Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 980
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell Mol Life Sci ; 81(1): 28, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38212428

RESUMEN

Although amplifications and mutations in receptor tyrosine kinases (RTKs) act as bona fide oncogenes, in most cancers, RTKs maintain moderate expression and remain wild-type. Consequently, cognate ligands control many facets of tumorigenesis, including resistance to anti-RTK therapies. Herein, we show that the ligands for the RTKs MET and RON, HGF and HGFL, respectively, are synthesized as inactive precursors that are activated by cellular proteases. Our newly generated HGF/HGFL protease inhibitors could overcome both de novo and acquired cetuximab resistance in colorectal cancer (CRC). Conversely, HGF overexpression was necessary and sufficient to induce cetuximab resistance and loss of polarity. Moreover, HGF-induced cetuximab resistance could be overcome by the downstream MET inhibitor, crizotinib, and upstream protease inhibitors. Additionally, HAI-1, an endogenous inhibitor of HGF proteases, (i) was downregulated in CRC, (ii) exhibited increased genomic methylation that correlated with poor prognosis, (iii) HAI-1 expression correlated with cetuximab response in a panel of cancer cell lines, and (iv) exogenous addition of recombinant HAI-1 overcame cetuximab resistance in CC-HGF cells. Thus, we describe a targetable, autocrine HAI-1/Protease/HGF/MET axis in cetuximab resistance in CRC.


Asunto(s)
Neoplasias Colorrectales , Transducción de Señal , Humanos , Cetuximab/farmacología , Proteínas Proto-Oncogénicas c-met/genética , Proteínas Proto-Oncogénicas c-met/metabolismo , Resistencia a Antineoplásicos/genética , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Inhibidores de Proteasas/farmacología , Péptido Hidrolasas/metabolismo , Línea Celular Tumoral , Factor de Crecimiento de Hepatocito/genética , Factor de Crecimiento de Hepatocito/metabolismo , Factor de Crecimiento de Hepatocito/farmacología
2.
Oncologist ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954846

RESUMEN

With the widespread use of next-generation sequencing (NGS) for solid tumors, mesenchymal-to-epithelial transition factor (MET) rearrangement/fusion has been confirmed in multiple cancer types. MET amplification and MET exon 14 skipping mutations induce protein autophosphorylation; however, the pathogenic mechanism and drug sensitivity of MET fusion remain unclear. The following report describes the clinical case of a patient diagnosed with squamous lung cancer bearing a TFG-MET gene fusion. In vitro assays demonstrated MET phosphorylation and oncogenic capacity due to the TFG-MET rearrangement, both of which were inhibited by crizotinib treatment. The patient was treated with crizotinib, which resulted in sustained partial remission for more than 17 months. Collectively, cellular analyses and our case report emphasize the potential of MET fusion as a predictive biomarker for personalized target therapy for solid tumors.

3.
Toxicol Appl Pharmacol ; 489: 117016, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38925514

RESUMEN

To elucidate the impact of CYP3A4 activity inhibition and genetic polymorphism on the metabolism of crizotinib. Enzymatic incubation systems for crizotinib were established, and Sprague-Dawley rats were utilized for in vivo experiments. Analytes were quantified using LC-MS/MS. Upon screening 122 drugs and natural compounds, proanthocyanidins emerged as inhibitor of crizotinib metabolism, exhibiting a relative inhibition rate of 93.7%. The IC50 values were 24.53 ± 0.32 µM in rat liver microsomes and 18.24 ± 0.12 µM in human liver microsomes. In vivo studies revealed that proanthocyanidins markedly affected the pharmacokinetic parameters of crizotinib. Co-administration led to a significant reduction in the AUC(0-t), Cmax of PF-06260182 (the primary metabolite of crizotinib), and the urinary metabolic ratio. This interaction is attributed to the mixed-type inhibition of liver microsome activity by proanthocyanidins. CYP3A4, being the principal metabolic enzyme for crizotinib, has its genetic polymorphisms significantly influencing crizotinib's pharmacokinetics. Kinetic data showed that the relative metabolic rates of crizotinib across 26 CYP3A4 variants ranged from 13.14% (CYP3A4.12, 13) to 188.57% (CYP3A4.33) when compared to the wild-type CYP3A4.1. Additionally, the inhibitory effects of proanthocyanidins varied between CYP3A4.12 and CYP3A4.33, when compared to the wild type. Our findings indicate that proanthocyanidins coadministration and CYP3A4 genetic polymorphism can significantly influence crizotinib metabolism.


Asunto(s)
Crizotinib , Citocromo P-450 CYP3A , Interacciones Farmacológicas , Microsomas Hepáticos , Polimorfismo Genético , Ratas Sprague-Dawley , Crizotinib/farmacocinética , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Animales , Humanos , Masculino , Microsomas Hepáticos/metabolismo , Microsomas Hepáticos/enzimología , Microsomas Hepáticos/efectos de los fármacos , Ratas , Piridinas/farmacocinética , Pirazoles/farmacocinética , Pirazoles/farmacología
4.
Chemistry ; 30(49): e202401781, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-38923708

RESUMEN

Small molecular kinase inhibitors play a key role in modern cancer therapy. Protein kinases are essential mediators in the growth and progression of cancerous tumors, rendering involved kinases an increasingly important target for therapy. However, kinase inhibitors are almost insoluble in water because of their hydrophobic aromatic nature, often lowering their availability and pharmacological efficacy. Direct drug functionalization with polar groups represents a simple strategy to improve the drug solubility, availability, and performance. Here, we present a strategy to functionalize secondary amines with oligoethylene glycol (OEG) phosphate using a one-pot synthesis in three exemplary kinase inhibiting drugs Ceritinib, Crizotinib, and Palbociclib. These OEG-prodrug conjugates demonstrate superior solubility in water compared to the native drugs, with the solubility increasing up to 190-fold. The kinase inhibition potential is only slightly decreased for the conjugates compared to the native drugs. We further show pH dependent hydrolysis of the OEG-prodrugs which releases the native drug. We observe a slow release at pH 3, while the conjugates remain stable over 96 h under physiological conditions (pH 7.4). Using confocal microscopy, we verify improved cell uptake of the drug-OEG conjugates into the cytoplasm of HeLa cells, further supporting our universal solubility approach.


Asunto(s)
Aminas , Ácidos Fosfóricos , Profármacos , Inhibidores de Proteínas Quinasas , Solubilidad , Agua , Profármacos/química , Profármacos/farmacología , Humanos , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Agua/química , Aminas/química , Ácidos Fosfóricos/química , Células HeLa , Amidas/química , Amidas/farmacología , Polietilenglicoles/química , Concentración de Iones de Hidrógeno , Hidrólisis
5.
Cell Biol Int ; 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39318039

RESUMEN

Crizotinib, as the first-generation of anaplastic lymphoma kinase (ALK) inhibitor, effectively improves the survival time of ALK-positive non-small cell lung cancer (NSCLC) patients. However, its efficacy is severely limited by drug resistance caused by secondary mutations. G1202R and L1196M are classical mutation sites located in ALK kinase domain. They may hinder the binding of ALK inhibitors to the target kinase domain, resulting in drug resistance in patients. However, the exact mechanism of drug resistance mediated by these mutations remains unclear. In this study, we aimed to evaluate how G1202R and L1196M mutations mediate crizotinib resistance. To explore the resistance mechanism, we constructed EML4-ALK G1202R and L1196M mutant cell lines with A549 cells. The results showed that the mutant cells exhibited significant epithelial-mesenchymal transition (EMT) and metastasis compared to control (A549-vector) or wild type (A549-EML4-ALK) cells. Subsequently, it was found that the occurrence of EMT was correlated to the high expression of murine double minute 2 (MDM2) protein and the activation of mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway in mutant cells. Down-regulation of MDM2 inhibited the activation of MEK/ERK pathway, thus reversed the EMT process and markedly increased the inhibitory effect of crizotinib on the growth of mutant cells. Collectively, resistance of ALK-positive NSCLC cells to crizotinib is induced by G1202R and L1196M mutations through activation of the MDM2/MEK/ERK signalling axis, promoting EMT process and metastasis. These findings suggest that the combination of MDM2 inhibitors and crizotinib could be a potential therapeutic strategy.

6.
Pediatr Blood Cancer ; 71(9): e31139, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38867367

RESUMEN

BACKGROUND: Alterations in the ALK (anaplastic lymphoma kinase) gene play a critical role in pathogenesis of anaplastic large cell lymphoma (ALCL). Crizotinib is a small molecule competitive inhibitor of ALK, ROS1, and MET kinases and was approved for pediatric patients with ALK-positive relapsed or refractory, systemic ALCL, and ALK-positive unresectable, recurrent, or refractory inflammatory myofibroblastic tumors (IMT). PROCEDURE: Crizotinib data from pediatric patients with relapsed or refractory solid tumors, IMT, or ALCL were included in the analyses. All patients received crizotinib orally at doses ranging from 100 to 365 mg/m2 twice daily (BID). PopPK analyses were conducted to characterize crizotinib disposition in pediatric patients. Exposure-response (ER) safety and antitumor analyses were conducted to characterize relationships between crizotinib dose or exposure with safety and antitumor activity endpoints of interest. RESULTS: The population pharmacokinetic (popPK), ER safety, and ER antitumor analysis included 98, 110, and 36 pediatric patients, respectively. A one-compartment pharmacokinetic model with allometric scaling, first-order elimination, and first-order absorption with lag time adequately described the data. Natural log-transformed model-predicted crizotinib AUCss (steady-state area under the concentration-time curve) demonstrated a significant, positive relationship with Grade ≥3 NEUTROPENIA and Any Grade VISION DISORDER. Crizotinib dose demonstrated a positive relationship with objective response rate. CONCLUSIONS: No significant differences in PK were identified across a wide range of ages or across tumor types, suggesting body surface area (BSA)-based dosing adequately adjusted for differences in patient size to achieve similar systemic crizotinib exposures across young children and adolescent pediatric patients. None of the myelosuppressive events except Grade ≥3 NEUTROPENIA had significant relationships identified with crizotinib dose or exposure, suggesting crizotinib is a tolerable treatment with less hematological toxicity than traditional chemotherapy regimens for pediatric patients with ALK-mutated cancers. Results from the presented analyses support the pediatric dosing recommendations in the product label.


Asunto(s)
Quinasa de Linfoma Anaplásico , Crizotinib , Inhibidores de Proteínas Quinasas , Humanos , Crizotinib/uso terapéutico , Crizotinib/farmacocinética , Niño , Quinasa de Linfoma Anaplásico/antagonistas & inhibidores , Quinasa de Linfoma Anaplásico/genética , Femenino , Masculino , Adolescente , Preescolar , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacocinética , Inhibidores de Proteínas Quinasas/efectos adversos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Linfoma Anaplásico de Células Grandes/tratamiento farmacológico , Linfoma Anaplásico de Células Grandes/patología , Adulto Joven , Lactante
7.
Acta Pharmacol Sin ; 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39198663

RESUMEN

The transcription factor STAT3 is a promising target for the treatment of non-small cell lung cancer (NSCLC). STAT3 activity is mainly dependent on phosphorylation at tyrosine 705 (pSTAT3-Y705), but the modulation on pSTAT3-Y705 is elusive. By screening a library of deubiquitinases (Dubs), we found that the Otub1 increases STAT3 transcriptional activity. As a Dub, Otub1 binds to pSTAT3-Y705 and specifically abolishes its K48-linked ubiquitination, therefore preventing its degradation and promoting NSCLC cell survival. The Otub1/pSTAT3-Y705 axis could be a potential target for the treatment of NSCLC. To explore this concept, we screen libraries of FDA-approved drugs and natural products based on STAT3-recognition element-driven luciferase assay, from which crizotinib is found to block pSTAT3-Y705 deubiquitination and promotes its degradation. Different from its known action to induce ALK positive NSCLC cell apoptosis, crizotinib suppresses ALK-intact NSCLC cell proliferation and colony formation but not apoptosis. Furthermore, crizotinib also suppresses NSCLC xenograft growth in mice. Taken together, these findings identify Otub1 as the first deubiquitinase of pSTAT3-Y705 and provide that the Otub1/pSTAT3-Y705 axis is a promising target for the treatment of NSCLC.

8.
Int J Clin Oncol ; 29(8): 1142-1151, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38758397

RESUMEN

BACKGROUND: MET exon 14 skipping mutations occur in 3-4% and MET high amplifications occur in < 1% of patients with non-small-cell lung cancer (NSCLC). Crizotinib, a selective ATP-competitive small-molecule inhibitor of c-Met, ALK, and ROS1 tyrosine kinases, has shown activity in cancer models with various types of MET activation. METHODS: The Co-MET study is a single-arm phase 2 trial to assess the safety and efficacy of crizotinib in MET inhibitor-naïve patients with advanced NSCLC harboring MET exon 14 skipping mutation (cohort 1) or high MET gene copy number of ≥ 7 (cohort 2). The primary endpoint was the objective response rate (ORR) per RECIST v1.1 by independent radiology review in cohort 1. The key secondary endpoints were the duration of response (DoR), progression-free survival (PFS), overall survival (OS), and safety. RESULTS: A total of 28 patients (23 in cohort 1 and 5 in cohort 2) were enrolled between March 2018 and February 2020. The primary endpoint was met as the ORR (90% confidence interval: CI) in cohort 1 was 38.1% (20.6-58.3). Median DoR, PFS, and OS (95% CI) were 7.6 (1.9-NE), 5.7 (2.1-11.3), 9.1 (4.0-19.9) months, respectively, in cohort 1. ORR in cohort 2 was 40.0% (18.9-92.4). The safety signals were generally consistent with the known safety profile of crizotinib. CONCLUSIONS: Crizotinib showed a clinical activity similar to that of tepotinib and capmatinib in patients with NSCLC harboring MET exon 14 skipping mutations. CLINICAL TRIAL INFORMATION: UMIN000031623.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Crizotinib , Neoplasias Pulmonares , Mutación , Proteínas Proto-Oncogénicas c-met , Humanos , Crizotinib/uso terapéutico , Proteínas Proto-Oncogénicas c-met/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Femenino , Persona de Mediana Edad , Masculino , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Anciano , Adulto , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/efectos adversos , Japón , Supervivencia sin Progresión , Exones , Pueblos del Este de Asia
9.
Int J Mol Sci ; 25(12)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38928438

RESUMEN

Anaplastic thyroid cancer (ATC) is one of the deadliest human cancers and represents <2% of thyroid carcinomas. A therapeutic target for ATC is represented by anaplastic lymphoma kinase (ALK) rearrangements, involved in tumor growth. Crizotinib is an oral small-molecule tyrosine kinase inhibitor of the ALK, MET, and ROS1 kinases, approved in ALK-positive non-small cell lung cancer. Until now, the effect of crizotinib in "primary human ATC cells" (pATCs) with transforming striatin (STRN)-ALK fusion has not been reported in the literature. In this study, we aimed to obtain pATCs with STRN-ALK in vitro and evaluate the in vitro antineoplastic action of crizotinib. Thyroid surgical samples were obtained from 12 ATC patients and 6 controls (who had undergone parathyroidectomy). A total of 10/12 pATC cultures were obtained, 2 of which with transforming STRN-ALK fusion (17%). Crizotinib inhibited proliferation, migration, and invasion and increased apoptosis in 3/10 pATC cultures (2 of which with/1 without STRN-ALK), particularly in those with STRN-ALK. Moreover, crizotinib significantly inhibited the proliferation of AF cells (a continuous cell line obtained from primary ATC cells). In conclusion, the antineoplastic activity of crizotinib has been shown in human pATCs (with STRN-ALK) in preclinical studies in vitro, opening the way to future clinical evaluation in these patients.


Asunto(s)
Quinasa de Linfoma Anaplásico , Apoptosis , Proliferación Celular , Crizotinib , Inhibidores de Proteínas Quinasas , Carcinoma Anaplásico de Tiroides , Neoplasias de la Tiroides , Humanos , Crizotinib/farmacología , Carcinoma Anaplásico de Tiroides/tratamiento farmacológico , Carcinoma Anaplásico de Tiroides/patología , Quinasa de Linfoma Anaplásico/antagonistas & inhibidores , Quinasa de Linfoma Anaplásico/genética , Quinasa de Linfoma Anaplásico/metabolismo , Proliferación Celular/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Apoptosis/efectos de los fármacos , Neoplasias de la Tiroides/tratamiento farmacológico , Neoplasias de la Tiroides/patología , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/metabolismo , Masculino , Femenino , Antineoplásicos/farmacología , Persona de Mediana Edad , Movimiento Celular/efectos de los fármacos , Anciano , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Células Tumorales Cultivadas , Línea Celular Tumoral , Proteínas de Unión a Calmodulina , Proteínas de la Membrana , Proteínas del Tejido Nervioso
10.
J Cell Mol Med ; 27(19): 2995-3008, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37679999

RESUMEN

Mucosal melanoma (MM) is a very rare and aggressive type of cancer for which immunotherapy or targeted therapy such as BRAF/MEK inhibitors, used in cutaneous melanoma, usually fail. Due to our earlier experience showing the high effectiveness of epidermal growth factor receptor (EGFR) and hepatocyte growth factor receptor (MET) inhibitors in reducing the activation of the MAPK and PI3K/AKT signalling pathways, we aim to test whether these drugs would also be effective for mucosal melanoma. Cells representing two commercially available mucosal melanoma cell lines (GAK and HMVII) and one cell line obtained from a patient's vaginal melanoma were treated with MET or EGFR inhibitors, or combinations of these agents. The dual-inhibitor treatment strategy resulted in a decrease of cell proliferation, migration and invasion. Moreover, combinations of inhibitors led to reduction of pEGFR/EGFR and pMET/MET ratio and downregulation of PI3K/AKT and MEK/ERK1/2-based signalling pathways. Our findings indicate a potential therapeutic strategy based on EGFR and MET inhibitors in mucosal melanoma, which should be further evaluated in vivo and in clinical experiments. They also suggest that targeting multiple receptor tyrosine kinases may block signalling crosstalk and possibly delay the appearance of resistance to kinase inhibitors in mucosal melanoma cells.

11.
Br J Haematol ; 202(5): 985-994, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37357529

RESUMEN

Anaplastic large-cell lymphoma (ALCL) is a T-cell malignancy predominantly driven by the oncogenic anaplastic lymphoma kinase (ALK), accounting for approximately 15% of all paediatric non-Hodgkin lymphoma. Patients with central nervous system (CNS) relapse are particularly difficult to treat with a 3-year overall survival of 49% and a median survival of 23.5 months. The second-generation ALK inhibitor brigatinib shows superior penetration of the blood-brain barrier unlike the first-generation drug crizotinib and has shown promising results in ALK+ non-small-cell lung cancer. However, the benefits of brigatinib in treating aggressive paediatric ALK+ ALCL are largely unknown. We established a patient-derived xenograft (PDX) resource from ALK+ ALCL patients at or before CNS relapse serving as models to facilitate the development of future therapies. We show in vivo that brigatinib is effective in inducing the remission of PDX models of crizotinib-resistant (ALK C1156Y, TP53 loss) ALCL and furthermore that it is superior to crizotinib as a second-line approach to the treatment of a standard chemotherapy relapsed/refractory ALCL PDX pointing to brigatinib as a future therapeutic option.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Linfoma Anaplásico de Células Grandes , Niño , Humanos , Quinasa de Linfoma Anaplásico , Crizotinib/farmacología , Crizotinib/uso terapéutico , Proteínas Tirosina Quinasas Receptoras/uso terapéutico , Linfoma Anaplásico de Células Grandes/tratamiento farmacológico , Linfoma Anaplásico de Células Grandes/patología , Xenoinjertos , Neoplasias Pulmonares/tratamiento farmacológico , Recurrencia Local de Neoplasia/tratamiento farmacológico , Compuestos Organofosforados/farmacología , Compuestos Organofosforados/uso terapéutico , Inhibidores de Proteínas Quinasas/uso terapéutico
12.
Invest New Drugs ; 41(2): 254-266, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37036582

RESUMEN

Despite remarkable initial responses of anaplastic lymphoma kinase (ALK) inhibitors in ALK-positive non-small cell lung cancer (NSCLC) patients, cancers eventually develop resistance within one to two years. This study aimed to compare the properties of iruplinalkib (WX­0593) with other ALK inhibitors and report the comprehensive characterization of iruplinalkib against the crizotinib resistance. The inhibitory effect of iruplinalkib on kinase activity was detected. A kinase screen was performed to evaluate the selectivity of iruplinalkib. The effect of iruplinalkib on related signal transduction pathways of ALK and c-ros oncogene 1 (ROS1) kinases was examined. The cellular and in vivo activities of ALK inhibitors were compared in engineered cancer-derived cell lines and in mice xenograft models, respectively. Human hepatocytes derived from three donors were used for evaluating hepatic enzyme inducing activity. HEK293 cell lines expressing transportors were used to invesigated the drug interaction potential mediated by several transporters. The results showed iruplinalkib potently inhibited the tyrosine autophosphorylation of wild-type ALK, ALKL1196M, ALKC1156Y and epidermal growth factor receptor (EGFR)L858R/T790M. The inhibitory effects of iruplinalkib in patient-derived xenograft and cell line-derived xenograft models were observed. Moreover, iruplinalkib showed robust antitumor effects in BALB/c nude mice xenograft models with ALK-/ROS1-positive tumors implanted subcutaneously, and the tumor suppressive effects in crizotinib-resistant model was significantly better than that of brigatinib. Iruplinalkib did not induce CYP1A2, CYP2B6 and CYP3A4 at therapeutic concentration, and was also a strong inhibitor of MATE1 and MATE2K transporters, as well as P-gp and BCRP. In conclusion, iruplinalkib, a highly active and selective ALK/ROS1 inhibitor, exhibited strong antitumor effects in vitro and in crizotinib-resistant models.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Animales , Ratones , Carcinoma de Pulmón de Células no Pequeñas/patología , Crizotinib/farmacología , Crizotinib/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Tirosina Quinasas , Receptores ErbB/genética , Neoplasias Pulmonares/patología , Ratones Desnudos , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Células HEK293 , Proteínas Tirosina Quinasas Receptoras , Quinasa de Linfoma Anaplásico/metabolismo , Resistencia a Antineoplásicos , Piridinas/uso terapéutico , Mutación , Línea Celular Tumoral , Proteínas Proto-Oncogénicas , Proteínas de Neoplasias/metabolismo , Oncogenes
13.
Hematol Oncol ; 41(5): 858-868, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37300279

RESUMEN

Constitutive activation of the PI3K/AKT/mTOR-pathway plays an important role in the pathogenesis of mantle cell lymphoma (MCL), leading to approval of the mTOR inhibitor temsirolimus for relapsed or refractory MCL. Yet, despite favorable initial response rates, early relapses under treatment have been observed. Therefore, understanding the underlying mechanisms of temsirolimus resistance and developing strategies to overcome it is highly warranted. Here, we established a new temsirolimus-resistant MCL cell line to evaluate the molecular background of resistance to this drug. Transcriptome profiling and gene set enrichment analysis comparing temsirolimus-sensitive and -resistant cell lines showed significant upregulation of PI3K/AKT/mTor-, RAS signaling- and the RTK-dependent PDGFR-, FGFR-, Met- and ALK-signaling-pathways in the resistant cells. Furthermore, MET, known as important proto-oncogene and mediator of drug resistance, was among the most upregulated genes in the resistant cells. Importantly, Met protein was overexpressed in both, MCL cells with acquired as well as intrinsic temsirolimus resistance, but could not be detected in any of the temsirolimus sensitive ones. Combined pharmacological inhibition of mTOR and Met signaling with temsirolimus and the RTK inhibitor crizotinib significantly restored sensitivity to temsirolimus. Furthermore, this combined treatment proved to be synergistic in all MCL cell lines investigated and was also active in primary MCL cells. In summary, we showed for the first time that overexpression of MET plays an important role for mediating temsirolimus resistance in MCL and combined treatment with temsirolimus and crizotinib is a very promising therapeutic approach for MCL and an effective strategy to overcome temsirolimus resistance.


Asunto(s)
Antineoplásicos , Linfoma de Células del Manto , Humanos , Adulto , Linfoma de Células del Manto/patología , Antineoplásicos/uso terapéutico , Crizotinib/farmacología , Crizotinib/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Recurrencia Local de Neoplasia/tratamiento farmacológico , Serina-Treonina Quinasas TOR , Línea Celular Tumoral , Resistencia a Antineoplásicos
14.
Mol Pharm ; 20(12): 6140-6150, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37939020

RESUMEN

Glioblastoma (GBM) is a highly aggressive form of brain cancer with a poor prognosis and limited treatment options. The ALK and c-MET inhibitor Crizotinib has demonstrated preclinical therapeutic potential for newly diagnosed GBM, although its efficacy is limited by poor penetration of the blood brain barrier. Here, we identify Crizotinib as a novel inhibitor of nuclear factor-κB (NF-κB)-inducing kinase, which is a key regulator of GBM growth and proliferation. We further show that the conjugation of Crizotinib to a heptamethine cyanine dye, or a near-infrared dye (IR-Crizotinib), attenuated glioma cell proliferation and survival in vitro to a greater extent than unconjugated Crizotinib. Moreover, we observed increased IR-Crizotinib localization to orthotopic mouse xenograft GBM tumors, which resulted in impaired tumor growth in vivo. Overall, IR-Crizotinib exhibited improved intracranial chemotherapeutic delivery and tumor localization with concurrent inhibition of NIK and noncanonical NF-κB signaling, thereby reducing glioma growth in vitro, as well as in vivo, and increasing survival in a preclinical rodent model.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Ratones , Animales , Humanos , Crizotinib/farmacología , Crizotinib/uso terapéutico , FN-kappa B , Línea Celular Tumoral , Glioma/tratamiento farmacológico , Glioma/patología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Glioblastoma/tratamiento farmacológico , Quinasa de Factor Nuclear kappa B
15.
Pharmacol Res ; 191: 106774, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37075870

RESUMEN

Because genetic alterations including mutations, overexpression, translocations, and dysregulation of protein kinases are involved in the pathogenesis of many illnesses, this enzyme family is the target of many drug discovery programs in the pharmaceutical industry. Overall, the US FDA has approved 74 small molecule protein kinase inhibitors, nearly all of which are orally effective. Of the 74 approved drugs, thirty-nine block receptor protein-tyrosine kinases, nineteen target nonreceptor protein-tyrosine kinases, twelve are directed against protein-serine/threonine protein kinases, and four target dual specificity protein kinases. The data indicate that 65 of these medicinals are approved for the management of neoplasms (51 against solid tumors such as breast, colon, and lung cancers, eight against nonsolid tumors such as leukemia, and six against both types of tumors). Nine of the FDA-approved kinase inhibitors form covalent bonds with their target enzymes and they are accordingly classified as TCIs (targeted covalent inhibitors). Medicinal chemists have examined the physicochemical properties of drugs that are orally effective. Lipinski's rule of five (Ro5) is a computational procedure that is used to estimate solubility, membrane permeability, and pharmacological effectiveness in the drug-discovery setting. It relies on four parameters including molecular weight, number of hydrogen bond donors and acceptors, and the Log of the partition coefficient. Other important descriptors include the lipophilic efficiency, the polar surface area, and the number of rotatable bonds and aromatic rings. We tabulated these and other properties of the FDA-approved kinase inhibitors. Of the 74 approved drugs, 30 fail to comply with the rule of five.


Asunto(s)
Leucemia , Neoplasias Pulmonares , Humanos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas Quinasas
16.
Future Oncol ; 19(37): 2453-2463, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37605861

RESUMEN

Aim: Crizotinib, approved in Japan (2017) for ROS1-positive NSCLC, has limited real-world data. Materials & methods: Crizotinib monotherapy real-world effectiveness and treatment status were analyzed from claims data (June 2017-March 2021; Japanese Medical Data Vision; 58 patients tested for ROS1-NSCLC). Results: Median duration of treatment ([DoT]; primary end point), any line: 12.9 months; 22 patients on crizotinib, 23 discontinued, 13 receiving post-crizotinib treatment. 1L (n = 27) median DoT: 13.0 months (95% CI, 4.4-32.0 months); 13 patients on crizotinib; seven discontinued; seven receiving post-crizotinib treatment. 2L (n = 13) median DoT: 14.0 months (95% CI, 4.6-22.2 months); 2L+ (n = 31): nine patients on crizotinib; 16 discontinued; six receiving post-crizotinib treatment. Post-crizotinib treatments (chemotherapy, cancer immunotherapy, anti-VEGF/R) did not affect crizotinib DoT. Conclusion: Data supplement crizotinib's effectiveness in ROS1-positive NSCLC previously seen in clinical trials/real-world.


Non-small-cell lung cancer (NSCLC) is a common type of cancer in the lung that is often caused by mutations in specific genes in the DNA. One type of NSCLC occurs when you have mutations in a gene called ROS1, whose normal function is not well understood. Crizotinib, an oral medicine, was approved in Japan for the treatment of NSCLC with mutations in ROS1 in 2017; however, this was based upon data from controlled clinical trials. This study was looking at crizotinib use in Japan based upon claims data from the Japanese Medical Data Vision database, which captures all use of medications provided in Japan. Data was collected from June 2017 to March 2021 for 58 Japanese patients who had NSCLC, tested positive for ROS1 mutations, and received crizotinib. Patients took crizotinib for a median of 13.0 months as a first treatment option and 14.0 months as a second treatment option for their NSCLC. The type of and duration of anticancer treatments given before crizotinib did not have an effect on the length of time crizotinib was used. Other treatments outside of crizotinib were given before or after crizotinib and include chemotherapy, therapy that modifies the immune system to treat cancer, or treatments that inhibit the growth of blood vessels that help the cancer grow/spread. Together, these real-world data provide evidence supporting the use of crizotinib in the treatment of patients with NSCLC and ROS1 mutations.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Crizotinib/uso terapéutico , Proteínas Tirosina Quinasas/uso terapéutico , Japón , Neoplasias Pulmonares/tratamiento farmacológico , Proteínas Proto-Oncogénicas/genética , Inhibidores de Proteínas Quinasas/uso terapéutico
17.
Curr Treat Options Oncol ; 24(12): 1683-1702, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37938503

RESUMEN

OPINION STATEMENT: Inflammatory myofibroblastic tumor (IMT), characterized by intermediate malignancy and a propensity for recurrence, has presented a formidable clinical challenge in diagnosis and treatment. Its pathological characteristics may resemble other neoplasms or reactive lesions, and the treatment was limited, taking chemotherapies as the only option for those inoperable. However, discovering anaplastic lymphoma kinase (ALK) protein expression in approximately 50% of IMT cases has shed light on a new diagnostic approach and application of targeted therapies. With the previous success of combating ALK+ non-small-cell lung cancers with ALK tyrosine kinase inhibitors (TKIs), crizotinib, a first-generation ALK-TKI, was officially approved by the U.S. Food and Drug Administration in 2020, to treat unresectable ALK+ IMT. After the approval of crizotinib, other ALK-TKIs, such as ceritinib, alectinib, brigatinib, and lorlatinib, have proven their efficacy on ALK+ IMT with sporadic case reports. The sequential treatments of targeted therapies in may provide the insight into the choice of ALK-TKIs in different lines of treatment for unresectable ALK+ IMT.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Quinasa de Linfoma Anaplásico , Carcinoma de Pulmón de Células no Pequeñas/patología , Crizotinib/uso terapéutico , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Proteínas Tirosina Quinasas Receptoras , Antineoplásicos/uso terapéutico , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas , Inflamación/diagnóstico , Inflamación/tratamiento farmacológico , Inflamación/etiología
18.
J Oncol Pharm Pract ; 29(1): 211-217, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35466809

RESUMEN

INTRODUCTION: Lung cancer is a major global health problem because of its high incidence and mortality. Targeted therapies have transformed treatment of driver-mutated metastatic non-small cell lung cancer (NSCLC). Nevertheless, recent studies demonstrated that cardiovascular disease (CVD) was the second leading cause of mortality in cancer survivors now, management of patients' cardiovascular health during the course of anticancer therapy has become a great challenge faced by the oncologists. Anticancer related cardiovascular (CV) complications are not limited to traditional chemotherapy, but are also increasingly recognized in targeted therapy. CASE REPORT: We present a case of pulmonary embolism (PE) and bradycardia in a 91-year-old NSCLC patient treated with crizotinib for a rare MET Y1003S mutation. To our knowledge, this is the second report to show antitumor response of crizotinib in lung cancer patients with such a rare mutation. However, the patient complained chest tightness and shortness of breath after a month of standard dose crizotinib therapy. Non-invasive examination revealed new onset bradycardia and PE. MANAGEMENT & OUTCOME: Such clinical manifestations were associated with targeted therapy-related CV toxicity, on which the emerging discipline cardio-oncology focused, and a multidisciplinary investigation and treatment was conducted. DISCUSSION: This case highlights the CV adverse events of novel therapies and the current challenges to be tackled in cardio-oncology.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Embolia Pulmonar , Humanos , Anciano de 80 o más Años , Crizotinib/efectos adversos , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/genética , Mutación , Bradicardia/inducido químicamente , Embolia Pulmonar/inducido químicamente , Inhibidores de Proteínas Quinasas/efectos adversos
19.
J Enzyme Inhib Med Chem ; 38(1): 1-11, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36305251

RESUMEN

The effect of the combination of 10-Hydroxycamptothecin (HCPT) and crizotinib (CRI) on EGFR- and KRAS-mutant lung cancer cells was investigated and the conjugates of the two drugs were synthesised. HCPT combined with CRI synergistically inhibited the cell growth and proliferation of H1975, HCC827, and H460 without aggravating adverse effect on the normal cells. The combination synergistically enhanced the cell apoptosis rate through releasing Cyto-C by activation of Bcl-2 family-mediated mitochondrial signalling, which was associate with inactivating of EGFR related downstream signalling pathways including AKT, ERK, JNK, and p38 MAPK. Based on this synergy, the conjugates of HCPT and CRI (compounds CH-1 and CH-2) with different chemical bonds were synthesised. Compound CH-1 exhibited stronger cytotoxicity than HCPT and CRI alone or in combination. The combination of HCPT and CRI might be a promising therapeutic regimen and the conjugate CH-1was a potential target drug for the treatment of lung cancer.


Asunto(s)
Neoplasias Pulmonares , Humanos , Crizotinib/farmacología , Crizotinib/uso terapéutico , Línea Celular Tumoral , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Apoptosis , Receptores ErbB
20.
Int J Mol Sci ; 24(18)2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37762668

RESUMEN

We review extensive progress from the cancer metabolism community in understanding the specific properties of lipid metabolism as it is redesigned in advanced carcinomas. This redesigned lipid metabolism allows affected carcinomas to make enhanced catabolic use of lipids in ways that are regulated by oxygen availability and is implicated as a primary source of resistance to diverse treatment approaches. This oxygen control permits lipid catabolism to be an effective energy/reducing potential source under the relatively hypoxic conditions of the carcinoma microenvironment and to do so without intolerable redox side effects. The resulting robust access to energy and reduced potential apparently allow carcinoma cells to better survive and recover from therapeutic trauma. We surveyed the essential features of this advanced carcinoma-specific lipid catabolism in the context of treatment resistance and explored a provisional unifying hypothesis. This hypothesis is robustly supported by substantial preclinical and clinical evidence. This approach identifies plausible routes to the clinical targeting of many or most sources of carcinoma treatment resistance, including the application of existing FDA-approved agents.


Asunto(s)
Carcinoma , Lipólisis , Humanos , Metabolismo de los Lípidos , Oxígeno , Lípidos , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA