Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.551
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 179(3): 687-702.e18, 2019 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-31626770

RESUMEN

A single mouse blastomere from an embryo until the 8-cell stage can generate an entire blastocyst. Whether laboratory-cultured cells retain a similar generative capacity remains unknown. Starting from a single stem cell type, extended pluripotent stem (EPS) cells, we established a 3D differentiation system that enabled the generation of blastocyst-like structures (EPS-blastoids) through lineage segregation and self-organization. EPS-blastoids resembled blastocysts in morphology and cell-lineage allocation and recapitulated key morphogenetic events during preimplantation and early postimplantation development in vitro. Upon transfer, some EPS-blastoids underwent implantation, induced decidualization, and generated live, albeit disorganized, tissues in utero. Single-cell and bulk RNA-sequencing analysis revealed that EPS-blastoids contained all three blastocyst cell lineages and shared transcriptional similarity with natural blastocysts. We also provide proof of concept that EPS-blastoids can be generated from adult cells via cellular reprogramming. EPS-blastoids provide a unique platform for studying early embryogenesis and pave the way to creating viable synthetic embryos by using cultured cells.


Asunto(s)
Blastocisto/citología , Linaje de la Célula , Implantación del Embrión , Células Madre Pluripotentes Inducidas/citología , Células Madre Embrionarias de Ratones/citología , Creación de Embriones para Investigación/métodos , Animales , Blastocisto/metabolismo , Diferenciación Celular , Línea Celular , Células Cultivadas , Técnicas de Reprogramación Celular/métodos , Femenino , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Células Madre Embrionarias de Ratones/metabolismo , Transcriptoma
2.
Cell ; 166(1): 152-66, 2016 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-27368102

RESUMEN

Through a network of progressively maturing vesicles, the endosomal system connects the cell's interior with extracellular space. Intriguingly, this network exhibits a bilateral architecture, comprised of a relatively immobile perinuclear vesicle "cloud" and a highly dynamic peripheral contingent. How this spatiotemporal organization is achieved and what function(s) it curates is unclear. Here, we reveal the endoplasmic reticulum (ER)-located ubiquitin ligase Ring finger protein 26 (RNF26) as the global architect of the entire endosomal system, including the trans-Golgi network (TGN). To specify perinuclear vesicle coordinates, catalytically competent RNF26 recruits and ubiquitinates the scaffold p62/sequestosome 1 (p62/SQSTM1), in turn attracting ubiquitin-binding domains (UBDs) of various vesicle adaptors. Consequently, RNF26 restrains fast transport of diverse vesicles through a common molecular mechanism operating at the ER membrane, until the deubiquitinating enzyme USP15 opposes RNF26 activity to allow vesicle release into the cell's periphery. By drawing the endosomal system's architecture, RNF26 orchestrates endosomal maturation and trafficking of cargoes, including signaling receptors, in space and time.


Asunto(s)
Retículo Endoplásmico/metabolismo , Endosomas/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Neoplasias/metabolismo , Línea Celular Tumoral , Células Dendríticas/citología , Células Dendríticas/metabolismo , Humanos , Macrófagos/citología , Macrófagos/metabolismo , Proteína Sequestosoma-1/metabolismo , Vesículas Transportadoras/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo
3.
Annu Rev Microbiol ; 76: 503-532, 2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-35671532

RESUMEN

Biofilms are a widely observed growth mode in which microbial communities are spatially structured and embedded in a polymeric extracellular matrix. Here, we focus on the model bacterium Vibrio cholerae and summarize the current understanding of biofilm formation, including initial attachment, matrix components, community dynamics, social interactions, molecular regulation, and dispersal. The regulatory network that orchestrates the decision to form and disperse from biofilms coordinates various environmental inputs. These cues are integrated by several transcription factors, regulatory RNAs, and second-messenger molecules, including bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP). Through complex mechanisms, V. cholerae weighs the energetic cost of forming biofilms against the benefits of protection and social interaction that biofilms provide.


Asunto(s)
Biopelículas , Vibrio cholerae , Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , GMP Cíclico/metabolismo , Regulación Bacteriana de la Expresión Génica , Factores de Transcripción/metabolismo , Vibrio cholerae/genética , Vibrio cholerae/fisiología
4.
Proc Natl Acad Sci U S A ; 119(34): e2204332119, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35976880

RESUMEN

Attaching and effacing (AE) lesion formation on enterocytes by enteropathogenic Escherichia coli (EPEC) requires the EPEC type III secretion system (T3SS). Two T3SS effectors injected into the host cell during infection are the atypical kinases, NleH1 and NleH2. However, the host targets of NleH1 and NleH2 kinase activity during infection have not been reported. Here phosphoproteomics identified Ser775 in the microvillus protein Eps8 as a bona fide target of NleH1 and NleH2 phosphorylation. Both kinases interacted with Eps8 through previously unrecognized, noncanonical "proline-rich" motifs, PxxDY, that bound the Src Homology 3 (SH3) domain of Eps8. Structural analysis of the Eps8 SH3 domain bound to a peptide containing one of the proline-rich motifs from NleH showed that the N-terminal part of the peptide adopts a type II polyproline helix, and its C-terminal "DY" segment makes multiple contacts with the SH3 domain. Ser775 phosphorylation by NleH1 or NleH2 hindered Eps8 bundling activity and drove dispersal of Eps8 from the AE lesion during EPEC infection. This finding suggested that NleH1 and NleH2 altered the cellular localization of Eps8 and the cytoskeletal composition of AE lesions during EPEC infection.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Escherichia coli Enteropatógena , Infecciones por Escherichia coli , Proteínas de Escherichia coli , Fosfotransferasas , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Núcleo Celular/metabolismo , Escherichia coli Enteropatógena/patogenicidad , Infecciones por Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/metabolismo , Humanos , Microvellosidades/metabolismo , Fosforilación , Fosfotransferasas/metabolismo
5.
Crit Rev Biochem Mol Biol ; 57(3): 305-332, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34937434

RESUMEN

Biofilms are assemblages of bacteria embedded within a matrix of extracellular polymeric substances (EPS) attached to a substratum. The process of biofilm formation is a complex phenomenon regulated by the intracellular and intercellular signaling systems. Various secondary messenger molecules such as cyclic dimeric guanosine 3',5'-monophosphate (c-di-GMP), cyclic adenosine 3',5'-monophosphate (cAMP), and cyclic dimeric adenosine 3',5'-monophosphate (c-di-AMP) are involved in complex signaling networks to regulate biofilm development in several bacteria. Moreover, the cell to cell communication system known as Quorum Sensing (QS) also regulates biofilm formation via diverse mechanisms in various bacterial species. Bacteria often switch to the biofilm lifestyle in the presence of toxic pollutants to improve their survivability. Bacteria within a biofilm possess several advantages with regard to the degradation of harmful pollutants, such as increased protection within the biofilm to resist the toxic pollutants, synthesis of extracellular polymeric substances (EPS) that helps in the sequestration of pollutants, elevated catabolic gene expression within the biofilm microenvironment, higher cell density possessing a large pool of genetic resources, adhesion ability to a wide range of substrata, and metabolic heterogeneity. Therefore, a comprehensive account of the various factors regulating biofilm development would provide valuable insights to modulate biofilm formation for improved bioremediation practices. This review summarizes the complex regulatory networks that influence biofilm development in bacteria, with a major focus on the applications of bacterial biofilms for environmental restoration.


Asunto(s)
Proteínas Bacterianas , Contaminantes Ambientales , Adenosina/metabolismo , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Biodegradación Ambiental , Biopelículas , Contaminantes Ambientales/metabolismo , Contaminantes Ambientales/toxicidad , Regulación Bacteriana de la Expresión Génica
6.
Am J Physiol Cell Physiol ; 326(5): C1462-C1481, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38690930

RESUMEN

Skeletal muscle mediates the beneficial effects of exercise, thereby improving insulin sensitivity and reducing the risk for type 2 diabetes. Current human skeletal muscle models in vitro are incapable of fully recapitulating its physiological functions especially muscle contractility. By supplementation of insulin-like growth factor 1 (IGF1), a growth factor secreted by myofibers in vivo, we aimed to overcome these limitations. We monitored the differentiation process starting from primary human CD56-positive myoblasts in the presence/absence of IGF1 in serum-free medium in daily collected samples for 10 days. IGF1-supported differentiation formed thicker multinucleated myotubes showing physiological contraction upon electrical pulse stimulation (EPS) following day 6. Myotubes without IGF1 were almost incapable of contraction. IGF1 treatment shifted the proteome toward skeletal muscle-specific proteins that contribute to myofibril and sarcomere assembly, striated muscle contraction, and ATP production. Elevated PPARGC1A, MYH7, and reduced MYH1/2 suggest a more oxidative phenotype further demonstrated by higher abundance of proteins of the respiratory chain and elevated mitochondrial respiration. IGF1-treatment also upregulated glucose transporter (GLUT)4 and increased insulin-dependent glucose uptake compared with myotubes differentiated without IGF1. To conclude, addition of IGF1 to serum-free medium significantly improves the differentiation of human myotubes that showed enhanced myofibril formation, response to electrical pulse stimulation, oxidative respiratory capacity, and glucose metabolism overcoming limitations of previous standards. This novel protocol enables investigation of muscular exercise on a molecular level.NEW & NOTEWORTHY Human skeletal muscle models are highly valuable to study how exercise prevents type 2 diabetes without invasive biopsies. Current models did not fully recapitulate the function of skeletal muscle especially during exercise. By supplementing insulin-like growth factor 1 (IGF1), the authors developed a functional human skeletal muscle model characterized by inducible contractility and increased oxidative and insulin-sensitive metabolism. The novel protocol overcomes the limitations of previous standards and enables investigation of exercise on a molecular level.


Asunto(s)
Diferenciación Celular , Factor I del Crecimiento Similar a la Insulina , Contracción Muscular , Fibras Musculares Esqueléticas , Fenotipo , Humanos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efectos de los fármacos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Células Cultivadas , Transportador de Glucosa de Tipo 4/metabolismo , Transportador de Glucosa de Tipo 4/genética , Cadenas Pesadas de Miosina/metabolismo , Cadenas Pesadas de Miosina/genética , Glucosa/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/fisiología
7.
J Biol Chem ; 299(1): 102737, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36423682

RESUMEN

BY-kinases (for bacterial tyrosine kinases) constitute a family of protein tyrosine kinases that are highly conserved in the bacterial kingdom and occur most commonly as essential components of multicomponent assemblies responsible for the biosynthesis, polymerization, and export of complex polysaccharides involved in biofilm or capsule formation. BY-kinase function has been attributed to a cyclic process involving formation of an oligomeric species, its disassembly into constituent monomers, and subsequent reassembly, depending on the overall phosphorylation level of a C-terminal cluster of tyrosine residues. However, the relationship of this process to the active/inactive states of the enzyme and the mechanism of its integration into the polysaccharide production machinery remain unclear. Here, we synthesize the substantial body of biochemical, cell-biological, structural, and computational data, acquired over the nearly 3 decades since the discovery of BY-kinases, to suggest means by which they fulfill their physiological function. We propose a mechanism involving temporal coordination of the assembly/disassembly process with the autokinase activity of the enzyme and its ability to be dephosphorylated by its counteracting phosphatase. We speculate that this temporal control enables BY-kinases to function as molecular timers that coordinate the diverse processes involved in the synthesis, polymerization, and export of complex sugar derivatives. We suggest that BY-kinases, which deploy distinctive catalytic domains resembling P-loop nucleoside triphosphatases, have uniquely adapted this ancient fold to drive functional processes through exquisite spatiotemporal control over protein-protein interactions and conformational changes. It is our hope that the hypotheses proposed here will facilitate future experiments targeting these unique protein kinases.


Asunto(s)
Proteínas Bacterianas , Monoéster Fosfórico Hidrolasas , Proteínas Tirosina Quinasas , Monoéster Fosfórico Hidrolasas/metabolismo , Fosforilación , Polisacáridos , Proteínas Tirosina Quinasas/metabolismo , Tirosina/metabolismo , Proteínas Bacterianas/metabolismo
8.
J Exp Bot ; 75(2): 584-593, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-37549338

RESUMEN

Drought is a major threat to food security worldwide. Recently, the root-soil interface has emerged as a major site of hydraulic resistance during water stress. Here, we review the impact of soil drying on whole-plant hydraulics and discuss mechanisms by which plants can adapt by modifying the properties of the rhizosphere either directly or through interactions with the soil microbiome.


Asunto(s)
Resistencia a la Sequía , Suelo , Raíces de Plantas , Sequías , Productos Agrícolas
9.
Arch Microbiol ; 206(3): 89, 2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38308703

RESUMEN

The present study was conducted with the aim of isolation and identification of the biofilm-forming denitrifying Pseudomonas bacterial strains from eutrophic waters of Dal lake, India, followed by the study of inter-relation of biofilm formation and denitrification potential of Pseudomonas strains. The bacterial strains were characterized by morphological observations and identified using 16S rDNA sequencing followed by the quantification of biofilm formation of these st by crystal violet (CV) assay using 96-well microtiter plate and extracellular polymeric substance (EPS) extraction. Lastly, the nitrate-reducing potential of all Pseudomonas species was studied. Our evaluation revealed that four different Pseudomonas species were observed to have the biofilm-forming potential and nitrate-reducing properties and the species which showed maximum biofilm-forming potential and maximum EPS production exhibited higher nitrate-removing capacity. Moreover, P. otitis was observed to have the highest denitrification capacity (89%) > P. cedrina (83%) > P. azotoform (79%) and the lowest for P. peli (70%). These results clearly signify a positive correlation of biofilm-forming capacity and nitrate-removing ability of Pseudomonas species. This study has for the first time successfully revealed the bioremediation potential of P. otitis, P. cedrina, P. azotoform, and P. peli species, thus contributing to the growing list of known nitrate-reducing Pseudomonas species. Based upon the results, these strains can be extrapolated to nitrate-polluted water systems for combating water pollution.


Asunto(s)
Otitis , Pseudomonas , Humanos , Pseudomonas/genética , Matriz Extracelular de Sustancias Poliméricas , Nitratos , Biodegradación Ambiental , Lagos , Bacterias/genética , Biopelículas
10.
Arch Microbiol ; 206(2): 85, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38300317

RESUMEN

Bacterial biofilms can adhere to various surfaces in the environment with human beings being no exception. Enclosed in a self-secreted matrix which contains extracellular polymeric substances, biofilms are intricate communities of bacteria that play a significant role across various sectors and raise concerns for public health, medicine and industries. These complex structures allow free-floating planktonic cells to adopt multicellular mode of growth which leads to persistent infections. This is of great concern as biofilms can withstand external attacks which include antibiotics and immune responses. A more comprehensive and innovative approach to therapy is needed in view of the increasing issue of bacterial resistance brought on by the overuse of conventional antimicrobial medications. Thus, to oppose the challenges posed by biofilm-related infections, innovative therapeutic strategies are being explored which include targeting extracellular polymeric substances, quorum sensing, and persister cells. Biofilm-responsive nanoparticles show promising results by improving drug delivery and reducing the side effects. This review comprehensively examines the factors influencing biofilm formation, host immune defence mechanisms, infections caused by biofilms, diagnostic approaches, and biofilm-targeted therapies.


Asunto(s)
Biopelículas , Infección Persistente , Humanos , Percepción de Quorum , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Transporte Biológico
11.
EMBO Rep ; 23(5): e53937, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35312140

RESUMEN

LincRNA-EPS is an important regulator in inflammation. However, the role of lincRNA-EPS in the host response against viral infection is unexplored. Here, we show that lincRNA-EPS is downregulated in macrophages infected with different viruses including VSV, SeV, and HSV-1. Overexpression of lincRNA-EPS facilitates viral infection, while deficiency of lincRNA-EPS protects the host against viral infection in vitro and in vivo. LincRNA-EPS-/- macrophages show elevated expression of antiviral interferon-stimulated genes (ISGs) such as Mx1, Oas2, and Ifit2 at both basal and inducible levels. However, IFN-ß, the key upstream inducer of these ISGs, is downregulated in lincRNA-EPS-/- macrophages compared with control cells. RNA pulldown and mass spectrometry results indicate that lincRNA-EPS binds to PKR and antagonizes the viral RNA-PKR interaction. PKR activates STAT1 and induces antiviral ISGs independent of IFN-I induction. LincRNA-EPS inhibits PKR-STAT1-ISGs signaling and thus facilitates viral infection. Our study outlines an alternative antiviral pathway, with downregulation of lincRNA-EPS promoting the induction of PKR-STAT1-dependent ISGs, and reveals a potential therapeutic target for viral infectious diseases.


Asunto(s)
ARN Largo no Codificante , Antivirales , Inmunidad Innata , Interferón beta/genética , Interferones , ARN Largo no Codificante/genética , ARN Viral/metabolismo
12.
Int Microbiol ; 27(1): 291-301, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37329438

RESUMEN

To address soil salinization and its impact on crop production, microbial desalination cells (MDCs) offer a promising solution. These bioelectrochemical systems integrate desalination and wastewater treatment through microbial activity. A halotolerant beneficial bacterial strain called Citrobacter sp. strain KUT (CKUT) was isolated from India's salt desert Run of Kutch, Gujrat, highlighting its potential application in combating soil salinization. CKUT exhibits high salt tolerance and has the ability to produce extracellular polymeric substances (EPS) at a concentration of 0.04 mg/ml. It forms biofilm that enable it to withstand up to 10% NaCl concentration. Additionally, CKUT shows promise in remediating salinity levels, reducing it from 4.5 to 2.7 gL-1. These characteristics are driven by biofilm formation and EPS production. In an experiment where V. radiata L. seedlings were inoculated with CKUT, the treated plants exhibited enhanced chlorophyll content, growth, and overall plant characteristics compared to seedlings treated with sodium chloride (NaCl). These improvements included increased shoot length (150 mm), root length (40 mm), and biomass. This indicates that CKUT treatment has the potential to enhance the suitability of V. radiata and other crops for cultivation in saline lands, effectively addressing the issue of soil salinization. Furthermore, integrating CKUT into microbial desalination cells (MDCs) offers an opportunity for freshwater production from seawater, contributing to sustainable agriculture by promoting improved crop growth and increased yield in areas prone to salinity. HIGHLIGHTS : • Soil salinization reduces crop yield, including Vigna radiata L. • Citrobacter sp. strain KUT (CKUT) is a halotolerant bacterium isolated from the salt desert Run of Kutch, Gujarat, which can tolerate high salt concentrations. • CKUT mitigates salinity by producing extracellular polymeric substances (EPS) and forming biofilms. • CKUT treatment demonstrated increased plant growth, biomass, and chlorophyll content under salinity stress, showcasing its potential in microbial desalination cell (MDC) for enhancing crop yield in salinized soils.


Asunto(s)
Matriz Extracelular de Sustancias Poliméricas , Vigna , Cloruro de Sodio/farmacología , Bacterias , Clorofila/farmacología , Tolerancia a la Sal , Biopelículas , Suelo/química , Salinidad
13.
Microb Cell Fact ; 23(1): 64, 2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38402158

RESUMEN

Phosphate solubilizing fungi Penicillium oxalicum (POX) and Red yeast Rhodotorula mucilaginosa (Rho) have been applied in Pb remediation with the combination of fluorapatite (FAp), respectively. The secretion of oxalic acid by POX and the production of extracellular polymers (EPS) by Rho dominate the Pb remediation. In this study, the potential of Pb remediation by the fungal combined system (POX and Rho) with FAp was investigated. After six days of incubation, the combination of POX and Rho showed the highest Pb remove ratio (99.7%) and the lowest TCLP-Pb concentration (2.9 mg/L). The EPS combined with POX also enhanced Pb remediation, which has a 99.3% Pb removal ratio and 5.5 mg/L TCLP-Pb concentration. Meanwhile, Rho and EPS can also stimulate POX to secrete more oxalic acid, which reached 1510.1 and 1450.6 mg/L in six days, respectively. The secreted oxalic acid can promote FAp dissolution and the formation of lead oxalate and pyromorphite. Meanwhile, the EPS produced by Rho can combine with Pb to form EPS-Pb. In the combined system of POX + Rho and POX + EPS, all of the lead oxalate, pyromorphite, and EPS-Pb were observed. Our findings suggest that the combined application of POX and Rho with FAp is an effective approach for enhancing Pb remediation.


Asunto(s)
Apatitas , Productos Biológicos , Minerales , Penicillium , Plomo , Fosfatos , Ácido Oxálico
14.
Environ Sci Technol ; 58(15): 6552-6563, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38571383

RESUMEN

Extracellular polymeric substances (EPS) ubiquitously encapsulate microbes and play crucial roles in various environmental processes. However, understanding their complex interactions with dynamic bacterial behaviors, especially during the disinfection process, remains very limited. In this work, we investigated the impact of EPS on bacterial disinfection kinetics by developing a permanent EPS removal strategy. We genetically disrupted the synthesis of exopolysaccharides, the structural components of EPS, in Pseudomonas aeruginosa, a well-known EPS-producing opportunistic pathogen found in diverse environments, creating an EPS-deficient strain. This method ensured a lasting absence of EPS while maintaining bacterial integrity and viability, allowing for real-time in situ investigations of the roles of EPS in disinfection. Our findings indicate that removing EPS from bacteria substantially lowered their susceptibility threshold to disinfectants such as ozone, chloramine B, and free chlorine. This removal also substantially accelerated disinfection kinetics, shortened the resistance time, and increased disinfection efficiency, thereby enhancing the overall bactericidal effect. The absence of EPS was found to enhance bacterial motility and increase bacterial cell vulnerability to disinfectants, resulting in greater membrane damage and intensified reactive oxygen species (ROS) production upon exposure to disinfectants. These insights highlight the central role of EPS in bacterial defenses and offer promising implications for developing more effective disinfection strategies.


Asunto(s)
Desinfectantes , Desinfección , Desinfección/métodos , Matriz Extracelular de Sustancias Poliméricas , Desinfectantes/farmacología , Cloro/farmacología , Cinética
15.
Environ Res ; 242: 117770, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38029821

RESUMEN

Aerobic granular sludge (AGS) needs a long start-up time and always shows unstable performance when it is used to treat low-strength wastewater. In this study, a rapid static feeding combined with Fe2+ addition as a novel strategy was employed to improve the formation and stability of AGS in treating low-strength wastewater. Fe-AGS was formed within only 7 days and showed favorable pollutant removal capability and settling performance. The ammonia nitrogen (NH4+-N) and chemical oxygen demand (COD) concentration in the effluent were lower than 5 mg/L and 50 mg/L after day 23, respectively. The sludge volume index (SVI) and mixed liquid suspended solids (MLSS) was 37 mL/g and 2.15 g/L on day 50, respectively. Rapid static feeding can accelerate granules formation by promoting the growth of heterotrophic bacteria, but the granules are unstable due to filamentous bacteria overgrowth. Fe2+ addition can inhibit the growth of filamentous bacteria and promote the aggregation of functional bacteria (eg. Nitrosomonas, Nitrolancea, Paracoccus, Diaphorobacter) by enhancing the secretion of extracellular polymeric substances (EPS). This study provides a new way for AGS application in low-strength wastewater treatment.


Asunto(s)
Aguas del Alcantarillado , Aguas Residuales , Aguas del Alcantarillado/microbiología , Eliminación de Residuos Líquidos , Aerobiosis , Reactores Biológicos/microbiología , Nitrógeno
16.
Environ Res ; 251(Pt 2): 118575, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38431068

RESUMEN

The Partial nitritation-Anammox (PN/A) process can be restricted when treating high ammonia nitrogen wastewater containing antibiotics. This study aims to explore the response mechanism of the PN/A process under antibiotic stress. Results showed the PN/A process achieved a nitrogen removal rate higher than 1.01 ± 0.03 kg N/m3/d under long-term sulfamethazine stress. The increase of extracellular polymers from 22.52 to 43.96 mg/g VSS was conducive to resisting antibiotic inhibitory. The increase of Denitratisoma and SM1A02 abundance as well as functional genes nirS and nirK indicated denitrifiers should play an important role in the stability of the PN/A system under sulfamethazine stress. In addition, antibiotic-resistant genes (ARGs) sul1 and intI1 significantly increased by 8.78 and 5.12 times of the initial values to maintain the resistance of PN/A process to sulfamethazine stress. This study uncovers the response mechanism of the PN/A process under antibiotic stress, offering a scientific basis and guidance for further application in the future.


Asunto(s)
Antibacterianos , Antibacterianos/farmacología , Microbiota/efectos de los fármacos , Reactores Biológicos , Aguas Residuales/microbiología , Eliminación de Residuos Líquidos/métodos , Nitrógeno/metabolismo
17.
Environ Res ; 246: 118155, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38211719

RESUMEN

Wastewater treatment and conversion into renewable energy sources have been of great interest in recent times due to growing environmental pollution concerns and need for sustainable energy sources. Sewage sludge treatment can convert sludge into renewable energy. In this study, the impact of initial pH and urea hydrogen peroxide (UHP) co-pretreatment on sludge hydrolysis and anaerobic digestion was investigated. The pH of sludge was initially adjusted to 7, 9, and 11 before the addition of 8 mmol/g VS UHP. Under 24 h pretreatment, alkaline medium and UHP effectively enhanced sludge solubilization and hydrolysis. The combination of chemical, sonication, and centrifugation improved the extraction of extracellular polymerase substances released in soluble state. Secondly, anaerobic digestion was performed for 11 days to determine the influence of a lower mesophilic temperature (20 °C) and retention time on the pretreated sludge. The highest NH4+-N concentration of 5.32 g/L was recorded in pH 7+UHP. The most significant total VFA concentration of 13.1 g COD/L was observed in pH 7+UHP on day 9. Acetic acid, isovaleric acid and propionic acid accounted for 80%-83% of the total VFA composition in all pretreated reactors. Lower mesophilic temperature efficiently optimized UHP and VFA production in the pretreated reactors. Microbial metabolism was stabilized under a longer retention time. Alkaline pH and longer retention time elevated NH4+-N and VFA concentration. The results showed that initial pH and UHP co-pretreatment of waste activated sludge offer an alternative pathway for enhancing sludge hydrolysis and VFA production applicable in sludge treatment.


Asunto(s)
Peróxido de Hidrógeno , Aguas del Alcantarillado , Peróxido de Carbamida , Concentración de Iones de Hidrógeno , Anaerobiosis , Peróxido de Hidrógeno/química , Metano
18.
Appl Microbiol Biotechnol ; 108(1): 144, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38231410

RESUMEN

Anionic polymers, such as heparin, have been widely applied in the chemical and medical fields, particularly for binding proteins (e.g., fibroblast growth factor 2 (FGF-2) and histones). However, the current animal-based production of heparin brings great risks, including resource shortages and product contamination. Recently, anionic compounds, nonulosonic acids (NulOs), and sulfated glycoconjugates were discovered in the extracellular polymeric substances (EPS) of aerobic granular sludge (AGS). Given the prevalence of anionic polymers, in marine biofilms, it was hypothesized that the EPS from AGS grown under seawater condition could serve as a raw material for producing the alternatives to heparin. This study aimed to isolate and enrich the anionic fractions of EPS and evaluate their potential application in the chemical and medical fields. The AGS was grown in a lab-scale reactor fed with acetate, under the seawater condition (35 g/L sea salt). The EPS was extracted with an alkaline solution at 80 °C and fractionated by size exclusion chromatography. Its protein binding capacity was evaluated by native gel electrophoresis. It was found that the two highest molecular weight fractions (438- > 14,320 kDa) were enriched with NulO and sulfate-containing glycoconjugates. The enriched fractions can strongly bind the two histones involved in sepsis and a model protein used for purification by heparin-column. These findings demonstrated possibilities for the application of the extracted EPS and open up a novel strategy for resource recovery. KEY POINTS: • High MW EPS from seawater-adapted AGS are dominant with sulfated groups and NulOs • Fifty-eight percent of the EPS is high MW of 68-14,320 kDa • EPS and its fractions can bind histones and fibroblast growth factor 2.


Asunto(s)
Matriz Extracelular de Sustancias Poliméricas , Factor 2 de Crecimiento de Fibroblastos , Animales , Histonas , Aguas del Alcantarillado , Heparina , Polímeros , Agua de Mar , Sulfatos , Glicoconjugados
19.
Mol Cell Neurosci ; 124: 103805, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36592799

RESUMEN

Intestinal bacteria-associated para-cresyl sulfate (pCS) and 4-ethylphenyl sulfate (4EPS) are elevated in autism spectrum disorder (ASD). Both metabolites can induce ASD-like behaviors in mice, but the molecular mechanisms are not known. Phosphatase and tensin homolog (PTEN) is a susceptibility gene for ASD. The present study investigated the relation between pCS and 4EPS and PTEN in ASD in a valproic acid (VPA)-induced murine ASD model and an in vitro LPS-activated microglial model. The VPA-induced intestinal inflammation and compromised permeability in the distal ileum was not associated with changes of PTEN expression and phosphorylation. In contrast, VPA reduced PTEN expression in the hippocampus of mice. In vitro results show that pCS and 4EPS reduced PTEN expression and derailed innate immune response of BV2 microglial cells. The PTEN inhibitor VO-OHpic did not affect innate immune response of microglial cells. In conclusion, PTEN does not play a role in intestinal inflammation and compromised permeability in VPA-induced murine model for ASD. Although pCS and 4EPS reduced PTEN expression in microglial cells, PTEN is not involved in the pCS and 4EPS-induced derailed innate immune response of microglial cells. Further studies are needed to investigate the possible involvement of reduced PTEN expression in the ASD brain regarding synapse function and neuronal connectivity.


Asunto(s)
Trastorno del Espectro Autista , Animales , Ratones , Trastorno del Espectro Autista/genética , Modelos Animales de Enfermedad , Inflamación , Fosfohidrolasa PTEN/metabolismo , Ácido Valproico
20.
Adv Exp Med Biol ; 1435: 249-272, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38175479

RESUMEN

Clostridioides difficile infection (CDI), previously Clostridium difficile infection, is a symptomatic infection of the large intestine caused by the spore-forming anaerobic, gram-positive bacterium Clostridioides difficile. CDI is an important healthcare-associated disease worldwide, characterized by high levels of recurrence, morbidity, and mortality. CDI is observed at a higher rate in immunocompromised patients after antimicrobial therapy, with antibiotics disrupting the commensal microbiota and promoting C. difficile colonization of the gastrointestinal tract.A rise in clinical isolates resistant to multiple antibiotics and the reduced susceptibility to the most commonly used antibiotic molecules have made the treatment of CDI more complicated, allowing the persistence of C. difficile in the intestinal environment.Gut colonization and biofilm formation have been suggested to contribute to the pathogenesis and persistence of C. difficile. In fact, biofilm growth is considered as a serious threat because of the related antimicrobial tolerance that makes antibiotic therapy often ineffective. This is the reason why the involvement of C. difficile biofilm in the pathogenesis and recurrence of CDI is attracting more and more interest, and the mechanisms underlying biofilm formation of C. difficile as well as the role of biofilm in CDI are increasingly being studied by researchers in the field.Findings on C. difficile biofilm, possible implications in CDI pathogenesis and treatment, efficacy of currently available antibiotics in treating biofilm-forming C. difficile strains, and some antimicrobial alternatives under investigation will be discussed here.


Asunto(s)
Antibacterianos , Biopelículas , Clostridioides difficile , Farmacorresistencia Bacteriana , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Biopelículas/efectos de los fármacos , Clostridioides difficile/efectos de los fármacos , Infecciones por Clostridium/tratamiento farmacológico , Infecciones por Clostridium/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA