Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 581
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 174(5): 1200-1215.e20, 2018 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-30100187

RESUMEN

Nuclear pore complexes (NPCs) regulate nuclear-cytoplasmic transport, transcription, and genome integrity in eukaryotic cells. However, their functional roles in cancer remain poorly understood. We interrogated the evolutionary transcriptomic landscape of NPC components, nucleoporins (Nups), from primary to advanced metastatic human prostate cancer (PC). Focused loss-of-function genetic screen of top-upregulated Nups in aggressive PC models identified POM121 as a key contributor to PC aggressiveness. Mechanistically, POM121 promoted PC progression by enhancing importin-dependent nuclear transport of key oncogenic (E2F1, MYC) and PC-specific (AR-GATA2) transcription factors, uncovering a pharmacologically targetable axis that, when inhibited, decreased tumor growth, restored standard therapy efficacy, and improved survival in patient-derived pre-clinical models. Our studies molecularly establish a role of NPCs in PC progression and give a rationale for NPC-regulated nuclear import targeting as a therapeutic strategy for lethal PC. These findings may have implications for understanding how NPC deregulation contributes to the pathogenesis of other tumor types.


Asunto(s)
Factor de Transcripción E2F1/metabolismo , Glicoproteínas de Membrana/metabolismo , Poro Nuclear/fisiología , Neoplasias de la Próstata/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factores de Transcripción/metabolismo , Transporte Activo de Núcleo Celular , Carcinogénesis , Núcleo Celular/metabolismo , Proliferación Celular , Factor de Transcripción GATA2/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Membrana Nuclear , Proteínas de Complejo Poro Nuclear , Transducción de Señal
2.
Mol Cell ; 74(6): 1264-1277.e7, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-31130363

RESUMEN

E2F1, E2F2, and E2F3A, the three activators of the E2F family of transcription factors, are key regulators of the G1/S transition, promoting transcription of hundreds of genes critical for cell-cycle progression. We found that during late S and in G2, the degradation of all three activator E2Fs is controlled by cyclin F, the substrate receptor of 1 of 69 human SCF ubiquitin ligase complexes. E2F1, E2F2, and E2F3A interact with the cyclin box of cyclin F via their conserved N-terminal cyclin binding motifs. In the short term, E2F mutants unable to bind cyclin F remain stable throughout the cell cycle, induce unscheduled transcription in G2 and mitosis, and promote faster entry into the next S phase. However, in the long term, they impair cell fitness. We propose that by restricting E2F activity to the S phase, cyclin F controls one of the main and most critical transcriptional engines of the cell cycle.


Asunto(s)
Ciclo Celular/genética , Ciclinas/genética , Factor de Transcripción E2F1/genética , Factor de Transcripción E2F2/genética , Factor de Transcripción E2F3/genética , Proteínas Ligasas SKP Cullina F-box/genética , Transcripción Genética , Línea Celular Tumoral , Ciclinas/metabolismo , Factor de Transcripción E2F1/metabolismo , Factor de Transcripción E2F2/metabolismo , Factor de Transcripción E2F3/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Regulación de la Expresión Génica , Aptitud Genética , Células HEK293 , Células HeLa , Humanos , Mutación , Osteoblastos/citología , Osteoblastos/metabolismo , Proteolisis , Proteínas Ligasas SKP Cullina F-box/metabolismo , Transducción de Señal , Ubiquitinación
3.
Development ; 150(11)2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37260146

RESUMEN

The cell cycle depends on a sequence of steps that are triggered and terminated via the synthesis and degradation of phase-specific transcripts and proteins. Although much is known about how stage-specific transcription is activated, less is understood about how inappropriate gene expression is suppressed. Here, we demonstrate that Groucho, the Drosophila orthologue of TLE1 and other related human transcriptional corepressors, regulates normal cell cycle progression in vivo. We show that, although Groucho is expressed throughout the cell cycle, its activity is selectively inactivated by phosphorylation, except in S phase when it negatively regulates E2F1. Constitutive Groucho activity, as well as its depletion and the consequent derepression of e2f1, cause cell cycle phenotypes. Our results suggest that Cdk1 contributes to phase-specific phosphorylation of Groucho in vivo. We propose that Groucho and its orthologues play a role in the metazoan cell cycle that may explain the links between TLE corepressors and several types of human cancer.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Proteínas de Drosophila , Factor de Transcripción E2F1 , Proteínas Represoras , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Ciclo Celular/genética , Proteínas Co-Represoras/genética , Proteínas Co-Represoras/metabolismo , Drosophila/metabolismo , Factor de Transcripción E2F1/genética , Factor de Transcripción E2F1/metabolismo , Fase G2 , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Fase S , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
4.
J Pathol ; 264(1): 68-79, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39022843

RESUMEN

Metastasis is the primary culprit behind cancer-related fatalities in multiple cancer types, including prostate cancer. Despite great advances, the precise mechanisms underlying prostate cancer metastasis are far from complete. By using a transgenic mouse prostate cancer model (TRAMP) with and without Phf8 knockout, we have identified a crucial role of PHF8 in prostate cancer metastasis. By complexing with E2F1, PHF8 transcriptionally upregulates SNAI1 in a demethylation-dependent manner. The upregulated SNAI1 subsequently enhances epithelial-to-mesenchymal transition (EMT) and metastasis. Given the role of the abnormally activated PHF8/E2F1-SNAI1 axis in prostate cancer metastasis and poor prognosis, the levels of PHF8 or the activity of this axis could serve as biomarkers for prostate cancer metastasis. Moreover, targeting this axis could become a potential therapeutic strategy for prostate cancer treatment. © 2024 The Pathological Society of Great Britain and Ireland.


Asunto(s)
Factor de Transcripción E2F1 , Transición Epitelial-Mesenquimal , Histona Demetilasas , Neoplasias de la Próstata , Factores de Transcripción de la Familia Snail , Factores de Transcripción , Masculino , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/enzimología , Animales , Factores de Transcripción de la Familia Snail/metabolismo , Factores de Transcripción de la Familia Snail/genética , Humanos , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Factor de Transcripción E2F1/metabolismo , Factor de Transcripción E2F1/genética , Ratones , Histona Demetilasas/metabolismo , Histona Demetilasas/genética , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Ratones Noqueados , Transducción de Señal , Metástasis de la Neoplasia , Ratones Transgénicos , Movimiento Celular
5.
Exp Cell Res ; 435(2): 113931, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38253280

RESUMEN

The mortality rate linked with nephrotic syndrome (NS) is quite high. The renal tubular injury influences the response of NS patients to steroid treatment. KN motif and ankyrin repeat domains 2 (KANK2) regulates actin polymerization, which is required for renal tubular cells to maintain their function. In this study, we found that the levels of KANK2 in patients with NS were considerably lower than those in healthy controls, especially in NS patients with acute kidney injury (AKI). To get a deeper understanding of the KANK2 transcriptional control mechanism, the core promoter region of the KANK2 gene was identified. KANK2 was further found to be positively regulated by E2F Transcription Factor 1 (E2F1), Transcription Factor AP-2 Gamma (TFAP2C), and Nuclear Respiratory Factor 1 (NRF1), both at mRNA and protein levels. Knocking down E2F1, TFAP2C, or NRF1 deformed the cytoskeleton of renal tubular cells and reduced F-actin content. EMSA and ChIP assays confirmed that all three transcription factors could bind to the upstream promoter transcription site of KANK2 to transactivate KANK2 in renal tubular epithelial cells. Our study suggests that E2F1, TFAP2C, and NRF1 play essential roles in regulating the KANK2 transcription, therefore shedding fresh light on the development of putative therapeutic options for the treatment of NS patients.


Asunto(s)
Síndrome Nefrótico , Factor Nuclear 1 de Respiración , Humanos , Factor Nuclear 1 de Respiración/metabolismo , Síndrome Nefrótico/genética , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica , Regiones Promotoras Genéticas/genética , Factor de Transcripción E2F1/genética , Factor de Transcripción AP-2/genética
6.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35074910

RESUMEN

E2F transcription factors are master regulators of the eukaryotic cell cycle. In Drosophila, the sole activating E2F, E2F1, is both required for and sufficient to promote G1→S progression. E2F1 activity is regulated both by binding to RB Family repressors and by posttranscriptional control of E2F1 protein levels by the EGFR and TOR signaling pathways. Here, we investigate cis-regulatory elements in the E2f1 messenger RNA (mRNA) that enable E2f1 translation to respond to these signals and promote mitotic proliferation of wing imaginal disc and intestinal stem cells. We show that small upstream open reading frames (uORFs) in the 5' untranslated region (UTR) of the E2f1 mRNA limit its translation, impacting rates of cell proliferation. E2f1 transgenes lacking these 5'UTR uORFs caused TOR-independent expression and excess cell proliferation, suggesting that TOR activity can bypass uORF-mediated translational repression. EGFR signaling also enhanced translation but through a mechanism less dependent on 5'UTR uORFs. Further, we mapped a region in the E2f1 mRNA that contains a translational enhancer, which may also be targeted by TOR signaling. This study reveals translational control mechanisms through which growth signaling regulates cell cycle progression.


Asunto(s)
Ciclo Celular/genética , Proteínas de Drosophila/metabolismo , Drosophila/genética , Drosophila/metabolismo , Regulación de la Expresión Génica , Biosíntesis de Proteínas , Factores de Transcripción/metabolismo , Animales , Biomarcadores , Proliferación Celular , Técnica del Anticuerpo Fluorescente , Mitosis , Sistemas de Lectura Abierta , Procesamiento Postranscripcional del ARN , Estrés Fisiológico/genética , Regiones no Traducidas , Alas de Animales/metabolismo
7.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35115400

RESUMEN

Stem cells constantly divide and differentiate to maintain adult tissue homeostasis, and uncontrolled stem cell proliferation leads to severe diseases such as cancer. How stem cell proliferation is precisely controlled remains poorly understood. Here, from an RNA interference (RNAi) screen in adult Drosophila intestinal stem cells (ISCs), we identify a factor, Yun, required for proliferation of normal and transformed ISCs. Yun is mainly expressed in progenitors; our genetic and biochemical evidence suggest that it acts as a scaffold to stabilize the Prohibitin (PHB) complex previously implicated in various cellular and developmental processes and diseases. We demonstrate that the Yun/PHB complex is regulated by and acts downstream of EGFR/MAPK signaling. Importantly, the Yun/PHB complex interacts with and positively affects the levels of the transcription factor E2F1 to regulate ISC proliferation. In addition, we find that the role of the PHB complex in cell proliferation is evolutionarily conserved. Thus, our study uncovers a Yun/PHB-E2F1 regulatory axis in stem cell proliferation.


Asunto(s)
Células Madre Adultas/metabolismo , Proliferación Celular/fisiología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Factor de Transcripción E2F1/metabolismo , Intestinos/metabolismo , Prohibitinas/metabolismo , Animales , Animales Modificados Genéticamente , Diferenciación Celular/fisiología , Homeostasis/fisiología , Interferencia de ARN/fisiología , Transducción de Señal/fisiología
8.
J Biol Chem ; 299(10): 105236, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37690684

RESUMEN

The protein lysine methyltransferase SET domain-containing protein 6 (SETD6) has been shown to influence different cellular activities and to be critically involved in the regulation of diverse developmental and pathological processes. However, the upstream signals that regulate the mRNA expression of SETD6 are not known. Bioinformatic analysis revealed that the SETD6 promoter has a binding site for the transcription factor E2F1. Using various experimental approaches, we show that E2F1 binds to the SETD6 promoter and regulates SETD6 mRNA expression. Our further observation that this phenomenon is SETD6 dependent suggested that SETD6 and E2F1 are linked. We next demonstrate that SETD6 monomethylates E2F1 specifically at K117 in vitro and in cells. Finally, we show that E2F1 methylation at K117 positively regulates the expression level of SETD6 mRNA. Depletion of SETD6 or overexpression of E2F1 K117R mutant, which cannot be methylated by SETD6, reverses the effect. Taken together, our data provide evidence for a positive feedback mechanism, which regulates the expression of SETD6 by E2F1 in a SETD6 methylation-dependent manner, and highlight the importance of protein lysine methyltransferases and lysine methylation signaling in the regulation of gene transcription.

9.
Cancer Sci ; 115(7): 2269-2285, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38720175

RESUMEN

Dysregulation of long noncoding RNA (lncRNA) expression plays a pivotal role in the initiation and progression of gastric cancer (GC). However, the regulation of lncRNA SNHG15 in GC has not been well studied. Mechanisms for ferroptosis by SNHG15 have not been revealed. Here, we aimed to explore SNHG15-mediated biological functions and underlying molecular mechanisms in GC. The novel SNHG15 was identified by analyzing RNA-sequencing (RNA-seq) data of GC tissues from our cohort and TCGA dataset, and further validated by qRT-PCR in GC cells and tissues. Gain- and loss-of-function assays were performed to examine the role of SNHG15 on GC both in vitro and in vivo. SNHG15 was highly expressed in GC. The enhanced SNHG15 was positively correlated with malignant stage and poor prognosis in GC patients. Gain- and loss-of-function studies showed that SNHG15 was required to affect GC cell growth, migration and invasion both in vitro and in vivo. Mechanistically, the oncogenic transcription factors E2F1 and MYC could bind to the SNHG15 promoter and enhance its expression. Meanwhile, SNHG15 increased E2F1 and MYC mRNA expression by sponging miR-24-3p. Notably, SNHG15 could also enhance the stability of SLC7A11 in the cytoplasm by competitively binding HNRNPA1. In addition, SNHG15 inhibited ferroptosis through an HNRNPA1-dependent regulation of SLC7A11/GPX4 axis. Our results support a novel model in which E2F1- and MYC-activated SNHG15 regulates ferroptosis via an HNRNPA1-dependent modulation of the SLC7A11/GPX4 axis, which serves as the critical effectors in GC progression, and provides a new therapeutic direction in the treatment of GC.


Asunto(s)
Sistema de Transporte de Aminoácidos y+ , Progresión de la Enfermedad , Ferroptosis , Regulación Neoplásica de la Expresión Génica , Ribonucleoproteína Nuclear Heterogénea A1 , Fosfolípido Hidroperóxido Glutatión Peroxidasa , ARN Largo no Codificante , Neoplasias Gástricas , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Neoplasias Gástricas/metabolismo , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Ribonucleoproteína Nuclear Heterogénea A1/metabolismo , Ribonucleoproteína Nuclear Heterogénea A1/genética , Animales , Línea Celular Tumoral , Ratones , Ferroptosis/genética , Masculino , Sistema de Transporte de Aminoácidos y+/genética , Sistema de Transporte de Aminoácidos y+/metabolismo , Femenino , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Proliferación Celular/genética , Factor de Transcripción E2F1/metabolismo , Factor de Transcripción E2F1/genética , Movimiento Celular/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Persona de Mediana Edad , Pronóstico , Ratones Desnudos , Transducción de Señal/genética , Retroalimentación Fisiológica
10.
Development ; 148(1)2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33441379

RESUMEN

Cryptorchidism is the most common urologic birth defect in men and is a predisposing factor of male infertility and testicular cancer, yet the etiology remains largely unknown. E2F1 microdeletions and microduplications contribute to cryptorchidism, infertility and testicular tumors. Although E2f1 deletion or overexpression in mice causes spermatogenic failure, the mechanism by which E2f1 influences testicular function is unknown. This investigation revealed that E2f1-null mice develop cryptorchidism with severe gubernacular defects and progressive loss of germ cells resulting in infertility and, in rare cases, testicular tumors. It was hypothesized that germ cell depletion resulted from an increase in WNT4 levels. To test this hypothesis, the phenotype of a double-null mouse model lacking both Wnt4 and E2f1 in germ cells was analyzed. Double-null mice are fertile. This finding indicates that germ cell maintenance is dependent on E2f1 repression of Wnt4, supporting a role for Wnt4 in germ cell survival. In the future, modulation of WNT4 expression in men with cryptorchidism and spermatogenic failure due to E2F1 copy number variations may provide a novel approach to improve their spermatogenesis and perhaps their fertility potential after orchidopexy.


Asunto(s)
Factor de Transcripción E2F1/metabolismo , Espermatogénesis , Testículo/metabolismo , Proteína Wnt4/metabolismo , Envejecimiento/patología , Animales , Animales Recién Nacidos , Barrera Hematotesticular/patología , Ciclo Celular/genética , Criptorquidismo/genética , Criptorquidismo/patología , Factor de Transcripción E2F1/deficiencia , Fertilidad , Regulación de la Expresión Génica , Masculino , Ratones Endogámicos C57BL , Modelos Biológicos , Transducción de Señal , Espermatozoides/metabolismo , Testículo/patología
11.
BMC Cancer ; 24(1): 214, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360622

RESUMEN

BACKGROUND: Laryngeal squamous cell carcinoma (LSCC) is one of the most common types of cancer in the upper respiratory tract. It is well-known that it has a high mortality rate and poor prognosis in advanced stages. There are well-known risk factors for LSCC, though new specific and prognostic blood-based markers for LSCC development and prognosis are essential. The current study aimed to evaluate the impact of four different single nucleotide polymorphisms (SNPs), E2F1 (rs3213183 and rs3213180) and E2F2 (rs2075993 and rs3820028), on LSCC development, morphological features, and patient 5-year survival rate. METHODS: A total of 200 LSCC patients and 200 controls were included in this study; both groups were matched by age and sex. In the present study, we analyzed four single nucleotide polymorphisms (SNPs) in the genes E2F1 (rs3213183 and rs3213180) and E2F2 (rs2075993 and rs3820028) and evaluated their associations with the risk of LSCC development, its clinical and morphological manifestation, and patients 5-year survival rate. Genotyping was carried out using RT-PCR. RESULTS: None of the analyzed SNPs showed a direct association with LSCC development. E2F2 rs2075993 G allele carriers (OR = 4.589, 95% CI 1.050-20.051, p = 0.043) and rs3820028 A allele carriers (OR = 4.750, 95% CI 1.088-20.736, p = 0.038) had a statistically significantly higher risk for poor differentiated or undifferentiated LSCC than non-carriers. E2F1 rs3213180 GC heterozygotes were found to have a 3.7-fold increased risk for lymph node involvement (OR = 3.710, 95% CI 1.452-9.479, p = 0.006). There was no statistically significant association between investigated SNPs and patient 5-year survival rate. CONCLUSIONS: The present study indicates that E2F2 rs2075993 and rs3820028 impact LSCC differentiation, whereas E2F1 rs3213180 - on lymph node involvement.


Asunto(s)
Factor de Transcripción E2F1 , Factor de Transcripción E2F2 , Neoplasias Laríngeas , Carcinoma de Células Escamosas de Cabeza y Cuello , Humanos , Factor de Transcripción E2F1/genética , Factor de Transcripción E2F2/genética , Neoplasias Laríngeas/genética , Neoplasias Laríngeas/patología , Polimorfismo de Nucleótido Simple , Pronóstico , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/patología
12.
BMC Cancer ; 24(1): 635, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38783241

RESUMEN

BACKGROUND: Lung adenocarcinoma (LUAD) is a non-small cell carcinoma. Ribonuclease/angiogenin inhibitor 1 (RNH1) exerts multiple roles in virous cancers. E2F1 is a critical transcription factor involved in the LUAD development. Here, we analyze the expression of RNH1 in LUAD patients, investigate the biological function of RNH1 in LUAD, and demonstrate its potential mechanisms through E2F1 in LUAD. METHODS: In the present study, we presented the expression of RNH1 in LUAD based on the database and confirmed it by western blot detection of RNH1 in human LUAD tissues. Lentiviral infection was constructed to silence or overexpress RNH1 in NCI-H1395 and NCI-H1437 cells. We assess the role of RNH1 on proliferation in LUAD cells by MTT assay, colony formation assays, and cell cycle detection. Hoechst staining and flow cytometry were used to evaluate the effects of RNH1 on apoptosis of LUAD cells. The function of RNH1 in invasion and migration was investigated by Transwell assay. Dual luciferase assay, ChIP detection, and pull-down assay were conducted to explore the association of E2F1 in the maintenance of RNH1 expression and function. The regulation of E2F1 on the functions of RNH1 in LUAD cells was explored. Mouse experiments were performed to confirm the in-vivo role of RNH1 in LUAD. mRNA sequencing indicated that RNH1 overexpression altered the expression profile of LUAD cells. RESULTS: RNH1 expression in LUAD tissues of patients was presented in this work. Importantly, RNH1 knockdown improved the proliferation, migration and invasion abilities of cells and RNH1 overexpression produced the opposite effects. Dual luciferase assay proved that E2F1 bound to the RNH1 promoter (-1064 ∼ -1054, -1514 ∼ -1504) to reduce the transcriptional activity of RNH1. ChIP assay indicated that E2F1 DNA was enriched at the RNH1 promoter (-1148 ∼ -943, -1628 ∼ -1423). Pull-down assays also showed the association between E2F1 and RNH1 promoter (-1148 ∼ -943). E2F1 overexpression contributed to the malignant behavior of LUAD cells, while RNH1 overexpression reversed it. High-throughput sequencing showed that RNH1 overexpression induced multiple genes expression changes, thereby modulating LUAD-related processes. CONCLUSION: Our study demonstrates that binding of E2F1 to the RNH1 promoter may lead to inhibition of RNH1 expression and thus promoting the development of LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Apoptosis , Movimiento Celular , Proliferación Celular , Factor de Transcripción E2F1 , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares , Animales , Femenino , Humanos , Masculino , Ratones , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/metabolismo , Apoptosis/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Factor de Transcripción E2F1/metabolismo , Factor de Transcripción E2F1/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ratones Desnudos
13.
Calcif Tissue Int ; 114(6): 625-637, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38643416

RESUMEN

Loss of p21 leads to increased bone formation post-injury; however, the mechanism(s) by which this occurs remains undetermined. E2f1 is downstream of p21 and as a transcription factor can act directly on gene expression; yet it is unknown if E2f1 plays a role in the osteogenic effects observed when p21 is differentially regulated. In this study we aimed to investigate the interplay between p21 and E2f1 and determine if the pro-regenerative osteogenic effects observed with the loss of p21 are E2f1 dependent. To accomplish this, we employed knockout p21 and E2f1 mice and additionally generated a p21/E2f1 double knockout. These mice underwent burr-hole injuries to their proximal tibiae and healing was assessed over 7 days via microCT imaging. We found that p21 and E2f1 play distinct roles in bone regeneration where the loss of p21 increased trabecular bone formation and loss of E2f1 increased cortical bone formation, yet loss of E2f1 led to poorer bone repair overall. Furthermore, when E2f1 was absent, either individually or simultaneously with p21, there was a dramatic decrease of the number of osteoblasts, osteoclasts, and chondrocytes at the site of injury compared to p21-/- and C57BL/6 mice. Together, these results suggest that E2f1 regulates the cell populations required for bone repair and has a distinct role in bone formation/repair compared to p21-/-E2f1-/-. These results highlight the possibility of cell cycle and/or p21/E2f1 being potential druggable targets that could be leveraged in clinical therapies to improve bone healing in pathologies such as osteoporosis.


Asunto(s)
Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Factor de Transcripción E2F1 , Osteogénesis , Animales , Ratones , Regeneración Ósea/fisiología , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Factor de Transcripción E2F1/metabolismo , Factor de Transcripción E2F1/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Osteoblastos/metabolismo , Osteogénesis/fisiología
14.
J Pathol ; 260(4): 402-416, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37272544

RESUMEN

Homeobox genes include HOX and non-HOX genes. HOX proteins play fundamental roles during ontogenesis by interacting with other non-HOX gene-encoded partners and performing transcriptional functions, whereas aberrant activation of HOX family members drives tumorigenesis. In this study, gastric cancer (GC) expression microarray data indicated that HOXB9 is a prominent upregulated HOX member in GC samples significantly associated with clinical outcomes and advanced TNM stages. However, the functional role of HOXB9 in GC remains contradictory in previous reports, and the regulatory mechanisms are elusive. By in silico and experimental analyses, we found that HOXB9 was upregulated by a vital cell cycle-related transcription factor, E2F1. Depleting HOXB9 causes G1-phase cell cycle arrest by downregulating CDK6 and a subset of cell cycle-related genes. Meanwhile, HOXB9 contributes to cell division and maintains the cytoskeleton in GC cells. We verified that HOXB9 interacts with PBX2 to form a heterodimer, which transcriptionally upregulates CDK6. Knocking down CDK6 can phenocopy the tumor-suppressive effects caused by HOXB9 depletion. Blocking HOXB9 can enhance the anti-tumor effect of CDK6 inhibitors. In conclusion, we elucidate the oncogenic role of HOXB9 in GC and reveal CDK6 as its potent downstream effector. The E2F1-HOXB9/PBX2-CDK6 axis represents a novel mechanism driving gastric carcinogenesis and conveys prognostic and therapeutic implications. © 2023 The Pathological Society of Great Britain and Ireland.


Asunto(s)
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patología , Genes Homeobox , Línea Celular Tumoral , Carcinogénesis/patología , Factores de Transcripción/genética , Transformación Celular Neoplásica/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Regulación Neoplásica de la Expresión Génica , Proliferación Celular/fisiología , Proteínas Proto-Oncogénicas/genética , Factor de Transcripción E2F1/genética , Factor de Transcripción E2F1/metabolismo
15.
J Biochem Mol Toxicol ; 38(1): e23594, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38050438

RESUMEN

The role of LINC01703 in cancers, especially in colorectal cancer (CRC), is still largely unclear. Bioinformatics prediction, real-time quantitative polymerase chain reaction (RT-qPCR), 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT) assay, colony formation assay, Transwell assays, in vivo animal experiments, IF, luciferase reporter assay, and Western blot were carried out for the exploration of the potential involvement and underlying molecular mechanisms of LINC01703 in CRC cells. The results showed that LINC01703 appeared upregulated in CRC and was linked to poor prognosis. LINC01703 acted as an oncogene in both in vitro and in vivo CRC cell environments. LINC01703 activated the PI3K/AKT signaling pathway by mediating the miR-205-5p/E2F1 axis in CRC. In summary, LINC01703 possesses an oncogenic function and can be a possible biomarker or target to treat CRC.


Asunto(s)
Neoplasias Colorrectales , MicroARNs , ARN Largo no Codificante , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Invasividad Neoplásica , MicroARNs/genética , MicroARNs/metabolismo , Movimiento Celular/genética
16.
Proc Natl Acad Sci U S A ; 118(44)2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34716260

RESUMEN

The p53 tumor suppressor protein, known to be critically important in several processes including cell-cycle arrest and apoptosis, is highly regulated by multiple mechanisms, most certifiably the Murine Double Minute 2-Murine Double Minute X (MDM2-MDMX) heterodimer. The role of MDM2-MDMX in cell-cycle regulation through inhibition of p53 has been well established. Here we report that in cells either lacking p53 or expressing certain tumor-derived mutant forms of p53, loss of endogenous MDM2 or MDMX, or inhibition of E3 ligase activity of the heterocomplex, causes cell-cycle arrest. This arrest is correlated with a reduction in E2F1, E2F3, and p73 levels. Remarkably, direct ablation of endogenous p73 produces a similar effect on the cell cycle and the expression of certain E2F family members at both protein and messenger RNA levels. These data suggest that MDM2 and MDMX, working at least in part as a heterocomplex, may play a p53-independent role in maintaining cell-cycle progression by promoting the activity of E2F family members as well as p73, making them a potential target of interest in cancers lacking wild-type p53.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteína Tumoral p73/metabolismo , Animales , Apoptosis , Ciclo Celular/fisiología , Puntos de Control del Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Proteínas de Unión al ADN/metabolismo , Factor de Transcripción E2F1/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Unión Proteica , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteína Tumoral p73/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
17.
Proc Natl Acad Sci U S A ; 118(7)2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33558234

RESUMEN

Using a gain-of-function screen in Drosophila, we identified the Krüppel-like factor Cabut (Cbt) as a positive regulator of cell cycle gene expression and cell proliferation. Enforced cbt expression is sufficient to induce an extra cell division in the differentiating fly wing or eye, and also promotes intestinal stem cell divisions in the adult gut. Although inappropriate cell proliferation also results from forced expression of the E2f1 transcription factor or its target, Cyclin E, Cbt does not increase E2F1 or Cyclin E activity. Instead, Cbt regulates a large set of E2F1 target genes independently of E2F1, and our data suggest that Cbt acts via distinct binding sites in target gene promoters. Although Cbt was not required for cell proliferation during wing or eye development, Cbt is required for normal intestinal stem cell divisions in the midgut, which expresses E2F1 at relatively low levels. The E2F1-like functions of Cbt identify a distinct mechanism for cell cycle regulation that may be important in certain normal cell cycles, or in cells that cycle inappropriately, such as cancer cells.


Asunto(s)
Ciclo Celular/genética , Proteínas de Drosophila/metabolismo , Factores de Transcripción/metabolismo , Animales , Ojo Compuesto de los Artrópodos/citología , Ojo Compuesto de los Artrópodos/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster , Factor de Transcripción E2F1/genética , Factor de Transcripción E2F1/metabolismo , Mutación con Ganancia de Función , Prueba de Complementación Genética , Mucosa Intestinal/citología , Mucosa Intestinal/metabolismo , Factores de Transcripción/genética
18.
Biochem Genet ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38981987

RESUMEN

Gastric cancer (GC) is a health problem that concerns people around the world. CDC25B is an essential cell cycle regulatory factor that is overexpressed in a variety of tumor cells. CDC25B plays a vital part in the progression and proliferation of malignant tumors. However, it is not yet clear that how CDC25B affects the stemness of GC cells. The study used bioinformatics to detect the expression of E2F1 and CDC25B in GC tissues and their correlation, as well as pathways enriched by CDC25B. We detected the expression of E2F1 and CDC25B in GC cell lines using quantitative reverse transcription polymerase chain reaction and tested the combination relationship between E2F1 and CDC25B using chromatin immunoprecipitation (ChIP) and dual-luciferase assays. We measured cell viability using CCK-8 assay, evaluated sphere-forming efficiency using sphere formation assay, and determined cell proliferation ability using colony formation assay. We also analyzed the expression of stemness markers and MAPK pathway-related proteins using western blot. In GC tissues and cells, CDC25B was upregulated. Silencing CDC25B could affect the MAPK pathway, thereby repressing the proliferation and stemness of GC cells. As predicted by bioinformatics, CDC25B had an upstream transcription factor, E2F1, which also had a high expression level in GC. Dual-luciferase and ChIP assays confirmed the combination relationship between the two. Rescue experiments uncovered that overexpression of CDC25B could reverse the impact induced by E2F1 knockdown on proliferation and stemness of cells. In conclusion, E2F1 could activate CDC25B transcription to regulate the MAPK pathway and enhance the proliferation and stemness of GC cells. We revealed a potential regulatory pathway of stemness of GC cells that was mediated by CDC25B, providing new ideas for improving and innovating GC treatment.

19.
Genes Dev ; 30(22): 2500-2512, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27940962

RESUMEN

The retinoblastoma (RB) tumor suppressor is recognized as a master regulator that controls entry into the S phase of the cell cycle. Its loss leads to uncontrolled cell proliferation and is a hallmark of cancer. RB works by binding to members of the E2F family of transcription factors and recruiting chromatin modifiers to the promoters of E2F target genes. Here we show that RB also localizes to DNA double-strand breaks (DSBs) dependent on E2F1 and ATM kinase activity and promotes DSB repair through homologous recombination (HR), and its loss results in genome instability. RB is necessary for the recruitment of the BRG1 ATPase to DSBs, which stimulates DNA end resection and HR. A knock-in mutation of the ATM phosphorylation site on E2F1 (S29A) prevents the interaction between E2F1 and TopBP1 and recruitment of RB, E2F1, and BRG1 to DSBs. This knock-in mutation also impairs DNA repair, increases genomic instability, and renders mice hypersensitive to IR. Importantly, depletion of RB in osteosarcoma and breast cancer cell lines results in sensitivity to DNA-damaging drugs, which is further exacerbated by poly-ADP ribose polymerase (PARP) inhibitors. We uncovered a novel, nontranscriptional function for RB in HR, which could contribute to genome instability associated with RB loss.


Asunto(s)
Roturas del ADN de Doble Cadena , ADN Helicasas/metabolismo , Recombinación Homóloga/genética , Proteínas Nucleares/metabolismo , Proteína de Retinoblastoma/metabolismo , Factores de Transcripción/metabolismo , Animales , Línea Celular , Línea Celular Tumoral , Roturas del ADN de Doble Cadena/efectos de los fármacos , Roturas del ADN de Doble Cadena/efectos de la radiación , ADN Helicasas/genética , Reparación del ADN/genética , Factor de Transcripción E2F1/genética , Factor de Transcripción E2F1/metabolismo , Rayos gamma , Técnicas de Sustitución del Gen , Inestabilidad Genómica/genética , Humanos , Masculino , Ratones , Mutágenos/farmacología , Mutación , Proteínas Nucleares/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Transporte de Proteínas/genética , Proteína de Retinoblastoma/genética , Factores de Transcripción/genética , Irradiación Corporal Total/mortalidad
20.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731817

RESUMEN

MCPH1 has been identified as the causal gene for primary microcephaly type 1, a neurodevelopmental disorder characterized by reduced brain size and delayed growth. As a multifunction protein, MCPH1 has been reported to repress the expression of TERT and interact with transcriptional regulator E2F1. However, it remains unclear whether MCPH1 regulates brain development through its transcriptional regulation function. This study showed that the knockout of Mcph1 in mice leads to delayed growth as early as the embryo stage E11.5. Transcriptome analysis (RNA-seq) revealed that the deletion of Mcph1 resulted in changes in the expression levels of a limited number of genes. Although the expression of some of E2F1 targets, such as Satb2 and Cdkn1c, was affected, the differentially expressed genes (DEGs) were not significantly enriched as E2F1 target genes. Further investigations showed that primary and immortalized Mcph1 knockout mouse embryonic fibroblasts (MEFs) exhibited cell cycle arrest and cellular senescence phenotype. Interestingly, the upregulation of p19ARF was detected in Mcph1 knockout MEFs, and silencing p19Arf restored the cell cycle and growth arrest to wild-type levels. Our findings suggested it is unlikely that MCPH1 regulates neurodevelopment through E2F1-mediated transcriptional regulation, and p19ARF-dependent cell cycle arrest and cellular senescence may contribute to the developmental abnormalities observed in primary microcephaly.


Asunto(s)
Puntos de Control del Ciclo Celular , Senescencia Celular , Inhibidor p16 de la Quinasa Dependiente de Ciclina , Microcefalia , Animales , Ratones , Puntos de Control del Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Senescencia Celular/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/deficiencia , Factor de Transcripción E2F1/genética , Factor de Transcripción E2F1/metabolismo , Fibroblastos/metabolismo , Ratones Noqueados , Microcefalia/genética , Microcefalia/metabolismo , Microcefalia/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA