully influence episodic memory, often enhancing memory encoding for emotionally salient information. These stress-induced memory enhancements stand at odds with demonstrations that stress and the stress-related hormone cortisol can negatively affect the hippocampus, a brain region important for episodic memory encoding. To resolve this apparent conflict and determine whether and how the hippocampus supports memory encoding under cortisol, we combined behavioral assays of associative memory, high-resolution fMRI, and pharmacological manipulation of cortisol in a within-participant, double-blinded procedure (in both sexes). Behaviorally, hydrocortisone promoted the encoding of subjectively arousing, positive associative memories. Neurally, hydrocortisone led to enhanced functional connectivity between hippocampal subregions, which predicted subsequent memory enhancements for emotional associations. Cortisol also modified the relationship between hippocampal representations and associative memory: whereas hippocampal signatures of distinctiveness predicted memory under placebo, relative integration predicted memory under cortisol. Together, these data provide novel evidence that the human hippocampus contains the necessary machinery to support emotional associative memory enhancements under cortisol.SIGNIFICANCE STATEMENT Our daily lives are filled with stressful events, which powerfully shape the way we form episodic memories. For example, stress and stress-related hormones can enhance our memory for emotional events. However, the mechanisms underlying these memory benefits are unclear. In the current study, we combined functional neuroimaging, behavioral tests of memory, and double-blind, placebo-controlled hydrocortisone administration to uncover the effects of the stress-related hormone cortisol on the function of the human hippocampus, a brain region important for episodic memory. We identified novel ways in which cortisol can enhance hippocampal function to promote emotional memories, highlighting the adaptive role of cortisol in shaping memory formation.


Asunto(s)
Hidrocortisona , Memoria Episódica , Masculino , Femenino , Humanos , Hidrocortisona/farmacología , Encéfalo , Hipocampo , Emociones , Imagen por Resonancia Magnética/métodos
8.
Artículo en Inglés | MEDLINE | ID: mdl-38958546

RESUMEN

Monocytes are innate immune cells that are continuously produced in bone marrow which enter and circulate the vasculature. In response to nutrient scarcity, monocytes migrate back to bone marrow where upon refeeding they are re-released back into the bloodstream to replenish the circulation. In humans, the variability in monocyte behavior in response to fasting and refeeding has not been characterized. To investigate monocyte dynamics in humans we measured blood monocyte fluctuations in 354 clinically healthy individuals after a 12-hour overnight fast and at 3- and 6-hours after consuming a mixed macronutrient challenge meal. Using cluster analysis, we identified three distinct monocyte behaviors. Group 1 was characterized by relatively low fasting monocyte counts that markedly increased after consuming the test meal. Group 2 was characterized by relatively high fasting monocyte counts which decreased after meal consumption. Group 3, like Group 1, was characterized by lower fasting monocyte counts but increased to a lesser extent after consuming the meal. While monocyte fluctuations observed in Groups 1 and 3 align with the current paradigm of monocyte dynamics in response to fasting and refeeding, the atypical dynamic observed in Group 2 does not. While generally younger in age, Group 2 subjects had lower whole-body carbohydrate oxidation rates, lower HDL-cholesterol levels, delayed postprandial declines in salivary cortisol, and reduced postprandial peripheral microvascular endothelial function. These unique characteristics were not explained by group differences in age, sex, or BMI. Taken together these results highlight distinct patterns of monocyte responsiveness to natural fluctuations in dietary fuel availability.

9.
Front Neuroendocrinol ; 68: 101050, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36410619

RESUMEN

Humans experience multiple biological and emotional changes under acute stress. Adopting a multi-systemic approach, we summarized 61 studies on healthy people's endocrinological, physiological, immunological and emotional responses to the Trier Social Stress Test. We found salivary cortisol and negative mood states were the most sensitive markers to acute stress and recovery. Biomarkers such as heart rate and salivary alpha-amylase also showed sensitivity to acute stress, but the numbers of studies were small. Other endocrinological (e.g., dehydroepiandrosterone), inflammatory (C-Reactive Protein, Interleukin-6) and physiological (e.g., skin conductance level) measures received modest support as acute stress markers. Salivary cortisol showed some associations with mood measures (e.g., state anxiety) during acute stress and recovery, and heart rate showed preliminary positive relationship with calmness ratings during response to TSST, but the overall evidence was mixed. While further research is needed, these findings provide updated and comprehensive knowledge on the integrated psychobiological response profiles to TSST.


Asunto(s)
Hidrocortisona , Estrés Psicológico , Humanos , Hidrocortisona/metabolismo , Estrés Psicológico/metabolismo , Emociones , Ansiedad/metabolismo , Pruebas Psicológicas
10.
Front Neuroendocrinol ; 70: 101081, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37423505

RESUMEN

The rapid and continual development of a number of radiopharmaceuticals targeting different receptor, enzyme and small molecule systems has fostered Positron Emission Tomography (PET) imaging of endocrine system actions in vivo in the human brain for several decades. PET radioligands have been developed to measure changes that are regulated by hormone action (e.g., glucose metabolism, cerebral blood flow, dopamine receptors) and actions within endocrine organs or glands such as steroids (e.g., glucocorticoids receptors), hormones (e.g., estrogen, insulin), and enzymes (e.g., aromatase). This systematic review is targeted to the neuroendocrinology community that may be interested in learning about positron emission tomography (PET) imaging for use in their research. Covering neuroendocrine PET research over the past half century, researchers and clinicians will be able to answer the question of where future research may benefit from the strengths of PET imaging.


Asunto(s)
Neuroendocrinología , Tomografía de Emisión de Positrones , Humanos , Tomografía de Emisión de Positrones/métodos , Radiofármacos/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo
11.
Am J Epidemiol ; 193(3): 454-468, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-37846096

RESUMEN

Results of toxicological studies indicate that phthalates and per-/polyfluoroalkyl substances (PFAS), 2 classes of endocrine-disrupting chemicals, may alter the functioning of the hypothalamic-pituitary-adrenocortical (HPA) axis. We evaluated the associations of urinary phthalate metabolites and serum PFAS during gestation and childhood with adolescent hair cortisol concentrations (pg/mg hair) at age 12 years, an integrative marker of HPA axis activity (n = 205 mother-child pairs; Cincinnati, Ohio; enrolled 2003-2006). We used quantile-based g-computation to estimate associations between mixtures of urinary phthalate metabolites or serum PFAS and hair cortisol. We also examined whether associations of individual phthalate metabolites or PFAS with cortisol varied by the timing of exposure. We found that a 1-quartile increase in all childhood phthalate metabolites was associated with 35% higher adolescent hair cortisol (phthalate mixture ψ = 0.13; 95% confidence interval: 0.03, 0.22); these associations were driven by monoethyl phthalate, monoisobutyl phthalate, and monobenzyl phthalate. We did not find evidence that phthalate metabolites during gestation or serum PFAS mixtures were related to adolescent hair cortisol concentrations. We found suggestive evidence that higher childhood concentrations of individual PFAS were related to higher and lower adolescent hair cortisol concentrations. Our results suggest that phthalate exposure during childhood may contribute to higher levels of chronic HPA axis activity.


Asunto(s)
Contaminantes Ambientales , Fluorocarburos , Ácidos Ftálicos , Humanos , Adolescente , Niño , Contaminantes Ambientales/orina , Hidrocortisona , Sistema Hipotálamo-Hipofisario/química , Sistema Hipófiso-Suprarrenal/química , Fluorocarburos/toxicidad , Exposición a Riesgos Ambientales/efectos adversos
12.
Eur J Neurosci ; 59(11): 3134-3146, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38602078

RESUMEN

Early life stress (ELS) exposure alters stress susceptibility in later life and affects vulnerability to stress-related disorders, but how ELS changes the long-lasting responsiveness of the stress system is not well understood. Zebrafish provides an opportunity to study conserved mechanisms underlying the development and function of the stress response that is regulated largely by the neuroendocrine hypothalamus-pituitary-adrenal/interrenal (HPA/I) axis, with glucocorticoids (GC) as the final effector. In this study, we established a method to chronically elevate endogenous GC levels during early life in larval zebrafish. To this end, we employed an optogenetic actuator, beggiatoa photoactivated adenylyl cyclase, specifically expressed in the interrenal cells of zebrafish and demonstrate that its chronic activation leads to hypercortisolaemia and dampens the acute-stress evoked cortisol levels, across a variety of stressor modalities during early life. This blunting of stress-response was conserved in ontogeny at a later developmental stage. Furthermore, we observe a strong reduction of proopiomelanocortin (pomc)-expression in the pituitary as well as upregulation of fkbp5 gene expression. Going forward, we propose that this model can be leveraged to tease apart the mechanisms underlying developmental programming of the HPA/I axis by early-life GC exposure and its implications for vulnerability and resilience to stress in adulthood.


Asunto(s)
Glucocorticoides , Sistema Hipotálamo-Hipofisario , Larva , Optogenética , Pez Cebra , Animales , Optogenética/métodos , Glucocorticoides/metabolismo , Glucocorticoides/farmacología , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Sistema Hipófiso-Suprarrenal/metabolismo , Sistema Hipófiso-Suprarrenal/efectos de los fármacos , Hidrocortisona/metabolismo , Estrés Psicológico/metabolismo , Adenilil Ciclasas/metabolismo , Adenilil Ciclasas/genética , Glándula Interrenal/metabolismo , Glándula Interrenal/efectos de los fármacos , Proopiomelanocortina/metabolismo , Proopiomelanocortina/genética
13.
Dev Neurosci ; : 1-17, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38663367

RESUMEN

INTRODUCTION: Previous functional near-infrared spectroscopy (fNIRS) studies using Go/No-Go (GNG) tasks have focused on brain activation in relation to cognitive processes, particularly inhibitory control (IC). The results of these studies commonly describe right hemispheric engagement of the dorsolateral, ventromedial, or inferior frontal regions of the prefrontal cortex. Considering that typical healthy cognitive development is negatively correlated with higher cortisol levels (which may alter brain development), the overarching aim of the current study was to investigate how elevated stress (due to unforeseeable events such as the pandemic) impacts early cognitive development. METHOD: In this study, we examined fNIRS data collected from a sample of children (aged 2-4 years) during a GNG task relative to the response to stressors measured via hair cortisol concentrations. We acquired data in an ecological setting (Early Childhood Education and Care) during the coronavirus pandemic. RESULTS: We found that children with higher stress levels and a less efficient IC recruited more neural terrain and our group-level analysis indicated activation in the left orbitofrontal area during IC performance. CONCLUSIONS: A contextual stressor may disrupt accuracy in the executive function of IC early in development. More research efforts are needed to understand better how an orbitofrontal network subserves goal-directed behavior.

14.
J Neurosci Res ; 102(4): e25323, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38553948

RESUMEN

Previously, we reported that prenatal exposure to high corticosterone induced attention-deficit hyperactivity disorder (ADHD)-like behaviors with cognitive deficits after weaning. In the present study, cellular mechanisms underlying cortisol-induced cognitive dysfunction were investigated using rat pups (Corti.Pups) born from rat mothers that were repetitively injected with corticosterone during pregnancy. In results, Corti.Pups exhibited the failure of behavioral memory formation in the Morris water maze (MWM) test and the incomplete long-term potentiation (LTP) of hippocampal CA1 neurons. Additionally, glutamatergic excitatory postsynaptic currents (EPSCs) were remarkably suppressed in Corti.Pups compared to normal rat pups. Incomplete LTP and weaker EPSCs in Corti.Pups were attributed to the delayed postsynaptic development of CA1 neurons, showing a higher expression of NR2B subunits and lower expression of PSD-95 and BDNF. These results indicated that the prenatal treatment with corticosterone to elevate cortisol level might potently downregulate the BDNF-mediated signaling critical for the synaptic development of hippocampal CA1 neurons during brain development, and subsequently, induce learning and memory impairment. Our findings suggest a possibility that the prenatal dysregulation of cortisol triggers the epigenetic pathogenesis of neurodevelopmental psychiatric disorders, such as ADHD and autism.


Asunto(s)
Corticosterona , Hidrocortisona , Humanos , Embarazo , Femenino , Ratas , Animales , Corticosterona/farmacología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Aprendizaje por Laberinto/fisiología , Hipocampo/metabolismo , Potenciación a Largo Plazo , Neuronas/metabolismo , Trastornos de la Memoria/metabolismo
15.
Genes Cells ; 28(1): 53-67, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36415926

RESUMEN

Steroid hormones induce the transcription of target genes by activating nuclear receptors. Early transcriptional response to various stimuli, including hormones, involves the active catalysis of topoisomerase II (TOP2) at transcription regulatory sequences. TOP2 untangles DNAs by transiently generating double-strand breaks (DSBs), where TOP2 covalently binds to DSB ends. When TOP2 fails to rejoin, called "abortive" catalysis, the resulting DSBs are repaired by tyrosyl-DNA phosphodiesterase 2 (TDP2) and non-homologous end-joining (NHEJ). A steroid, cortisol, is the most important glucocorticoid, and dexamethasone (Dex), a synthetic glucocorticoid, is widely used for suppressing inflammation in clinics. We here revealed that clinically relevant concentrations of Dex and physiological concentrations of cortisol efficiently induce DSBs in G1 phase cells deficient in TDP2 and NHEJ. The DSB induction depends on glucocorticoid receptor (GR) and TOP2. Considering the specific role of TDP2 in removing TOP2 adducts from DSB ends, induced DSBs most likely represent stalled TOP2-DSB complexes. Inhibition of RNA polymerase II suppressed the DSBs formation only modestly in the G1 phase. We propose that cortisol and Dex frequently generate DSBs through the abortive catalysis of TOP2 at transcriptional regulatory sequences, including promoters or enhancers, where active TOP2 catalysis occurs during early transcriptional response.


Asunto(s)
Roturas del ADN de Doble Cadena , Factores de Transcripción , Factores de Transcripción/metabolismo , Proteínas de Unión al ADN/metabolismo , Glucocorticoides/farmacología , Reparación del ADN , Proteínas Nucleares/metabolismo , Hidrocortisona/farmacología , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , ADN-Topoisomerasas de Tipo II/genética , ADN-Topoisomerasas de Tipo II/metabolismo , ADN/genética
16.
Am J Physiol Regul Integr Comp Physiol ; 326(6): R499-R506, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38574344

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been especially devastating to patients with comorbidities, including metabolic and cardiovascular diseases. Elevated blood glucose during SARS-CoV-2 infection increased mortality of patients with COVID-19, although the mechanisms are not well understood. It has been previously demonstrated that glucose transport and utilization is a crucial pathway for other highly infectious RNA viruses. Thus, we hypothesized that SARS-CoV-2 infection could lead to alterations in cellular and whole body glucose metabolism. Specific pathogen-free domestic cats were intratracheally inoculated with USA-WA1/2020 (wild-type) SARS-CoV-2 or vehicle-inoculated, then euthanized at 4- and 8-days postinoculation (dpi). Blood glucose and cortisol concentrations were elevated at 4 and 8 dpi. Blood ketones, insulin, and angiotensin II concentrations remained unchanged throughout the experimental timeline. SARS-CoV-2 RNA was detected in the lung and heart, without changes in angiotensin-converting enzyme 2 (ACE2) RNA expression. In the lung, SARS-CoV-2 infection increased glucose transporter 1 (GLUT1) protein levels at 4 and 8 dpi, whereas GLUT4 level was only upregulated at 8 dpi. In the heart, GLUT-1 and -4 protein levels remained unchanged. Furthermore, GLUT1 level was upregulated in the skeletal muscle at 8 dpi, and AMPK was activated in the hearts of infected cats. SARS-CoV-2 infection increased blood glucose concentration and pulmonary GLUT protein levels. These findings suggest that SARS-CoV-2 infection induces metabolic reprogramming primarily in the lung to support viral replication. Furthermore, this translational feline model mimicked human COVID-19 and could be used to explore novel therapeutic targets to treat metabolic disease during SARS-CoV-2 infection.NEW & NOTEWORTHY Our study on a feline model of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, mirroring human COVID-19, revealed alterations in whole body and cellular glucose metabolism. Infected cats developed mild hyperglycemia, increased protein levels of glucose transporters in the lung, and AMPK activation in the heart. These findings suggest that SARS-CoV-2 infection induces metabolic reprogramming in the cardiorespiratory system to support viral replication. Understanding these mechanisms could lead to novel antiviral therapeutic strategies.


Asunto(s)
COVID-19 , Modelos Animales de Enfermedad , SARS-CoV-2 , Animales , Gatos , COVID-19/metabolismo , COVID-19/virología , Glucemia/metabolismo , Glucosa/metabolismo , Pulmón/metabolismo , Pulmón/virología , Masculino
17.
Clin Endocrinol (Oxf) ; 100(5): 421-430, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38368601

RESUMEN

BACKGROUND: There are no reliable methods in clinical practice to diagnose adrenal insufficiency (AI) in patients with cirrhosis owing to variable cortisol-binding protein levels. This leads to unreliable results in ACTH stimulated serum cortisol test. We aimed to estimate the long-acting porcine (LA)ACTH-stimulated serum and salivary cortisol levels of patients at different stages of cirrhosis using second generation electrochemiluminescence and to determine the prevalence of true adrenal insufficiency in these patients. DESIGN, PATIENTS AND MEASUREMENTS: We included 135 noncritical patients with cirrhosis (45 each from CHILD A, B and C) and 45 healthy controls. Serum and salivary samples were collected at baseline in the morning and at 1 and 2 h after LA-ACTH injection. RESULTS: In healthy subjects, the 2.5th centile of 2 h ACTH stimulated serum and salivary cortisol were 19.8 and 0.97 µg/dL, which were used as cut-offs for defining AI based on serum and saliva respectively. The median (interquartile-range) 2-h stimulated salivary cortisol in Child A, B, C categories and controls were 1.36(1.23-2.38), 1.46(1.18-2.22), 1.72(1.2-2.2) and 2.12(1.42-2.72) µg/dL respectively. Six subjects (4.4%) were diagnosed to have AI based on stimulated salivary cortisol cut-off, whereas 39 (28.9%) cirrhosis subjects had inadequately stimulated serum cortisol. Three patients (symptomatic) required steroid replacement therapy. Hypoalbuminemia was identified as a major risk factor for the misdiagnosis of adrenal insufficiency by serum cortisol-based testing. CONCLUSIONS: Long-acting porcine ACTH stimulated salivary cortisol reduces the overdiagnosis of adrenal insufficiency compared to serum cortisol in cirrhosis liver. Stimulated salivary cortisol is a promising investigation for evaluation of adrenal function in cirrhosis and more studies are required for its further validation before clinical use.


Asunto(s)
Insuficiencia Suprarrenal , Hidrocortisona , Humanos , Porcinos , Animales , Sobrediagnóstico , Hormona Adrenocorticotrópica , Cirrosis Hepática , Saliva/metabolismo
18.
Clin Endocrinol (Oxf) ; 100(3): 212-220, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38164017

RESUMEN

OBJECTIVE: To investigate the effects of simultaneous cortisol cosecretion (CCS) on body composition in computed tomography (CT)-imaging and metabolic parameters in patients with primary aldosteronism (PA) with the objective of facilitating early detection. DESIGN: Retrospective cohort study. PATIENTS: Forty-seven patients with PA and CCS confirmed by 1-mg dexamethasone suppression test (DST) with a cutoff of ≥1.8 µg/dL were compared with PA patients with excluded CCS (non-CCS, n = 47) matched by age and sex. METHODS: Segmentation of the fat compartments and muscle area at the third lumbar region was performed on non-contrast-enhanced CT images with dedicated segmentation software. Additionally, liver, spleen, pancreas and muscle attenuation were compared between the two groups. RESULTS: Mean cortisol after DST was 1.2 µg/dL (33.1 nmol/L) in the non-CCS group and 3.2 µg/dL (88.3 nmol/L) in the CCS group with mild autonomous cortisol excess (MACE). No difference in total, visceral and subcutaneous fat volumes was observed between the CCS and non-CCS group (p = .7, .6 and .8, respectively). However, a multivariable regression analysis revealed a significant correlation between total serum cholesterol and results of serum cortisol after 1-mg DST (p = .026). Classification of the patients based on visible lesion on CT and PA-lateralization via adrenal venous sampling also did not show any significant differences in body composition. CONCLUSION: MACE in PA patients does not translate into body composition changes on CT-imaging. Therefore, early detection of concurrent CCS in PA is currently only attainable through biochemical tests. Further investigation of the long-term clinical adverse effects of MACE in PA is necessary.


Asunto(s)
Hidrocortisona , Hiperaldosteronismo , Humanos , Estudios Retrospectivos , Composición Corporal , Tomografía Computarizada por Rayos X/métodos
19.
Clin Endocrinol (Oxf) ; 100(3): 203-211, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37997487

RESUMEN

OBJECTIVE: Overnight metyrapone test (OMT) is a dynamic test used to diagnose secondary adrenal insufficiency (SAI). Data on OMT use and its safety are scarce. We aimed to describe the indications and safety of outpatient OMT and compare OMT to the cosyntropin stimulation test (CST). DESIGN: Single-centre retrospective study of adult patients undergoing OMT between 1 April 2018 and 27 January 2023. MEASUREMENTS: OMT-related adverse events, post-OMT diagnosis of SAI, and OMT comparison to CST. RESULTS: OMT was performed in 114 patients (81, 71% women) at a median age of 48 (interquartile range 37-58). The pretest probability for SAI was low in 52 (46%) patients, moderate in 48 (42%) patients and high in 14 (12%) patients. Adverse events were reported in 7 (6.1%) patients and were mild except for one hospitalization. No baseline or OMT-related factors were associated with the development of adverse events. Prevalence of the OMT-based SAI diagnosis was 26 (23%) and 47 (46%) using 11-deoxycortisol cutoff <7 and <10 mcg/dL, respectively. Higher pretest probability was associated with the OMT-based diagnosis of SAI. Post-OMT 11-deoxycortisol cutoff of 10 mcg/dL was used most to diagnose SAI. Compared to the OMT-based diagnosis of SAI (11-deoxycortisol cutoff of 10 mcg/dL), the specificity of CST was 100%, but the sensitivity was only 52%. CONCLUSIONS: OMT was well tolerated and used in patients with low and moderate pretest probability for SAI. CST can erroneously exclude patients with SAI. Thus, OMT should be considered in selected patients with normal CST.


Asunto(s)
Insuficiencia Suprarrenal , Metirapona , Adulto , Humanos , Femenino , Masculino , Estudios Retrospectivos , Cortodoxona , Insuficiencia Suprarrenal/diagnóstico , Cosintropina , Hidrocortisona
20.
Clin Endocrinol (Oxf) ; 100(4): 317-327, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38229583

RESUMEN

OBJECTIVE: Endocrine systems are disrupted in acute illness, and symptoms reported following coronavirus disease 2019 (COVID-19) are similar to those found with clinical hormone deficiencies. We hypothesised that people with severe acute COVID-19 and with post-COVID symptoms have glucocorticoid and sex hormone deficiencies. DESIGN/PATIENTS: Samples were obtained for analysis from two UK multicentre cohorts during hospitalisation with COVID-19 (International Severe Acute Respiratory Infection Consortium/World Health Organisation [WHO] Clinical Characterization Protocol for Severe Emerging Infections in the UK study), and at follow-up 5 months after hospitalisation (Post-hospitalisation COVID-19 study). MEASUREMENTS: Plasma steroids were quantified by liquid chromatography-mass spectrometry. Steroid concentrations were compared against disease severity (WHO ordinal scale) and validated symptom scores. Data are presented as geometric mean (SD). RESULTS: In the acute cohort (n = 239, 66.5% male), plasma cortisol concentration increased with disease severity (cortisol 753.3 [1.6] vs. 429.2 [1.7] nmol/L in fatal vs. least severe, p < .001). In males, testosterone concentrations decreased with severity (testosterone 1.2 [2.2] vs. 6.9 [1.9] nmol/L in fatal vs. least severe, p < .001). In the follow-up cohort (n = 198, 62.1% male, 68.9% ongoing symptoms, 165 [121-192] days postdischarge), plasma cortisol concentrations (275.6 [1.5] nmol/L) did not differ with in-hospital severity, perception of recovery, or patient-reported symptoms. Male testosterone concentrations (12.6 [1.5] nmol/L) were not related to in-hospital severity, perception of recovery or symptom scores. CONCLUSIONS: Circulating glucocorticoids in patients hospitalised with COVID-19 reflect acute illness, with a marked rise in cortisol and fall in male testosterone. These findings are not observed 5 months from discharge. The lack of association between hormone concentrations and common post-COVID symptoms suggests steroid insufficiency does not play a causal role in this condition.


Asunto(s)
COVID-19 , Humanos , Masculino , Femenino , Hidrocortisona , Enfermedad Aguda , Cuidados Posteriores , Alta del Paciente , Glucocorticoides/uso terapéutico , Esteroides/uso terapéutico , Gravedad del Paciente , Testosterona
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA