Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Pharm Sci ; 113(3): 523-538, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37838275

RESUMEN

Assessing the robustness of a drug product formulation and manufacturing process to variations in raw material (RM) properties is an essential aspect of pharmaceutical product development. Motivated by the need to demonstrate understanding of attribute-performance relationships at the time of new product registration and for subsequent process maintenance, we review practices to explore RM variations. We describe limitations that can arise when active ingredients and excipients invariably undergo changes during a drug product lifecycle. Historical approaches, such as Quality-by-Design (QbD) experiments, are useful for initial evaluations but can be inefficient and cumbersome to maintain once commercial manufacturing commences. The relatively miniscule data sets accessible in product development - used to predict response to a hypothetical risk of variation - become less relevant as real-world experience of actual variability in the commercial landscape grows. Based on our observations of development and manufacturing, we instead propose a holistic framework exploiting a hierarchy of RM variability, and challenge this with common failure modes. By explicitly incorporating higher ranking RM variations as perturbations, material-conserving experiments are shown to provide powerful and enduring robustness data. Case studies illustrate how correctly contextualizing such data in formulation and process development can avoid the traps of historical QbD approaches and become valuable for evaluating changes occurring later in the drug product lifecycle.


Asunto(s)
Química Farmacéutica , Tecnología Farmacéutica , Tecnología Farmacéutica/métodos , Química Farmacéutica/métodos , Excipientes
2.
J Pharm Sci ; 113(8): 2454-2463, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38701896

RESUMEN

Amphotericin B (AmB) is the gold standard for antifungal therapy; however, its poor solubility limits its administration via intravenous infusion. A promising formulation strategy to achieve an oral formulation is the development of amorphous solid dispersions (ASDs) via spray-drying. Inclusion of surfactants into ASDs is a newer concept, yet it offers increased dissolution opportunities when combined with a polymer (HPMCAS 912). We developed both binary ASDs (AmB:HPMCAS 912 or AmB:surfactant) and ternary ASDs (AmB:HPMCAS 912:surfactant) using a variety of surfactants to determine the optimal surfactant carbon chain length and functional group for achieving maximal AmB concentration during in vitro dissolution. The ternary ASDs containing surfactants with a carbon chain length of 14 ± 2 carbons and a sulfate functional group increased the dissolution of AmB by 90-fold compared to crystalline AmB. These same surfactants, when added to a binary ASD, however, were only able to achieve up to a 40-fold increase, alluding to a potential interaction occurring between excipients or excipient and drug. This potential interaction was supported by dynamic light scattering data, in which the ternary formulation produced a single peak at 895.2 dnm. The absence of more than one peak insinuates that all three components are interacting in some way to form a single structure, which may be preventing AmB self-aggregation, thus improving the dissolution concentration of AmB.


Asunto(s)
Anfotericina B , Antifúngicos , Tensoactivos , Anfotericina B/química , Anfotericina B/administración & dosificación , Antifúngicos/química , Antifúngicos/administración & dosificación , Química Farmacéutica/métodos , Cristalización , Composición de Medicamentos/métodos , Liberación de Fármacos , Excipientes/química , Polímeros/química , Solubilidad , Tensoactivos/química
3.
Int J Pharm ; 664: 124651, 2024 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-39218326

RESUMEN

Hot melt extrusion (HME) has been widely used as a continuous and highly flexible pharmaceutical manufacturing process for the production of a variety of dosage forms. In particular, HME enables preparation of amorphous solid dispersions (ASDs) which can improve bioavailability of poorly water-soluble drugs. The rheological properties of drug-polymer mixtures can significantly influence the processability of drug formulations via HME and eventually the end-use product properties such as physical stability and drug release. The objective of this review is to provide an overview of various rheological techniques and properties that can be used to evaluate the flow behavior and processability of the drug-polymer mixtures as well as formulation characteristics such as drug-polymer interactions, miscibility/solubility, and plasticization to improve the HME processability. An overview of the thermodynamics and kinetics of ASD processing by HME is also provided, as well as aspects of scale-up and process modeling, highlighting rheological properties on formulation design and process development. Overall, this review provides valuable insights into critical rheological properties which can be used as a predictive tool to optimize the HME processing conditions.


Asunto(s)
Composición de Medicamentos , Tecnología de Extrusión de Fusión en Caliente , Reología , Tecnología de Extrusión de Fusión en Caliente/métodos , Composición de Medicamentos/métodos , Solubilidad , Polímeros/química , Liberación de Fármacos , Preparaciones Farmacéuticas/química , Química Farmacéutica/métodos , Estabilidad de Medicamentos , Calor
4.
J Pharm Sci ; 112(2): 404-410, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36257338

RESUMEN

Surfactants are commonly used in biopharmaceutical formulations to stabilize proteins against aggregation. However, the choice of a suitable surfactant for a particular protein is decided mostly empirically, and their mechanism of action on molecular level is largely unknown. Here we show that a straightforward label-free method, saturation transfer difference (STD) nuclear magnetic resonance (NMR) spectroscopy, can be used to detect protein-surfactant interactions in formulations of a model protein, interferon alpha. We find that polysorbate 20 binds with its fatty acid to interferon, and that the binding is stronger at pH closer to the isoelectric point of the protein. In contrast, we did not detect interactions between poloxamer 407 and interferon alpha. Neither of the two surfactants affected the tertiary structure and the thermal stability of the protein as evident from circular dichroism and nanoDSF measurements. Interestingly, both surfactants inhibited the formation of subvisible particles during long-term storage, but only polysorbate 20 reduced the amount of small soluble aggregates detected by size-exclusion chromatography. This proof-of-principle study demonstrates how STD-NMR can be employed to quickly assess surfactant-protein interactions and support the choice of surfactant in protein formulation.


Asunto(s)
Polisorbatos , Tensoactivos , Tensoactivos/química , Polisorbatos/química , Interferón-alfa , Espectroscopía de Resonancia Magnética/métodos , Proteínas/química
5.
J Pharm Sci ; 112(3): 708-717, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36189478

RESUMEN

Amorphous solid dispersions (ASDs) have been widely utilized to enhance the bioavailability of pharmaceutical drugs with poor aqueous solubility. The role of various excipients on the amorphous drug to crystalline form conversion in ASDs has been widely documented. However, there has been no published study to investigate the role of film coating material on the physical stability of an ASD based tablet formulation, to the best of our knowledge. Here we show that the film coating can potentially have a detrimental impact on the physical stability of spray dried intermediates (SDI) in tablet formulations. The impact of the film coating on the physical stability of SDI was found to be related to the film coat material composition, and an increase in the film coating thickness led to a reduction in the physical stability of SDI in tablets. Oral compressed tablets in which the film coat material was "mixed-in" with the formulation blend showed a similar or worse physical stability than film coated tablets, further underscoring the film coat material impact on physical stability, independent of the film coating process. This study demonstrates a need for careful consideration of the film coat material selection for ASD based pharmaceutical product development.


Asunto(s)
Química Farmacéutica , Cristalización , Comprimidos/química , Solubilidad , Composición de Medicamentos , Estabilidad de Medicamentos
6.
J Pharm Sci ; 111(12): 3261-3274, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36096287

RESUMEN

The application of surfactants in liquid protein formulation is a common practice to protect proteins from liquid-air interface-induced protein aggregation. Typically, Polysorbate 20 or 80 are used, but degradation of these surfactants can result in particle formation and/or protein degradation. The purpose of the current study was to directly compare three alternative protein stabilizing molecules - Poloxamer 188, hydroxypropyl-cyclodextrin and a trehalose-based surfactant - to Polysorbate 80 for their capacities to reduce agitation-induced protein aggregation and particle formation; and furthermore, investigate their underlying protein stabilizing mechanisms. To this end, a small-volume, rapid agitation stress approach was used to quantify the molecules' abilities to stabilize two model proteins. This assay was presented to be a powerful tool to screen the protein stabilizing capability of surfactants using minimum of material and time. SEC, turbidity measurements and particle analysis showed an efficient protein stabilization of all tested surfactants as well as cyclodextrin. STD-NMR and dynamic surface tension measurements indicated the competitive surface adsorption to be the main protein stabilizing mechanism of the three surfactants tested. It might also play a role to some extent in the protein stabilization by HPßCD. However, additional mechanisms might also contribute to protein stabilization leaving room for further investigations.


Asunto(s)
Agregado de Proteínas , Tensoactivos , Tensoactivos/química , Polisorbatos/química , Excipientes/química , 2-Hidroxipropil-beta-Ciclodextrina , Proteínas/química
7.
J Pharm Sci ; 111(8): 2210-2216, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35533783

RESUMEN

Due to significant safety tolerances on maximum levels of visible and sub-visible particles in parenterally dosed drug products like monoclonal antibodies (mAbs), particle formation rates must be determined during development and minimized. Agitation stress, encountered during transportation and manufacturing, increases particle formation rates in a protein and formulation dependent fashion in a phenomenon thought to be partially mediated by mAb adsorption to the continuously regenerating air-water interface that results from agitation. The goal of this study was to explore the structural dynamics of three mAbs with variable sensitivity to agitation to develop a mechanistic understanding of exactly what occurs at the air-water interface that leads to aggregation and particle formation. We observed preferential orientation at the interface and subsequent cooperative unfolding for the molecule which aggregates most extensively under agitation, and also that the magnitude of destabilization appears to scale with particle formation rates. We also show that polysorbate, a widely-used excipient in parenteral formulations to protect against particle formation, eliminates interface-induced destabilization. This study provides direct evidence that local unfolding events resulting from interface exposure precede particle formation and may play a causal role in the process.


Asunto(s)
Anticuerpos Monoclonales , Antineoplásicos Inmunológicos , Adsorción , Anticuerpos Monoclonales/química , Hidrógeno , Espectrometría de Masas , Agua/química
8.
J Pharm Sci ; 111(7): 1918-1925, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34929157

RESUMEN

Stability is fundamental when exploring a drug candidate's potential as a drug product. During the pharmaceutical industry drug development process information regarding stability and degradation are captured in different departments, e.g. from discovery to operations, and will be included in the overall control strategy. With a profound understanding of a drug candidate's degradation chemistry, a science and risk based approach in progressing a lean stability strategy is possible. This case study present a clear and visible concept to facilitate a lean stability strategy by the use of degradation maps and describes a process for how these can be used during drug development. The understanding of possible and/or observed degradation pathways will guide the design of the drug product and stability studies in development. A degradation map displays degradation pathways with short comments on the reaction/mechanism involved. The degradation map process starts with a theoretical degradation map. The map is updated as the drug project progresses, preferably after forced degradation experiments, after compatibility studies and finally when the late stage formulation is set. The degradation map should be used to capture information of intrinsic chemical properties of the active pharmaceutical ingredient (API) and can thereby be used to mitigate stability issues. The map is foremost a cross-functionally available tool collecting and visualizing stability information throughout the development process, and as such a valuable tool to efficiently develop a lean stability strategy.


Asunto(s)
Desarrollo de Medicamentos , Industria Farmacéutica , Estabilidad de Medicamentos
9.
J Pharm Sci ; 110(1): 22-34, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33217423

RESUMEN

Several approaches to predict and model drug solubility have been used in the drug discovery and development processes during the last decades. Each of these approaches have their own benefits and place, and are typically used as standalone approaches rather than in concert. The synergistic effects of these are often overlooked, partly due to the need of computational experts to perform the modeling and simulations as well as analyzing the data obtained. Here we provide our views on how these different approaches can be used to retrieve more information on drug solubility, ranging from multivariate data analysis over thermodynamic cycle modeling to molecular dynamics simulations. We are discussing aqueous solubility as well as solubility in more complex mixed solvents and media with colloidal structures present. We conclude that the field of computational pharmaceutics is in its early days but with a bright future ahead. However, education of computational formulators with broad knowledge of modeling and simulation approaches is imperative if computational pharmaceutics is to reach its full potential.


Asunto(s)
Simulación de Dinámica Molecular , Agua , Solubilidad , Solventes , Termodinámica
10.
J Pharm Biomed Anal ; 194: 113776, 2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33272786

RESUMEN

Growth Hormone Releasing Peptide-6 (GHRP-6) is a promising molecule (H-His1-d-Trp- Ala-Trp-d-Phe-Lys6-NH2) for the treatment of several diseases. Studies on the degradation pathways of this molecule under stressed conditions are needed to develop appropriate formulations. Degradation products (DPs) of GHRP-6, generated by heating in the dark at 60 °C with pH ranging from 3.0 to 8.0 and in presence of common buffers, were isolated by RP-HPLC and characterized by ESI-MS/MS. C-terminal deamidation of GHRP-6 was generated preferentially at pH 3.0 and 8.0. Hydrolysis and head-to-tail cyclization were favored at pH ranging from 6.0 to 7.0 in phosphate containing buffers. A DP with +12 Da molecular mass was presumably originated by the reaction with formaldehyde derived from some of the additives and/or elastomeric closures. Certain DPs derived from the acylation reaction of the tri- and di-carboxylic buffering species were favored at pH 3.0-6.0 and indicate that buffer components, including those "Generally Recognized as Safe", may potentially introduce chemical modifications and product heterogeneity. Nano LC-MS/MS analysis revealed GHRP-6 was also detected as a low-abundance species with Trp oxidized to 5-hydroxy, kynurenine, and N-formylkynurenine. The kinetics for the formation of the major degradation products was also studied by RP-HPLC.


Asunto(s)
Hormona Liberadora de Hormona del Crecimiento , Espectrometría de Masas en Tándem , Concentración de Iones de Hidrógeno , Cinética , Oligopéptidos
11.
J Pharm Sci ; 110(8): 2966-2973, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33831441

RESUMEN

For the polymeric carriers of solid dispersions, it is important that carriers themselves dissolve quickly and maintain the supersaturated state of amorphous drugs during their dissolution period to improve bioavailability. Amphipathic 2-methacryloyloxyethyl phosphorylcholine (MPC) polymers can be dissolved in water, owing to the extremely high hydrophilicity of the MPC units, and are used as an ideal feeder for drug molecules to form aggregates in aqueous conditions. We synthesized amphipathic MPC copolymers with different hydrophobic side chains and molar ratios of MPC units, and evaluated the effect of the polymers on dissolution rate and supersaturation maintenance of solid dispersions of indomethacin. In most of the water-soluble amphipathic MPC copolymers, "spring-parachute"-like dissolution behavior was observed, where the drug initially became supersaturated followed by slow precipitation. In particular, MPC copolymers with aromatic rings in their side chains or polymers with a high percentage of hydrophobic units remained in a supersaturated state for a longer period. In contrast, urethane groups, which form hydrogen bonds with drug molecules, could also interact with water and were not conducive to maintaining supersaturation. In addition, water solubility of the polymer is important for rapid dissolution.


Asunto(s)
Preparaciones Farmacéuticas , Polímeros , Fosfolípidos , Solubilidad , Agua
12.
J Pharm Sci ; 109(1): 845-853, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31628922

RESUMEN

Silicone oil is a lubricant for prefilled syringes (PFS), a common primary container for biotherapeutics. Silicone oil particles (SiOP) shed from PFS are a concern for patients due to their potential for increased immunogenicity and therefore also of regulatory concern. To address the safety concern in a context of manufacturing and distribution of drug product (DP), SiOP was increased (up to ∼25,000 particles/mL) in PFS filled with mAb1, a fully human antibody drug, by simulated handling of DP mimicked by drop shock. These samples are characterized in a companion report (Jiao N et al. J Pharm Sci. 2020). The risk of immunogenicity was then assessed using in vitro and in vivo immune model systems. The impact of a common DP excipient, polysorbate 80, on both the formation and biological consequences of SiOP was also tested. SiOP was found associated with (1) minimal cytokine secretion from human peripheral blood mononuclear cells, (2) no response in cell lines that report NF-κB/AP-1 signaling, and (3) no antidrug antibodies or significant cytokine production in transgenic Xeno-het mice, whether or not mAb1 or polysorbate 80 was present. These results suggest that SiOP in mAb1, representative of real-world DP in PFS, poses no increased risk of immunogenicity.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Embalaje de Medicamentos , Inmunoglobulina G/farmacología , Leucocitos Mononucleares/efectos de los fármacos , Lubricantes/toxicidad , Macrófagos/efectos de los fármacos , Aceites de Silicona/toxicidad , Jeringas , Animales , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales/química , Citocinas/sangre , Composición de Medicamentos , Excipientes/administración & dosificación , Excipientes/química , Femenino , Humanos , Inmunoglobulina G/administración & dosificación , Inmunoglobulina G/química , Inyecciones Subcutáneas , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Lubricantes/administración & dosificación , Lubricantes/química , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , FN-kappa B/genética , FN-kappa B/metabolismo , Polisorbatos/administración & dosificación , Polisorbatos/química , Células RAW 264.7 , Aceites de Silicona/administración & dosificación , Células THP-1 , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/metabolismo
13.
J Pharm Sci ; 109(11): 3480-3489, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32791073

RESUMEN

Diverging physicochemical properties of HIV drug combinations are challenging to formulate as a single dosage form. We have found that 2-to-4 hydrophilic and hydrophobic HIV drugs in combination can be stabilized with lipid excipients under a controlled solvent removal process to form a novel pharmaceutical powder distinct from typical amorphous material. This discovery has enabled production of a drug combination nanoparticle (DcNP) powder composed of 3 HIV drugs-water-insoluble lopinavir (LogP = 4.7) and ritonavir (LogP = 5.6) and water-soluble tenofovir (LogP = -1.6). DcNP powder, exhibiting repeating units of multi-drug-motifs (referred to as MDM), is made by dissolving all constituents in ethanolic solution, followed by controlled solvent removal. The DcNP powder intersperses chemically diverse drug molecules with lipid excipients to form repeating MDM units. The proposed MDM structure is consistent with data collected with X-ray diffraction, differential calorimetry, and time-of-flight secondary ion mass spectrometry. The successful assembly of chemically diverse drugs in MDM structure is likely due to a novel process of making drug combination powders. The method described here has successfully extended to formulating other clinically prescribed antiviral drug combinations, and thus may serve as a platform technology for developing drug combination nanoparticles for treating a wide range of chronic diseases.


Asunto(s)
Excipientes , Ritonavir , Antivirales , Rastreo Diferencial de Calorimetría , Química Farmacéutica , Combinación de Medicamentos , Lopinavir , Microscopía Electrónica de Rastreo , Tamaño de la Partícula , Polvos , Solventes , Tenofovir , Difracción de Rayos X
14.
J Pharm Sci ; 109(12): 3636-3644, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32949563

RESUMEN

The aim of this study was to evaluate the processability of poly(vinyl alcohol) (PVA)-based filaments containing paracetamol (PAR) prepared by hot-melt extrusion for fused deposition modelling (FDM) 3D printing, as function of drug content (0-50%w/w) and storage conditions (temperature: 20-40 °C and humidity: 11-75%). Thermal (DSC), crystallographic (XRPD), spectroscopic (FTIR), moisture content and mechanical tests were used to characterize the filaments, whereas their ability to produce tablets was confirmed by printing. XRPD revealed the absence of crystalline PAR in the extruded filaments with <30% PAR and FTIR confirmed interactions between PAR and PVA. Mechanical tests have shown a higher brittleness of the filaments with increasing PAR, making them non-printable. Throughout storage, temperature and moisture increased the plasticity of the filaments, which was reflected by changes on their thermal and mechanical properties improving the feeding performance on the printer. Filaments stored at low moisture remained unsuitable for printing with amorphous PAR being preserved. Dissolution tests have shown that the release of PAR from printed tablets was independent of the storage time of the filaments. The study highlights the need for optimized storage conditions of filaments for FDM and the dependency on the drug's content in such filaments.


Asunto(s)
Acetaminofén , Liberación de Fármacos , Alcohol Polivinílico , Tecnología de Extrusión de Fusión en Caliente , Impresión Tridimensional , Comprimidos
15.
J Pharm Sci ; 108(8): 2552-2560, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30878514

RESUMEN

Levodopa (LEVO) as the gold standard in the treatment of Parkinson's disease is usually administrated per os but its bioavailability is low. The intranasal administration is a potential alternative route to increase bioavailability of the drug and treat the off period. Our aim was to develop LEVO-containing binary nasal powders with different excipients by dry cogrinding process. The interactions between the components were examined. The optimized cogrinding process parameters (LEVO:excipient ratio and grinding time) resulted in the desired particle size range (5-40 µm). The α-cyclodextrin and poly(vinylpyrrolidone) (PVP) had an intensive crystallinity degree reducing effect on LEVO measured by XRPD, and they functioned as cogrinding agents. Hydroxypropyl methylcellulose, poly (vinyl alcohol) (PVA), and D-mannitol associate around the LEVO crystals preventing its crystalline structure. Hydrogen bonding was detected only for LEVO-PVP and LEVO-D-mannitol used Fourier-transformed infrared spectroscopy. Chemical degradation of LEVO in the products was not detected even after the accelerated stability test. The dissolution profile of the products can be characterized by the first-order kinetic model with different dissolution rate. The dissolution rate of LEVO was increased with α-cyclodextrin and PVP, and the drug release decreased in the case of hydroxypropyl methylcellulose, PVA, and D-mannitol compared to the LEVO powder.


Asunto(s)
Antiparkinsonianos/química , Excipientes/química , Levodopa/química , Administración Intranasal , Antiparkinsonianos/administración & dosificación , Cristalización , Composición de Medicamentos , Liberación de Fármacos , Excipientes/administración & dosificación , Derivados de la Hipromelosa/administración & dosificación , Derivados de la Hipromelosa/química , Levodopa/administración & dosificación , Manitol/administración & dosificación , Manitol/química , Povidona/administración & dosificación , Povidona/química , Solubilidad , alfa-Ciclodextrinas/administración & dosificación , alfa-Ciclodextrinas/química
16.
J Pharm Sci ; 108(7): 2447-2457, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30853513

RESUMEN

Chlorhexidine (CLX) is a wide spectrum cationic antimicrobial used for prevention and treatment of infections of buccal and vaginal cavities. To increase the residence time of CLX-based formulations at the application site and consequently reduce the daily dose frequency, new formulations composed of mucoadhesive polymers should be designed. The objective of this work was the development of matrices based on polyanionic polymers, such as sodium alginate, carboxymethylcellulose, xanthan gum and sodium hyaluronate, aimed to prolong the local release of CLX into the buccal or vaginal cavity. Matrices were prepared by freeze-drying and comply with 2 different preparative methods and characterized in terms of resistance to compression, water uptake ability, mucoadhesion, in vitro drug release behavior and antimicrobial activity toward representative pathogens of buccal and vaginal cavities. Results showed that the selection of suitable polymers associated to the adequate preparative method allowed to modulate matrix ability to hydrate, adhere to the mucosa and release the drug as well as to exert antimicrobial activity. In particular, matrix based on sodium hyaluronate was found to be the best performing formulation and could represent a versatile system for local release of CLX with potential application in both buccal and vaginal cavities.


Asunto(s)
Clorhexidina/química , Polímeros/química , Adhesividad , Administración Bucal , Administración Intravaginal , Animales , Antiinfecciosos/química , Sistemas de Liberación de Medicamentos/métodos , Liberación de Fármacos , Femenino , Liofilización/métodos , Ácido Hialurónico/química , Mucosa Bucal/metabolismo , Polielectrolitos , Porcinos , Vagina/metabolismo
17.
J Pharm Sci ; 108(1): 205-213, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30395831

RESUMEN

An iconic textbook that pharmaceutical scientists encounter in undergraduate courses is "Martin's Physical Pharmacy and Pharmaceutical Sciences." Within the chapter on Colloids, a figure indicates the location of solubilization of molecules within spherical, nonionic surfactant micelles. The surfactant consists of polyethylene glycol (PEG) hydrophilic headgroups and alkane chains for the hydrophobic tail. The figure shows benzene and toluene within the alkane core, salicylic acid (2-hydroxybenzoic acid) at the interface between the core and PEG chains, and then para-hydroxybenzoic acid (4-hydroxybenzoic acid) located between the PEG chains. Molecular dynamics simulations of octaethylene glycol monododecyl ether micelles were performed with a series of probe molecules, including those within the Martin's figure, to determine their solubilization location. Relative placement of molecules within the micelle was correct; however, some specifics were different. In particular, benzene and toluene are excluded from the core, and 4-hydroxybenzoic acid prefers to maintain contact with the core. A series of molecules containing 6 carbon atoms were also studied to determine the effects of cyclization (moves out of core), polar functionalization (anchored to interface), and aromatization (excluded from central core). Molecular dynamics was found to be a useful tool for gaining insight into interactions important in solubilization of molecules.


Asunto(s)
Micelas , Modelos Químicos , Simulación de Dinámica Molecular , Sondas Moleculares/química , Química Farmacéutica , Solubilidad , Tensoactivos/química
18.
J Pharm Sci ; 108(1): 178-186, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30395836

RESUMEN

Hydrogen bonds (HBs) in amorphous solid dispersions may influence physical stability through effects on both drug miscibility and mobility. Amorphous solid dispersions containing the HB-donor ibuprofen (IBP) alone or with one of four model polymers (poly(vinyl pyrrolidone) [PVP], poly(vinyl pyrrolidone/vinyl acetate) [PVP/VA], poly(vinyl acetate) [PVA], or polystyrene [PST]) were monitored by molecular dynamics simulation. HB distributions and contributions of electrostatic, van der Waals, and internal interactions to miscibility and mobility were analyzed versus drug concentration. The probability of IBP-IBP HBs decreases markedly (0.6→0.0) with dilution (100→10% drug) in PVP due to IBP-PVP HBs while dilution in the nonpolar PST has a more modest effect on IBP-IBP HB probability (0.6→0.3). Concentration-dependent Flory-Huggins interaction parameters (χ) were determined to assess drug-polymer miscibility. χIBP-PVP values were -0.9 to -1.8 with a plateau near 50% w/w PVP, whereas χIBP-PST fluctuated near zero (-0.1 to 0.3), suggesting that IBP is more soluble in PVP than in PST. χIBP-polymer values in polymers varying in pyrrolidone/acetate composition were in the order PVP (most favorable) > PVP/VA > PVA (least favorable). Decreased local mobility of IBP measured by the atomic fluctuation correlates with more IBP-PVP HBs with increasing PVP content. The opposite trend in IBP-PST may arise from IBP-IBP HB disruption on dilution.


Asunto(s)
Composición de Medicamentos/métodos , Excipientes/química , Ibuprofeno/química , Poliestirenos/química , Pirrolidinas/química , Compuestos de Vinilo/química , Cristalización , Enlace de Hidrógeno , Simulación de Dinámica Molecular , Solubilidad
19.
J Pharm Sci ; 108(4): 1404-1414, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30528197

RESUMEN

Physicochemical properties of peptides need to be compatible with the manufacturing process and formulation requirements to ensure developability toward the commercial drug product. This aspect is often disregarded and only evaluated late in discovery, imposing a high risk for delays in development, increased costs, and finally for the project in general. Here, we report a case study of early physicochemical peptide characterization and optimization of dual glucagon-like peptide 1/glucagon receptor agonists toward specific formulation requirements. Aggregation issues which were observed at acidic pH in the presence of phenolic preservatives could be eliminated by modification of the peptide sequence, and chemical stability issues were significantly improved by addition of stabilizing formulation excipients. We describe structural, analytical, and biophysical characterization in different compositions to analyze the effect of pH and formulation excipients on physical and chemical stability. Molecular models have been generated to rationalize peptide stability behavior based on computed physicochemical descriptors and interactions with excipients. To conclude these studies, a general roadmap is proposed how to assess and optimize early physicochemical peptide properties in a sophisticated way by combining experimental and in silico profiling to provide stable peptide drugs under relevant formulation conditions at the end of discovery.


Asunto(s)
Desarrollo de Medicamentos/métodos , Descubrimiento de Drogas/métodos , Péptidos/química , Simulación por Computador , Estabilidad de Medicamentos , Excipientes/química , Péptido 1 Similar al Glucagón/agonistas , Concentración de Iones de Hidrógeno , Simulación de Dinámica Molecular , Péptidos/farmacología , Conservadores Farmacéuticos/química , Receptores de Glucagón/agonistas
20.
J Pharm Sci ; 108(3): 1227-1235, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30385287

RESUMEN

Overencapsulation is a technique used to conceal tablet products for blinding in randomized controlled trials. A tablet is inserted in an opaque capsule shell with backfill excipient to prevent rattling. Regulatory authorities require evidence that such modification does not materially alter drug release to approve their use in trials. The objective of this study was to assess impact of overencapsulation on disintegration and dissolution of 4 immediate-release drug products (penicillin V, gemfibrozil, ciprofloxacin, and furosemide). Each unmodified tablet was compared to 3 overencapsulated tablets with differing backfill excipient (colloidal silica, lactose monohydrate, or microcrystalline cellulose). All 12 overencapsulated tablets met disintegration and dissolution acceptance criteria. Dissolution acceptance was dependent on apparatus as only 4/12 formulations met specifications using the rotating basket compared to 12/12 using the rotating paddle. Significant differences in release were observed at early time points (T5-T15). No correlation was observed between aqueous solubility and release, although dissolution of the lipophilic drug gemfibrozil was least impacted by overencapsulation. There was evidence that type/quantity of backfill delays release at early time points. These findings indicate that under the specified conditions, overencapsulated formulations of 4 drugs, 1 from each class of the Biopharmaceutics Classification System, met compendial requirements for release testing.


Asunto(s)
Composición de Medicamentos/métodos , Liberación de Fármacos , Excipientes/química , Ensayos Clínicos Controlados Aleatorios como Asunto , Química Farmacéutica , Ciprofloxacina/química , Ciprofloxacina/farmacocinética , Furosemida/química , Furosemida/farmacocinética , Gemfibrozilo/química , Gemfibrozilo/farmacocinética , Penicilina V/química , Penicilina V/farmacocinética , Solubilidad , Comprimidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA