Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 602
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Cereb Cortex ; 34(2)2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38212289

RESUMEN

Effective visual search is essential for daily life, and attention orientation as well as inhibition of return play a significant role in visual search. Researches have established the involvement of dorsolateral prefrontal cortex in cognitive control during selective attention. However, neural evidence regarding dorsolateral prefrontal cortex modulates inhibition of return in visual search is still insufficient. In this study, we employed event-related functional magnetic resonance imaging and dynamic causal modeling to develop modulation models for two types of visual search tasks. In the region of interest analyses, we found that the right dorsolateral prefrontal cortex and temporoparietal junction were selectively activated in the main effect of search type. Dynamic causal modeling results indicated that temporoparietal junction received sensory inputs and only dorsolateral prefrontal cortex →temporoparietal junction connection was modulated in serial search. Such neural modulation presents a significant positive correlation with behavioral reaction time. Furthermore, theta burst stimulation via transcranial magnetic stimulation was utilized to modulate the dorsolateral prefrontal cortex region, resulting in the disappearance of the inhibition of return effect during serial search after receiving continuous theta burst stimulation. Our findings provide a new line of causal evidence that the top-down modulation by dorsolateral prefrontal cortex influences the inhibition of return effect during serial search possibly through the retention of inhibitory tagging via working memory storage.


Asunto(s)
Corteza Prefontal Dorsolateral , Corteza Prefrontal , Corteza Prefrontal/diagnóstico por imagen , Corteza Prefrontal/fisiología , Imagen por Resonancia Magnética , Estimulación Magnética Transcraneal/métodos , Tiempo de Reacción/fisiología
2.
Cereb Cortex ; 34(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38596882

RESUMEN

We currently lack a reliable method to probe cortical excitability noninvasively from the human dorsolateral prefrontal cortex (dlPFC). We recently found that the strength of early and local dlPFC transcranial magnetic stimulation (TMS)-evoked potentials (EL-TEPs) varied widely across dlPFC subregions. Despite these differences in response amplitude, reliability at each target is unknown. Here we quantified within-session reliability of dlPFC EL-TEPs after TMS to six left dlPFC subregions in 15 healthy subjects. We evaluated reliability (concordance correlation coefficient [CCC]) across targets, time windows, quantification methods, regions of interest, sensor- vs. source-space, and number of trials. On average, the medial target was most reliable (CCC = 0.78) and the most anterior target was least reliable (CCC = 0.24). However, all targets except the most anterior were reliable (CCC > 0.7) using at least one combination of the analytical parameters tested. Longer (20 to 60 ms) and later (30 to 60 ms) windows increased reliability compared to earlier and shorter windows. Reliable EL-TEPs (CCC up to 0.86) were observed using only 25 TMS trials at a medial dlPFC target. Overall, medial dlPFC targeting, wider windows, and peak-to-peak quantification improved reliability. With careful selection of target and analytic parameters, highly reliable EL-TEPs can be extracted from the dlPFC after only a small number of trials.


Asunto(s)
Electroencefalografía , Estimulación Magnética Transcraneal , Humanos , Estimulación Magnética Transcraneal/métodos , Electroencefalografía/métodos , Corteza Prefontal Dorsolateral , Reproducibilidad de los Resultados , Corteza Prefrontal/fisiología , Potenciales Evocados/fisiología
3.
J Neurosci ; 43(38): 6564-6572, 2023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37607819

RESUMEN

The dorsolateral prefrontal cortex (dlPFC) is composed of multiple anatomically defined regions involved in higher-order cognitive processes, including working memory and selective attention. It is organized in an anterior-posterior global gradient where posterior regions track changes in the environment, whereas anterior regions support abstract neural representations. However, it remains unknown if such a global gradient results from a smooth gradient that spans regions or an emergent property arising from functionally distinct regions, that is, an areal gradient. Here, we recorded single neurons in the dlPFC of nonhuman primates trained to perform a memory-guided saccade task with an interfering distractor and analyzed their physiological properties along the anterior-posterior axis. We found that these physiological properties were best described by an areal gradient. Further, population analyses revealed that there is a distributed representation of spatial information across the dlPFC. Our results validate the functional boundaries between anatomically defined dlPFC regions and highlight the distributed nature of computations underlying working memory across the dlPFC.SIGNIFICANCE STATEMENT Activity of frontal lobe regions is known to possess an anterior-posterior functional gradient. However, it is not known whether this gradient is the result of individual brain regions organized in a gradient (like a staircase), or a smooth gradient that spans regions (like a slide). Analysis of physiological properties of individual neurons in the primate frontal regions suggest that individual regions are organized as a gradient, rather than a smooth gradient. At the population level, working memory was more prominent in posterior regions, although it was also present in anterior regions. This is consistent with the functional segregation of brain regions that is also observed in other systems (i.e., the visual system).


Asunto(s)
Corteza Prefontal Dorsolateral , Lóbulo Frontal , Humanos , Animales , Memoria a Corto Plazo , Neuronas , Movimientos Sacádicos
4.
Eur J Neurosci ; 59(8): 2075-2086, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38409515

RESUMEN

Working memory (WM) is one of the fundamental cognitive functions associated with the dorsolateral prefrontal cortex (DLPFC). However, the neurochemical mechanisms of WM, including the dynamic changes in neurometabolites such as glutamate and GABA in the DLPFC, remain unclear. Here, we investigated WM-related glutamate and GABA changes, alongside hemodynamic responses in the DLPFC, using a combination of functional magnetic resonance spectroscopy (fMRS) and functional magnetic resonance imaging (fMRI). During a WM task, we measured Glx (glutamate + glutamine) and GABA levels using GABA editing MEscher-GArwood Point REsolved Spectroscopy (MEGA-PRESS) sequence and blood-oxygen-level-dependent (BOLD) signal changes. In the DLPFC, we observed elevated Glx levels and increased BOLD signal changes during a 2-back task. Specifically, the Glx levels in the DLPFC were significantly higher during the 2-back task compared with fixation, although this difference was not significant when compared with a 0-back task. However, Glx levels during the 0-back task were higher than during fixation. Furthermore, there was a positive correlation between Glx levels in the DLPFC during the 2-back task and the corresponding BOLD signal changes. Notably, higher Glx increases were associated with increased DLPFC activation and lower WM task performance in individuals. No notable changes in DLPFC GABA levels were observed during WM processing. These findings suggest that the modulation of glutamatergic activity in the DLPFC may play a crucial role in both working memory processing and its associated performance outcomes.


Asunto(s)
Corteza Prefontal Dorsolateral , Memoria a Corto Plazo , Humanos , Memoria a Corto Plazo/fisiología , Corteza Prefrontal/diagnóstico por imagen , Corteza Prefrontal/fisiología , Ácido Glutámico , Imagen por Resonancia Magnética , Ácido gamma-Aminobutírico
5.
Eur J Neurosci ; 59(11): 2967-2978, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38566366

RESUMEN

Neuromodulation with transcranial direct current stimulation (tDCS) can transiently alter neural activity, but its spatial precision is low. High-definition (HD) tDCS was introduced to increase spatial precision by placing additional electrodes over the scalp. Initial evaluations of HD tDCS indicated polarity-specific neurophysiological effects-similar to conventional tDCS albeit with greater spatial precision. Here, we compared the effects of cathodal tDCS or HD tDCS in a 4 × 1 configuration over prefrontal cortex (PFC) regions on behavioural outcomes in a magnitude classification task. We report results on overall performance, on the numerical distance effect as a measure of numerical processing, and on the spatial-numerical associations of response codes (SNARC) effect, which was previously affected by prefrontal tDCS. Healthy volunteers (n = 68) received sham or cathodal HD tDCS at 1 mA over the left dorsolateral prefrontal cortex (DLPFC) or the left inferior frontal gyrus (IFG). Results were compared to an identical protocol with conventional cathodal tDCS to the left PFC versus sham (n = 64). Mixed effects models showed performance gains relative to sham tDCS in all conditions after tDCS (i.e. 'offline'), whereas montages over PFC and DLPFC already showed performance gains during tDCS (i.e. 'online'). In contrast to conventional tDCS, HD tDCS did not reduce the SNARC effect. Neither condition affected numerical processing, as expected. The results suggest that HD tDCS with cathodal polarity might require further adjustments (i.e. regarding tDCS intensity) for effective modulations of cognitive-behavioural performance, which could be achieved by individualised current density in electric field modelling.


Asunto(s)
Estimulación Transcraneal de Corriente Directa , Humanos , Estimulación Transcraneal de Corriente Directa/métodos , Masculino , Femenino , Adulto , Adulto Joven , Corteza Prefrontal/fisiología , Corteza Prefontal Dorsolateral/fisiología , Desempeño Psicomotor/fisiología
6.
Eur J Neurosci ; 60(4): 4518-4535, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38973167

RESUMEN

The balance between goal-directed and habitual control has been proposed to determine the flexibility of instrumental behaviour, in both humans and animals. This view is supported by neuroscientific studies that have implicated dissociable neural pathways in the ability to flexibly adjust behaviour when outcome values change. A previous Diffusion Tensor Imaging study provided preliminary evidence that flexible instrumental performance depends on the strength of parallel cortico-striatal white-matter pathways previously implicated in goal-directed and habitual control. Specifically, estimated white-matter strength between caudate and ventromedial prefrontal cortex correlated positively with behavioural flexibility, and posterior putamen-premotor cortex connectivity correlated negatively, in line with the notion that these pathways compete for control. However, the sample size of the original study was limited, and so far, there have been no attempts to replicate these findings. In the present study, we aimed to conceptually replicate these findings by testing a large sample of 205 young adults to relate cortico-striatal connectivity to performance on the slips-of-action task. In short, we found only positive neural correlates of goal-directed performance, including striatal connectivity (caudate and anterior putamen) with the dorsolateral prefrontal cortex. However, we failed to provide converging evidence for the existence of a neural habit system that puts limits on the capacity for flexible, goal-directed action. We discuss the implications of our findings for dual-process theories of instrumental action.


Asunto(s)
Cuerpo Estriado , Objetivos , Vías Nerviosas , Sustancia Blanca , Humanos , Sustancia Blanca/fisiología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/anatomía & histología , Masculino , Femenino , Adulto , Cuerpo Estriado/fisiología , Cuerpo Estriado/diagnóstico por imagen , Cuerpo Estriado/anatomía & histología , Adulto Joven , Vías Nerviosas/fisiología , Adolescente , Corteza Cerebral/fisiología , Corteza Cerebral/diagnóstico por imagen , Imagen de Difusión Tensora/métodos
7.
Psychol Med ; : 1-14, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38500410

RESUMEN

BACKGROUND: Previous research on the changes in resting-state functional connectivity (rsFC) in anorexia nervosa (AN) has been limited by an insufficient sample size, which reduced the reliability of the results and made it difficult to set the whole brain as regions of interest (ROIs). METHODS: We analyzed functional magnetic resonance imaging data from 114 female AN patients and 135 healthy controls (HC) and obtained self-reported psychological scales, including eating disorder examination questionnaire 6.0. One hundred sixty-four cortical, subcortical, cerebellar, and network parcellation regions were considered as ROIs. We calculated the ROI-to-ROI rsFCs and performed group comparisons. RESULTS: Compared to HC, AN patients showed 12 stronger rsFCs mainly in regions containing dorsolateral prefrontal cortex (DLPFC), and 33 weaker rsFCs primarily in regions containing cerebellum, within temporal lobe, between posterior fusiform cortex and lateral part of visual network, and between anterior cingulate cortex (ACC) and thalamus (p < 0.01, false discovery rate [FDR] correction). Comparisons between AN subtypes showed that there were stronger rsFCs between right lingual gyrus and right supracalcarine cortex and between left temporal occipital fusiform cortex and medial part of visual network in the restricting type compared to the binge/purging type (p < 0.01, FDR correction). CONCLUSION: Stronger rsFCs in regions containing mainly DLPFC, and weaker rsFCs in regions containing primarily cerebellum, within temporal lobe, between posterior fusiform cortex and lateral part of visual network, and between ACC and thalamus, may represent categorical diagnostic markers discriminating AN patients from HC.

8.
Artículo en Inglés | MEDLINE | ID: mdl-39017736

RESUMEN

Several cortical structures are involved in theory of mind (ToM), including the dorsolateral prefrontal cortex (dlPFC), the ventromedial prefrontal cortex (vmPFC), and the right temporo- parietal junction (rTPJ). We investigated the role of these regions in mind reading with respect to the valence of mental states. Sixty-five healthy adult participants were recruited and received transcranial direct current stimulation (tDCS) (1.5 mA, 20 min) with one week interval in three separate studies. The stimulation conditions were anodal tDCS over the dlPFC coupled with cathodal tDCS over the vmPFC, reversed stimulation conditions, and sham in the first study, and anodal tDCS over the vmPFC, or dlPFC, and sham stimulation, with an extracranial return electrode in the second and third study. During stimulation, participants underwent the reading mind from eyes/voice tests (RMET or RMVT) in each stimulation condition. Anodal left dlPFC/cathodal right vmPFC stimulation increased the accuracy of negative mental state attributions, anodal rTPJ decreased the accuracy of negative and neutral mental state attributions, and decreased the reaction time of positive mental state attributions. Our results imply that the neural correlates of ToM are valence-sensitive.

9.
J Neural Transm (Vienna) ; 131(7): 823-832, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38643330

RESUMEN

Individuals with attention deficit-hyperactivity disorder (ADHD) struggle with the interaction of attention and emotion. The ventromedial prefrontal cortex (vmPFC) and dorsolateral prefrontal cortex (dlPFC) are assumed to be involved in this interaction. In the present study, we aimed to explore the effect of stimulation applied over the dlPFC and vmPFC on attention bias in individuals with ADHD. Twenty-three children with ADHD performed the emotional Stroop and dot probe tasks during transcranial direct current stimulation (tDCS) in 3 conditions: anodal dlPFC (F3)/cathodal vmPFC (Fp2), anodal vmPFC (Fp2)/cathodal dlPFC (F3), and sham stimulation. Findings suggest reduction of attention bias in both real conditions based on emotional Stroop task and not dot probe task. These results were independent of emotional states. The dlPFC and vmPFC are involved in attention bias in ADHD. tDCS can be used for attention bias modification in children with ADHD.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Sesgo Atencional , Estimulación Transcraneal de Corriente Directa , Humanos , Trastorno por Déficit de Atención con Hiperactividad/terapia , Trastorno por Déficit de Atención con Hiperactividad/fisiopatología , Masculino , Niño , Femenino , Sesgo Atencional/fisiología , Corteza Prefrontal/fisiopatología , Test de Stroop , Adolescente
10.
Brain Topogr ; 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38200358

RESUMEN

Altruistic punishment is a primary response to social norms violations; its neural mechanism has also attracted extensive research attention. In the present studies, we applied a low-frequency repetitive transcranial magnetic stimulation (rTMS) to the bilateral dorsolateral prefrontal cortex (DLPFC) while participants engaged in a modified Ultimatum Game (Study 1) and third-party punishment game (Study 2) to explore how the bilateral DLPFC disruption affects people's perception of violation of fairness norms and altruistic punishment decision in the gain and loss contexts. Typically, punishers intervene more often against and show more social outrage towards Dictators/Proposers who unfairly distribute losses than those who unfairly share gains. We found that disrupting the function of the left DLPFC in the second-party punishment and the bilateral DLPFC in the third-party punishment with rTMS effectively obliterated this difference, making participants punish unfairly shared gains as often as they usually would punish unfairly shared losses. In the altruistic punishment of maintaining the social fairness norms, the inhibition of the right DLPFC function will affect the deviation of individual information integration ability; the inhibition of the left DLPFC function will affect the assessment of the degree of violation of fairness norms and weaken impulse control, leading to attenuate the moderating effect of gain and loss contexts on altruistic punishment. Our findings emphasize that DLPFC is closely related to altruistic punishment and provide causal neuroscientific evidence.

11.
Brain Topogr ; 37(1): 37-51, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37880501

RESUMEN

Conflict typically occurs when goal-directed processing competes with more automatic responses. Though previous studies have highlighted the importance of the right dorsolateral prefrontal cortex (rDLPFC) in conflict processing, its causal role remains unclear. In the current study, the behavioral experiment, the continuous theta burst stimulation (cTBS), and the electroencephalography (EEG) were combined to explore the effects of behavioral performance and physiological correlates during conflict processing, after the cTBS over the rDLPFC and vertex (the control condition). Twenty-six healthy participants performed the Stroop task which included congruent and incongruent trials. Although the cTBS did not induce significant changes in the behavioral performance, the cTBS over the rDLPFC reduced the Stroop effects of conflict monitoring-related frontal-central N2 component and theta oscillation, and conflict resolution-related parieto-occipital alpha oscillation, compared to the vertex stimulation. Moreover, a significant hemispheric difference in alpha oscillation was exploratively observed after the cTBS over the rDLPFC. Interestingly, we found the rDLPFC stimulation resulted in significantly reduced Stroop effects of theta and gamma oscillation after response, which may reflect the adjustment of cognitive control for the next trial. In conclusion, our study not only demonstrated the critical involvement of the rDLPFC in conflict monitoring, conflict resolution processing, and conflict adaptation but also revealed the electrophysiological mechanism of conflict processing mediated by the rDLPFC.


Asunto(s)
Corteza Prefontal Dorsolateral , Ritmo Teta , Humanos , Test de Stroop , Ritmo Teta/fisiología , Corteza Prefrontal/fisiología , Electroencefalografía , Estimulación Magnética Transcraneal/métodos
12.
Cereb Cortex ; 33(3): 612-621, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-35253836

RESUMEN

The role hemispheric lateralization in the prefrontal cortex plays for episodic memory formation in general, and for emotionally valenced information in particular, is debated. In a randomized, double-blind, and sham-controlled design, healthy young participants (n = 254) performed 2 runs of encoding to categorize the perceptual, semantic, or emotionally valenced (positive or negative) features of words followed by a free recall and a recognition task. To resolve competing hypotheses about the contribution of each hemisphere, we modulated left or right dorsolateral prefrontal cortex (DLPFC) activity using transcranial direct current stimulation during encoding (1 mA, 20 min). With stimulation of the left DLPFC, but not the right DLPFC, encoding and free recall performance improved particularly for words that were processed semantically. In addition, enhancing left DLPFC activity increased memory formation for positive content while reducing that for negative content. In contrast, promoting right DLPFC activity increased memory formation for negative content. The left DLPFC assesses semantic properties of new memory content at encoding and thus influences how successful new episodic memories are established. Hemispheric laterlization-more active left DLPFC and less active right DLPFC-at the encoding stage shifts the formation of memory traces in favor of positively valenced content.


Asunto(s)
Memoria Episódica , Corteza Prefrontal , Humanos , Recuerdo Mental/fisiología , Corteza Prefrontal/fisiología , Reconocimiento en Psicología/fisiología , Estimulación Transcraneal de Corriente Directa , Método Doble Ciego , Voluntarios Sanos
13.
BMC Psychiatry ; 24(1): 130, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38365634

RESUMEN

BACKGROUND: Electroconvulsive therapy (ECT) is a highly effective treatment for depressive disorder. However, the use of ECT is limited by its cognitive side effects (CSEs), and no specific intervention has been developed to address this problem. As transcranial direct current stimulation (tDCS) is a safe and useful tool for improving cognitive function, the main objective of this study was to explore the ability to use tDCS after ECT to ameliorate the cognitive side effects. METHODS: 60 eligible participants will be recruited within two days after completing ECT course and randomly assigned to receive either active or sham stimulation in a blinded, parallel-design trial and continue their usual pharmacotherapy. The tDCS protocol consists of 30-min sessions at 2 mA, 5 times per week for 2 consecutive weeks, applied through 15-cm2 electrodes. An anode will be placed over the left dorsolateral prefrontal cortex (DLPFC), and a cathode will be placed over the right supraorbital cortex. Cognitive function and depressive symptoms will be assessed before the first stimulation (T0), after the final stimulation (T1), 2 weeks after the final stimulation (T2), and 4 weeks after the final stimulation (T3) using the Cambridge Neuropsychological Test Automated Battery (CANTAB). DISCUSSION: We describe a novel clinical trial to explore whether the administration of tDCS after completing ECT course can accelerates recovery from the CSEs. We hypothesized that the active group would recover faster from the CSEs and be superior to the sham group. If our hypothesis is supported, the use of tDCS could benefit eligible patients who are reluctant to receive ECT and reduce the risk of self-inflicted or suicide due to delays in treatment. TRIAL REGISTRATION DETAILS: The trial protocol is registered with https://www.chictr.org.cn/ under protocol registration number ChiCTR2300071147 (date of registration: 05.06.2023). Recruitment will start in November 2023.


Asunto(s)
Terapia Electroconvulsiva , Estimulación Transcraneal de Corriente Directa , Humanos , Estimulación Transcraneal de Corriente Directa/métodos , Terapia Electroconvulsiva/efectos adversos , Depresión/terapia , Corteza Prefrontal/fisiología , Cognición , Método Doble Ciego , Ensayos Clínicos Controlados Aleatorios como Asunto
14.
Eur J Neurosci ; 57(6): 951-961, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36748344

RESUMEN

It was suggested that processing subject relative clauses (SRCs) is universally easier than processing object relative clauses (ORCs) based on the studies carried out in head-initial languages such as English and German. However, studies in head-final languages such as Chinese and Basque contradicted this claim. Turkish is also a head-final language. Existing relative clause processing literature in Turkish is based solely on behavioural metrics. Even though an ORC processing disadvantage was suggested for Turkish, the results were not conclusive. Therefore, we aimed to investigate the neural dynamics of relative clause processing in Turkish. We asked 14 native Turkish speakers to answer yes/no questions about 24 sentences each containing either a SRC or ORC while their prefrontal hemodynamic activity was recorded with functional near-infrared spectroscopy. Our findings revealed hemodynamic activity in the lateral portions of the left prefrontal cortex for both conditions. However, hemodynamic activity was more widespread in prefrontal regions in ORC compared to SRC condition. Even though the behavioural metrics failed to produce a significant difference between the conditions, direct ORC > SRC contrast revealed significant activity in the left inferior frontal cortex, a region heavily involved in language processing, as well as in left and right dorsolateral prefrontal cortices, which are also known to be involved in language processing-related and conflict monitoring-related processes, respectively. Our findings indicate that processing ORCs is more difficult and requires further prefrontal resources than processing SRCs in Turkish, thus refuting the head-directionality-based explanations of relative clause processing asymmetries.


Asunto(s)
Comprensión , Espectroscopía Infrarroja Corta , Humanos , Lectura , Lenguaje , Corteza Prefrontal/diagnóstico por imagen
15.
BMC Neurosci ; 24(1): 24, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36991320

RESUMEN

BACKGROUND: Transcranial magnetic stimulation (TMS) is increasingly used as a promising non-pharmacological treatment for Parkinson's disease (PD). Scalp-to-cortex distance (SCD), as a key technical parameter of TMS, plays a critical role in determining the locations of treatment targets and corresponding dosage. Due to the discrepancies in TMS protocols, the optimal targets and head models have yet to be established in PD patients. OBJECTIVE: To investigate the SCDs of the most popular used targets in left dorsolateral prefrontal cortex (DLPFC) and quantify its impact on the TMS-induced electric fields (E-fields) in early-stage PD patients. METHODS: Structural magnetic resonance imaging scans from PD patients (n = 47) and normal controls (n = 36) were drawn from the NEUROCON and Tao Wu datasets. SCD of left DLPFC was measured by Euclidean Distance in TMS Navigation system. The intensity and focality of SCD-dependent E-fields were examined and quantified using Finite Element Method. RESULTS: Early-stage PD patients showed an increased SCDs, higher variances in the SCDs and SCD-dependent E-fields across the seven targets of left DLPFC than normal controls. The stimulation targets located on gyral crown had more focal and homogeneous E-fields. The SCD of left DLPFC had a better performance in differentiating early-stage PD patients than global cognition and other brain measures. CONCLUSION: SCD and SCD-dependent E-fields could determine the optimal TMS treatment targets and may also be used as a novel marker to differentiate early-stage PD patients. Our findings have important implications for developing optimal TMS protocols and personalized dosimetry in real-world clinical practice.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/patología , Corteza Prefrontal/fisiología , Encéfalo/diagnóstico por imagen , Estimulación Magnética Transcraneal/métodos , Cognición
16.
BMC Neurosci ; 24(1): 30, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37161411

RESUMEN

INTRODUCTION: It is widely demonstrated that high frequency (HF) repetitive transcranial magnetic stimulation (rTMS) has facilitative effects and is therefore capable to inducing changes in motor responses. One of the most investigated areas is the dorsolateral prefrontal cortex (DLPFC) as it plays a special executive attention role in actively preserving access to stimulus representations and objectives in environments with plenty of distraction such as those of team sports. Volleyball is a team sport in which the attention and coordination components are essential for achieving performance. Thus, the aim of this study was to investigate if HF rTMS at DLPFC in volleyball players can improve homolateral motor coordination and cortical excitability. RESULTS: This study was a double-blinded (participant and evaluator) matched-pair experimental design. Twenty right-handed female volleyball players were recruited for the study and were randomly assigned either the active rTMS (n = 10) or the sham stimulation group (n = 10). The stimulation was performed in one session with 10 Hz, 80% of the resting motor threshold (RMT) of the right first dorsal interosseous muscle, 5 s of stimulation, and 15 s of rest, for a total of 1500 pulses. Before and after stimulation, the coordination and the cortical excitability were evaluated. The significant finding of this paper was that HF-rTMS of the DLPFC improved performance in terms of the homolateral interlimb coordination, with a significantly decreased in resting motor threshold and MEP latency of the ipsilateral motor cortex. It seem that HF-rTMS could increase coordination performances when the velocity of the execution is higher (120 bpm and 180 bpm). CONCLUSION: Moreover, in active rTMS group significant differences emerged after stimulation in RMT and in MEP latency, while no differences emerged after stimulation in MEP amplitude. In conclusion we believe that these results may be of great interest to the scientific community and may also have practical implications in the future.


Asunto(s)
Corteza Motora , Voleibol , Humanos , Femenino , Estimulación Magnética Transcraneal , Mano , Músculos
17.
Psychol Med ; 53(3): 908-917, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-34284836

RESUMEN

BACKGROUND: Preclinical findings suggest that transcranial infrared laser stimulation (TILS) improves fear extinction learning and cognitive function by enhancing prefrontal cortex (PFC) oxygen metabolism. These findings prompted our investigation of treating pathological fear using this non-invasive stimulation approach either alone to the dorsolateral PFC (dlPFC), or to the ventromedial PFC (vmPFC) in combination with exposure therapy. METHODS: Volunteers with pathological fear of either enclosed spaces, contamination, public speaking, or anxiety-related bodily sensations were recruited for this randomized, single-blind, sham-controlled trial with four arms: (a) Exposure + TILS_vmPFC (n = 29), (b) Exposure + sham TILS_vmPFC (n = 29), (c) TILS_dlPFC alone (n = 26), or (d) Sham TILS _dlPFC alone (n = 28). Post-treatment assessments occurred immediately following treatment. Follow-up assessments occurred 2 weeks after treatment. RESULTS: A total of 112 participants were randomized [age range: 18-63 years; 96 females (85.71%)]. Significant interactions of Group × Time and Group × Context indicated differential treatment effects on retention (i.e. between time-points, averaged across contexts) and on generalization (i.e. between contexts, averaged across time-points), respectively. Among the monotherapies, TILS_dlPFC outperformed SHAM_dlPFC in the initial context, b = -13.44, 95% CI (-25.73 to -1.15), p = 0.03. Among the combined treatments, differences between EX + TILS_vmPFC and EX + SHAM_vmPFC were non-significant across all contrasts. CONCLUSIONS: TILS to the dlPFC, one of the PFC regions implicated in emotion regulation, resulted in a context-specific benefit as a monotherapy for reducing fear. Contrary to prediction, TILS to the vmPFC, a region implicated in fear extinction memory consolidation, did not enhance exposure therapy outcome.


Asunto(s)
Miedo , Terapia Implosiva , Femenino , Humanos , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Miedo/fisiología , Terapia Implosiva/métodos , Extinción Psicológica , Método Simple Ciego , Corteza Prefrontal/fisiología , Rayos Láser
18.
Brain Topogr ; 36(4): 535-544, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37202646

RESUMEN

BACKGROUND AND AIMS: Mind wandering refers to spontaneously occurring, often disruptive thoughts during an ongoing task or resting state. The ventromedial prefrontal cortex (vmPFC) and dorsolateral prefrontal cortex (dlPFC) are two main cortical areas which are involved in this process. This study aimed to explore the interaction of these areas during mind wandering by enhancing specific oscillatory activity of these areas via transcranial alternating current stimulation (tACS) in the theta frequency range. MATERIAL AND METHODS: Eighteen healthy adults participated in a randomized, single-blinded, crossover study. tACS (1.5 mA, 6 Hz) was applied in five sessions with one week interval via (1) two channels with synchronized stimulation over the left dlPFC and right vmPFC, (2) the same electrode placement with anti-phase stimulation, (3) stimulation over the left dlPFC only, (4) stimulation over right vmPFC only, and (5) sham stimulation. The return electrodes were placed over the contralateral shoulder in all conditions. The sustained attention to response task (SART) with embedded probes about task-unrelated-thoughts and awareness of these thoughts was performed during intervention. RESULTS: Stimulation did not alter SART performance. Right vmPFC stimulation decreased mind wandering and increased awareness of mind wandering. Left dlPFC stimulation and desynchronized stimulation over the dlPFC and vmPFC increased mind wandering compared to the sham stimulation condition. Synchronized stimulation had no effect on mind wandering, but increased awareness of mind wandering. CONCLUSION: The results suggest that regional entrainment of the vmPFC decreases mind wandering and increases awareness of mind wandering, whereas regional entrainment of the dlPFC increases mind wandering, but decreases awareness. Under desynchronized stimulation of both areas, the propensity of mind wandering was increased, whereas synchronized stimulation increased the awareness of mind wandering. These results suggest a role of the dlPFC in initiation of mind wandering, whereas the vmPFC downregulates mind wandering, and might exert this function by counteracting respective dlPFC effects via theta oscillations.


Asunto(s)
Corteza Prefrontal , Estimulación Transcraneal de Corriente Directa , Adulto , Humanos , Estudios Cruzados , Corteza Prefrontal/fisiología , Estimulación Transcraneal de Corriente Directa/métodos , Cognición
19.
Brain Cogn ; 166: 105951, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36680856

RESUMEN

Bribe-taking decision is a social dilemma for individuals: the pursuit of economic self-interest vs. compliance with social norms. Despite the well-known existence of the conflict in deciding whether to accept bribes, little is known about its neural responses. Using functional near-infrared imaging (fNIRS) technology and the bribe-taking decision game (economic gambling game as a control condition), the current study dissociated the neural correlates of the different motivations in the bribery dilemma, as well as the inhibitory effect of social norms on bribery and its underlying brain mechanisms in supra-cortical regions. Findings revealed that if individuals are more motivated by economic interest, rejecting money (vs. accepting money) accompanies higher activity in the dorsolateral prefrontal cortex (DLPFC) and frontopolar cortex (FPC), which reflects impulse inhibition and decision evaluation; whereas, if individuals are more consider social norms, their DLPFC is more active when they accept bribes (vs. reject bribes), which reflects their fear of punishment. Additionally, the key brain region where social norms inhibit bribery involves the left DLPFC. The current findings contribute to the literature on the neural manifestations of corrupt decisions and provide some insights into the anti-corruption movement.


Asunto(s)
Motivación , Corteza Prefrontal , Humanos , Corteza Prefrontal/diagnóstico por imagen , Corteza Prefrontal/fisiología , Toma de Decisiones/fisiología
20.
Cereb Cortex ; 32(20): 4436-4446, 2022 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-35059703

RESUMEN

The dorsolateral prefrontal cortex (DLPFC) is an important target for repetitive transcranial magnetic stimulation (rTMS) to reduce pain. However, the analgesic efficacy of DLPFC-rTMS needs to be optimized, in which the mechanisms of action remain unclear. Concurrent TMS and electroencephalogram (TMS-EEG) is able to evaluate neuroplastic changes beyond the motor cortex. Using TMS-EEG, this study was designed to investigate the local and distributed neuroplastic changes associated with DLPFC analgesia. Thirty-four healthy adults received DLPFC or sham stimulation in a randomized, crossover design. In each session, participants underwent cold pain and TMS-EEG assessment both before and after 10-Hz rTMS. We provide novel findings that DLPFC analgesia is associated with a smaller N120 amplitude in the contralateral prefrontal cortex as well as with a larger N120 peak in the ipsilateral insular cortex. Furthermore, there was a strong negative correlation between N120 changes of these two regions whereby the amplitude changes of this dyad were associated with increased pain threshold. In addition, DLPFC stimulation enhanced coherence between the prefrontal and somatosensory cortices oscillating in the gamma frequency. Overall, our data present novel evidence on local and distributed neuroplastic changes associated with DLPFC analgesia.


Asunto(s)
Corteza Motora , Estimulación Magnética Transcraneal , Adulto , Humanos , Electroencefalografía , Corteza Insular , Dolor , Corteza Prefrontal/fisiología , Estudios Cruzados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA