Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Development ; 149(1)2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34982814

RESUMEN

Imprinting control region (ICR1) controls the expression of the Igf2 and H19 genes in a parent-of-origin specific manner. Appropriate expression of the Igf2-H19 locus is fundamental for normal fetal development, yet the importance of ICR1 in the placental production of hormones that promote maternal nutrient allocation to the fetus is unknown. To address this, we used a novel mouse model to selectively delete ICR1 in the endocrine junctional zone (Jz) of the mouse placenta (Jz-ΔICR1). The Jz-ΔICR1 mice exhibit increased Igf2 and decreased H19 expression specifically in the Jz. This was accompanied by an expansion of Jz endocrine cell types due to enhanced rates of proliferation and increased expression of pregnancy-specific glycoprotein 23 in the placenta of both fetal sexes. However, changes in the endocrine phenotype of the placenta were related to sexually-dimorphic alterations to the abundance of Igf2 receptors and downstream signalling pathways (Pi3k-Akt and Mapk). There was no effect of Jz-ΔICR1 on the expression of targets of the H19-embedded miR-675 or on fetal weight. Our results demonstrate that ICR1 controls placental endocrine capacity via sex-dependent changes in signalling.


Asunto(s)
Glándulas Endocrinas/metabolismo , Factor II del Crecimiento Similar a la Insulina/genética , Región de Control de Posición , Placenta/metabolismo , ARN Largo no Codificante/genética , Transducción de Señal , Animales , Femenino , Sitios Genéticos , Impresión Genómica , Glicoproteínas/genética , Glicoproteínas/metabolismo , Factor II del Crecimiento Similar a la Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Fosfatidilinositol 3-Quinasas/metabolismo , Embarazo , Proteínas Gestacionales/genética , Proteínas Gestacionales/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Largo no Codificante/metabolismo
2.
Am J Physiol Regul Integr Comp Physiol ; 326(6): R515-R527, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38618911

RESUMEN

Inhibition of the bromodomain and extraterminal domain (BET) protein family is a potential strategy to prevent and treat diabetes; however, the clinical use of BET bromodomain inhibitors (BETis) is associated with adverse effects. Here, we explore a strategy for targeting BETis to ß cells by exploiting the high-zinc (Zn2+) concentration in ß cells relative to other cell types. We report the synthesis of a novel, Zn2+-chelating derivative of the pan-BETi (+)-JQ1, (+)-JQ1-DPA, in which (+)-JQ1 was conjugated to dipicolyl amine (DPA). As controls, we synthesized (+)-JQ1-DBA, a non-Zn2+-chelating derivative, and (-)-JQ1-DPA, an inactive enantiomer that chelates Zn2+. Molecular modeling and biophysical assays showed that (+)-JQ1-DPA and (+)-JQ1-DBA retain potent binding to BET bromodomains in vitro. Cellular assays demonstrated (+)-JQ1-DPA attenuated NF-ĸB target gene expression in ß cells stimulated with the proinflammatory cytokine interleukin 1ß. To assess ß-cell selectivity, we isolated islets from a mouse model that expresses green fluorescent protein in insulin-positive ß cells and mTomato in insulin-negative cells (non-ß cells). Surprisingly, Zn2+ chelation did not confer ß-cell selectivity as (+)-JQ1-DPA was equally effective in both ß and α cells; however, (+)-JQ1-DPA was less effective in macrophages, a nonendocrine islet cell type. Intriguingly, the non-Zn2+-chelating derivative (+)-JQ1-DBA displayed the opposite selectivity, with greater effect in macrophages compared with (+)-JQ1-DPA, suggesting potential as a macrophage-targeting molecule. These findings suggest that Zn2+-chelating small molecules confer endocrine cell selectivity rather than ß-cell selectivity in pancreatic islets and provide valuable insights and techniques to assess Zn2+ chelation as an approach to selectively target small molecules to pancreatic ß cells.NEW & NOTEWORTHY Inhibition of BET bromodomains is a novel potential strategy to prevent and treat diabetes mellitus. However, BET inhibitors have negative side effects. We synthesized a BET inhibitor expected to exploit the high zinc concentration in ß cells to accumulate in ß cells. We show our inhibitor targeted pancreatic endocrine cells; however, it was less effective in immune cells. A control inhibitor showed the opposite effect. These findings help us understand how to target specific cells in diabetes treatment.


Asunto(s)
Proteínas que Contienen Bromodominio , Quelantes , Células Secretoras de Insulina , Zinc , Animales , Humanos , Masculino , Ratones , Azepinas/farmacología , Azepinas/química , Proteínas que Contienen Bromodominio/antagonistas & inhibidores , Proteínas que Contienen Bromodominio/química , Quelantes/farmacología , Células Secretoras de Glucagón/efectos de los fármacos , Células Secretoras de Glucagón/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Ratones Endogámicos C57BL , Proteínas Nucleares , Factores de Transcripción/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Triazoles/farmacología , Triazoles/química , Zinc/química , Zinc/farmacología , Zinc/metabolismo
3.
Adv Exp Med Biol ; 1410: 171-189, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36515866

RESUMEN

The persistent shortage of insulin-producing islet mass or ß-cells for transplantation in the ever-growing diabetic population worldwide is a matter of concern. To date, permanent cure to this medical complication is not available and soon after the establishment of lineage-specific reprogramming, direct ß-cell reprogramming became a viable alternative for ß-cell regeneration. Direct reprogramming is a straightforward and powerful technique that can provide an unlimited supply of cells by transdifferentiating terminally differentiated cells toward the desired cell type. This approach has been extensively used by multiple groups to reprogram non-ß-cells toward insulin-producing ß-cells. The ß-cell identity has been achieved by various studies via ectopic expression of one or more pancreatic-specific transcription factors in somatic cells, bypassing the pluripotent state. This work highlights the importance of the direct reprogramming approaches (both integrative and non-integrative) in generating autologous ß-cells for various applications. An in-depth understanding of the strategies and cell sources could prove beneficial for the efficient generation of integration-free functional insulin-producing ß-cells for diabetic patients lacking endogenous ß-cells.


Asunto(s)
Células Secretoras de Insulina , Insulinas , Humanos , Reprogramación Celular/genética , Diferenciación Celular , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Páncreas/metabolismo , Insulinas/metabolismo , Células Secretoras de Insulina/metabolismo
4.
Int J Mol Sci ; 24(8)2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37108444

RESUMEN

This systematic review aimed to synthesize and quantify the results of the studies investigating the changes in fibroblast growth factor-21 (FGF-21) induced by exercise. We searched for studies that did not differentiate between patients and healthy adults but compared them before and after exercise and with and without exercise. For quality assessment, the risk-of-bias assessment tool for nonrandomized studies and the Cochrane risk-of-bias tool were used. A quantitative analysis was performed using the standardized mean difference (SMD) and random-effects model in RevMan 5.4. A total of 94 studies were searched in international electronic databases, and after screening, 10 studies with 376 participants were analyzed. Compared with no exercise, there was a significant increase in the FGF-21 levels from before to after exercise (SMD = 1.05, 95% confidence interval (CI), 0.21 to 1.89). The changes in FGF-21 levels in the exercise group showed a significant difference from the levels in the controls. The results of the random-effects model were as follows: SMD = 1.12; 95% CI, -0.13 to 2.37. While the data on acute exercise were not synthesized in this study, FGF-21 levels generally increased after chronic exercise compared with no exercise.


Asunto(s)
Terapia por Ejercicio , Ejercicio Físico , Adulto , Humanos , Terapia por Ejercicio/métodos , Factores de Crecimiento de Fibroblastos
5.
Cell Tissue Res ; 389(3): 385-407, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35829810

RESUMEN

Enteroendocrine cells (ECs) in the insect midgut respond to physiological changes in the intestine by releasing multiple peptides to control food intake, gastrointestinal activity and systemic metabolism. Here, we performed a comprehensive mapping of ECs producing different regulatory peptides in the larval midgut of Bombyx mori. In total, we identified 20 peptide genes expressed in different ECs in specific regions of the midgut. Transcript-specific in situ hybridisation combined with antibody staining revealed approximately 30 subsets of ECs, each producing a unique peptide or a combination of several different peptides. Functional significance of this diversity and specific roles of different enteroendocrine peptides are largely unknown. Results of this study highlight the importance of the midgut as a major endocrine/paracrine source of regulatory molecules in insects and provide important information to clarify functions of ECs during larval feeding and development.


Asunto(s)
Bombyx , Animales , Bombyx/genética , Células Enteroendocrinas/metabolismo , Tracto Gastrointestinal/metabolismo , Proteínas de Insectos/metabolismo , Intestinos , Larva/metabolismo
6.
Am J Physiol Endocrinol Metab ; 321(3): E417-E432, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34338041

RESUMEN

Carbohydrates and sweeteners are detected by the sweet taste receptor in enteroendocrine cells (EECs). This receptor is coupled to the gustducin G-protein, which α-subunit is encoded by GNAT3 gene. In intestine, the activation of sweet taste receptor triggers a signaling pathway leading to GLP-1 secretion, an incretin hormone. In metabolic diseases, GLP-1 concentration and incretin effect are reduced while partly restored after Roux-en-Y gastric bypass (RYGB). We wondered if the decreased GLP-1 secretion in metabolic diseases is caused by an intestinal defect in sweet taste transduction pathway. In our RNA-sequencing of EECs, GNAT3 expression is decreased in patients with obesity and type 2 diabetes compared with normoglycemic obese patients. This prompted us to explore sweet taste signaling pathway in mice with metabolic deteriorations. During obesity onset in mice, Gnat3 expression was downregulated in EECs. After metabolic improvement with enterogastro anastomosis surgery in mice (a surrogate of the RYGB in humans), the expression of Gnat3 increased in the new alimentary tract and glucose-induced GLP-1 secretion was improved. To evaluate if high-fat diet-induced dysbiotic intestinal microbiota could explain the changes in the expression of sweet taste α-subunit G-protein, we performed a fecal microbiota transfer in mice. However, we could not conclude if dysbiotic microbiota impacted or not intestinal Gnat3 expression. Our data highlight that metabolic disorders were associated with altered gene expression of sweet taste signaling in intestine. This could contribute to impaired GLP-1 secretion that is partly rescued after metabolic improvement.NEW & NOTEWORTHY Our data highlighted 1) the sweet taste transduction pathway in EECs plays pivotal role for glucose homeostasis at least at gene expression level; 2) metabolic disorders lead to altered gene expression of sweet taste signaling pathway in intestine contributing to impaired GLP-1 secretion; and 3) after surgical intestinal modifications, increased expression of GNAT3, encoding α-gustducin contributed to metabolic improvement.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Obesidad/metabolismo , Transducción de Señal , Gusto , Transducina/metabolismo , Animales , Disbiosis/metabolismo , Células Enteroendocrinas/metabolismo , Microbioma Gastrointestinal , Humanos , Masculino , Ratones Endogámicos C57BL
7.
Cytotherapy ; 23(4): 311-319, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33246884

RESUMEN

BACKGROUND AIMS: Induced pluripotent stem cells (iPSCs) have the capacity to generate ß cells in vitro, but the differentiation is incomplete and generates a variable percentage of off-target cells. Single-cell RNA sequencing offers the possibility of characterizing the transcriptional dynamics throughout differentiation and determining the identity of the final differentiation product. METHODS: Single-cell transcriptomics data were obtained from four stages across differentiation of iPSCs into ß cells and from human donor islets. RESULTS: Clustering analysis revealed that iPSCs undertake a full endoderm commitment, and the obtained endocrine pancreatic cells have high homology with mature islets. The iPSC-derived ß cells were devoid of pluripotent residual cells, and the differentiation was pancreas-specific, as it did not generate ectodermal or mesodermal cells. Pseudotime trajectory identified a dichotomic endocrine/non-endocrine cell fate and distinct subgroups in the endocrine branch. CONCLUSIONS: Future efforts to produce ß cells from iPSCs must aim not only to improve the resulting endocrine cell but also to avoid differentiation into non-pancreatic endoderm cells.


Asunto(s)
Células Madre Pluripotentes Inducidas , Islotes Pancreáticos , Células Madre Pluripotentes , Diferenciación Celular , Endodermo , Humanos
8.
BMC Biol ; 18(1): 109, 2020 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-32867764

RESUMEN

BACKGROUND: Endocrine cells of the zebrafish digestive system play an important role in regulating metabolism and include pancreatic endocrine cells (PECs) clustered in the islets of Langerhans and the enteroendocrine cells (EECs) scattered in the intestinal epithelium. Despite EECs and PECs are being located in distinct organs, their differentiation involves shared molecular mechanisms and transcription factors. However, their degree of relatedness remains unexplored. In this study, we investigated comprehensively the similarity of EECs and PECs by defining their transcriptomic landscape and comparing the regulatory programmes controlled by Pax6b, a key player in both EEC and PEC differentiations. RESULTS: RNA sequencing was performed on EECs and PECs isolated from wild-type and pax6b mutant zebrafish. Data mining of wild-type zebrafish EEC data confirmed the expression of orthologues for most known mammalian EEC hormones, but also revealed the expression of three additional neuropeptide hormones (Proenkephalin-a, Calcitonin-a and Adcyap1a) not previously reported to be expressed by EECs in any species. Comparison of transcriptomes from EECs, PECs and other zebrafish tissues highlights a very close similarity between EECs and PECs, with more than 70% of genes being expressed in both endocrine cell types. Comparison of Pax6b-regulated genes in EECs and PECs revealed a significant overlap. pax6b loss-of-function does not affect the total number of EECs and PECs but instead disrupts the balance between endocrine cell subtypes, leading to an increase of ghrelin- and motilin-like-expressing cells in both the intestine and pancreas at the expense of other endocrine cells such as beta and delta cells in the pancreas and pyyb-expressing cells in the intestine. Finally, we show that the homeodomain of Pax6b is dispensable for its action in both EECs and PECs. CONCLUSION: We have analysed the transcriptomic landscape of wild-type and pax6b mutant zebrafish EECs and PECs. Our study highlights the close relatedness of EECs and PECs at the transcriptomic and regulatory levels, supporting the hypothesis of a common phylogenetic origin and underscoring the potential implication of EECs in metabolic diseases such as type 2 diabetes.


Asunto(s)
Células Endocrinas/metabolismo , Regulación de la Expresión Génica , Intestinos/fisiología , Factor de Transcripción PAX6/genética , Páncreas/metabolismo , Transcriptoma , Pez Cebra/genética , Animales , Factor de Transcripción PAX6/metabolismo , Pez Cebra/metabolismo
9.
Development ; 144(16): 2873-2888, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28811309

RESUMEN

The pancreas is an endoderm-derived glandular organ that participates in the regulation of systemic glucose metabolism and food digestion through the function of its endocrine and exocrine compartments, respectively. While intensive research has explored the signaling pathways and transcriptional programs that govern pancreas development, much remains to be discovered regarding the cellular processes that orchestrate pancreas morphogenesis. Here, we discuss the developmental mechanisms and principles that are known to underlie pancreas development, from induction and lineage formation to morphogenesis and organogenesis. Elucidating such principles will help to identify novel candidate disease genes and unravel the pathogenesis of pancreas-related diseases, such as diabetes, pancreatitis and cancer.


Asunto(s)
Páncreas/embriología , Animales , Endodermo/embriología , Endodermo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Humanos , Páncreas/metabolismo , Transducción de Señal
10.
Biochem J ; 476(5): 827-842, 2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30787050

RESUMEN

To closely mimic physiological conditions, low oxygen cultures have been employed in stem cell and cancer research. Although in vivo oxygen concentrations in tissues are often much lower than ambient 21% O2 (ranging from 3.6 to 12.8% O2), most cell cultures are maintained at 21% O2 To clarify the effects of the O2 culture concentration on the regulated secretion of peptide hormones in neuro-endocrine cells, we examined the changes in the storage and release of peptide hormones in neuro-endocrine cell lines and endocrine tissues cultured in a relatively lower O2 concentration. In both AtT-20 cells derived from the mouse anterior pituitary and freshly prepared mouse pituitaries cultured in 10% O2 for 24 h, the storage and regulated secretion of the mature peptide hormone adrenocorticotropic hormone were significantly increased compared with those in cells and pituitaries cultured in ambient 21% O2, whereas its precursor proopiomelanocortin was not increased in the cells and tissues after being cultured in 10% O2 Simultaneously, the prohormone-processing enzymes PC1/3 and carboxypeptidase E were up-regulated in cells cultured in 10% O2, thus facilitating the conversion of prohormones to their active form. Similarly, culturing the mouse ß-cell line MIN6 and islet tissue in 10% O2 also significantly increased the conversion of proinsulin into mature insulin, which was secreted in a regulated manner. These results suggest that culture under 10% O2 is more optimal for endocrine tissues/cells to efficiently generate and secrete active peptide hormones than ambient 21% O2.


Asunto(s)
Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Células Neuroendocrinas/metabolismo , Oxígeno/farmacología , Adenohipófisis/metabolismo , Proopiomelanocortina/biosíntesis , Regulación hacia Arriba/efectos de los fármacos , Animales , Técnicas de Cultivo de Célula , Línea Celular , Ratones
11.
Int J Mol Sci ; 21(23)2020 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-33266068

RESUMEN

Dexmedetomidine (DEX), a highly selective agonist of α2-adrenergic receptors, has been tailored for sedation without risk of respiratory depression. Our hypothesis is that DEX produces any direct perturbations on ionic currents (e.g., hyperpolarization-activated cation current, Ih). In this study, addition of DEX to pituitary GH3 cells caused a time- and concentration-dependent reduction in the amplitude of Ih with an IC50 value of 1.21 µM and a KD value of 1.97 µM. A hyperpolarizing shift in the activation curve of Ih by 10 mV was observed in the presence of DEX. The voltage-dependent hysteresis of Ih elicited by long-lasting triangular ramp pulse was also dose-dependently reduced during its presence. In continued presence of DEX (1 µM), further addition of OXAL (10 µM) or replacement with high K+ could reverse DEX-mediated inhibition of Ih, while subsequent addition of yohimbine (10 µM) did not attenuate the inhibitory effect on Ih amplitude. The addition of 3 µM DEX mildly suppressed the amplitude of erg-mediated K+ current. Under current-clamp potential recordings, the exposure to DEX could diminish the firing frequency of spontaneous action potentials. In pheochromocytoma PC12 cells, DEX was effective at suppressing Ih together with a slowing in activation time course of the current. Taken together, findings from this study strongly suggest that during cell exposure to DEX used at clinically relevant concentrations, the DEX-mediated block of Ih appears to be direct and would particularly be one of the ionic mechanisms underlying reduced membrane excitability in the in vivo endocrine or neuroendocrine cells.


Asunto(s)
Agonistas de Receptores Adrenérgicos alfa 2/farmacología , Dexmedetomidina/farmacología , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Potenciales de Acción/efectos de los fármacos , Animales , Línea Celular Tumoral , Activación del Canal Iónico/efectos de los fármacos , Ivabradina/farmacología , Oxaliplatino/farmacología , Células PC12 , Canales de Potasio/metabolismo , Ratas , Yohimbina/farmacología
12.
Development ; 142(22): 3859-68, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26450967

RESUMEN

Despite significant advances in our understanding of pancreatic endocrine cell development, the function of the pancreatic mesodermal niche in this process is poorly understood. Here we report a novel role for mouse Hox6 genes in pancreatic organogenesis. Hox6 genes are expressed exclusively in the mesoderm of the developing pancreas. Genetic loss of all three Hox6 paralogs (Hoxa6, Hoxb6 and Hoxc6) leads to a dramatic loss of endoderm-derived endocrine cells, including insulin-secreting ß-cells, and to mild delays and disruptions in pancreatic branching and exocrine differentiation. Ngn3-expressing pan-endocrine progenitor cells are specified normally in Hox6 mutant pancreata, but fail to mature into hormone-producing cells. Reduced expression of Wnt5a is observed in mutant pancreatic mesenchyme, leading to subsequent loss of expression of the crucial Wnt inhibitors Sfrp3 and Dkk1 in endocrine progenitor cells. These results reveal a key role for Hox6 genes in establishing Wnt mesenchymal-epithelial crosstalk in pancreatic development.


Asunto(s)
Diferenciación Celular/fisiología , Células Endocrinas/fisiología , Proteínas de Homeodominio/metabolismo , Mesodermo/metabolismo , Organogénesis/fisiología , Páncreas/embriología , Animales , Células Endocrinas/metabolismo , Técnica del Anticuerpo Fluorescente , Hibridación in Situ , Ratones , Páncreas/citología , Reacción en Cadena en Tiempo Real de la Polimerasa , Tamoxifeno
13.
BMC Biol ; 15(1): 21, 2017 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-28327131

RESUMEN

BACKGROUND: Defining the transcriptome and the genetic pathways of pancreatic cells is of great interest for elucidating the molecular attributes of pancreas disorders such as diabetes and cancer. As the function of the different pancreatic cell types has been maintained during vertebrate evolution, the comparison of their transcriptomes across distant vertebrate species is a means to pinpoint genes under strong evolutionary constraints due to their crucial function, which have therefore preserved their selective expression in these pancreatic cell types. RESULTS: In this study, RNA-sequencing was performed on pancreatic alpha, beta, and delta endocrine cells as well as the acinar and ductal exocrine cells isolated from adult zebrafish transgenic lines. Comparison of these transcriptomes identified many novel markers, including transcription factors and signaling pathway components, specific for each cell type. By performing interspecies comparisons, we identified hundreds of genes with conserved enriched expression in endocrine and exocrine cells among human, mouse, and zebrafish. This list includes many genes known as crucial for pancreatic cell formation or function, but also pinpoints many factors whose pancreatic function is still unknown. A large set of endocrine-enriched genes can already be detected at early developmental stages as revealed by the transcriptomic profiling of embryonic endocrine cells, indicating a potential role in cell differentiation. The actual involvement of conserved endocrine genes in pancreatic cell differentiation was demonstrated in zebrafish for myt1b, whose invalidation leads to a reduction of alpha cells, and for cdx4, selectively expressed in endocrine delta cells and crucial for their specification. Intriguingly, comparison of the endocrine alpha and beta cell subtypes from human, mouse, and zebrafish reveals a much lower conservation of the transcriptomic signatures for these two endocrine cell subtypes compared to the signatures of pan-endocrine and exocrine cells. These data suggest that the identity of the alpha and beta cells relies on a few key factors, corroborating numerous examples of inter-conversion between these two endocrine cell subtypes. CONCLUSION: This study highlights both evolutionary conserved and species-specific features that will help to unveil universal and fundamental regulatory pathways as well as pathways specific to human and laboratory animal models such as mouse and zebrafish.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Genes Reguladores , Páncreas/citología , Páncreas/metabolismo , Células Acinares/citología , Células Acinares/metabolismo , Animales , Diferenciación Celular/genética , Separación Celular , Embrión no Mamífero/metabolismo , Evolución Molecular , Regulación del Desarrollo de la Expresión Génica , Marcadores Genéticos , Glucagón/metabolismo , Células Secretoras de Glucagón/citología , Células Secretoras de Glucagón/metabolismo , Humanos , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Ratones , Mutación/genética , Análisis de Componente Principal , Especificidad de la Especie , Factores de Transcripción/metabolismo , Pez Cebra/embriología , Pez Cebra/genética
14.
FASEB J ; 30(2): 884-94, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26527065

RESUMEN

Cathelicidins are pleiotropic antimicrobial peptides largely described for innate antimicrobial defenses and, more recently, immunomodulation. They are shown to modulate a variety of immune or nonimmune host cell responses. However, how cathelicidins are expressed by ß cells and modulate ß-cell functions under steady-state or proinflammatory conditions are unknown. We find that cathelicidin-related antimicrobial peptide (CRAMP) is constitutively expressed by rat insulinoma ß-cell clone INS-1 832/13. CRAMP expression is inducible by butyrate or phenylbutyric acid and its secretion triggered upon inflammatory challenges by IL-1ß or LPS. CRAMP promotes ß-cell survival in vitro via the epidermal growth factor receptor (EGFR) and by modulating expression of antiapoptotic Bcl-2 family proteins: p-Bad, Bcl-2, and Bcl-xL. Also via EGFR, CRAMP stimulates glucose-stimulated insulin secretion ex vivo by rat islets. A similar effect is observed in diabetes-prone nonobese diabetic (NOD) mice. Additional investigation under inflammatory conditions reveals that CRAMP modulates inflammatory responses and ß-cell apoptosis, as measured by prostaglandin E2 production, cyclooxygenases (COXs), and caspase activation. Finally, CRAMP-deficient cnlp(-/-) mice exhibit defective insulin secretion, and administration of CRAMP to prediabetic NOD mice improves blood glucose clearance upon glucose challenge. Our finding suggests that cathelicidins positively regulate ß-cell functions and may be potentially used for intervening ß-cell dysfunction-associated diseases.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/metabolismo , Células Secretoras de Insulina/metabolismo , Animales , Péptidos Catiónicos Antimicrobianos/genética , Apoptosis/genética , Línea Celular Tumoral , Dinoprostona/genética , Dinoprostona/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Masculino , Ratones , Ratones Endogámicos NOD , Ratones Noqueados , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ratas , Ratas Wistar , Proteína Letal Asociada a bcl/genética , Proteína Letal Asociada a bcl/metabolismo , Proteína bcl-X/genética , Proteína bcl-X/metabolismo , Catelicidinas
15.
Scand J Gastroenterol ; 52(6-7): 691-697, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28346031

RESUMEN

OBJECTIVE: Patients with irritable bowel syndrome (IBS) in Asia show distinctive differences from those in the western world. The gastrointestinal endocrine cells appear to play an important role in the pathophysiology of IBS. The present study aimed at studying the density of chromogranin A (CgA) cells in the large intestine of Thai and Norwegian IBS patients. METHODS: Thirty Thai IBS patients and 20 control subjects, and 47 Norwegian IBS patients and 20 control subjects were included. A standard colonoscopy was performed in both the patients and controls, and biopsy samples were taken from the colon and the rectum. The biopsy samples were stained with hematoxylin-eosin and immunostained for CgA. The density of CgA cells was determined by computerized image analysis. RESULTS: In the colon and rectum, the CgA cell densities were far higher in both IBS and healthy Thai subjects than in Norwegians. The colonic CgA cell density was lower in Norwegian IBS patients than in controls, but did not differ between Thai IBS patients and controls. In the rectum, the CgA cell densities in both Thai and Norwegian patients did not differ from those of controls. CONCLUSIONS: The higher densities of CgA cells in Thai subjects than Norwegians may be explained by a higher exposure to infections at childhood and the development of a broad immune tolerance, by differences in the intestinal microbiota, and/or differing diet habits. The normal CgA cell density in Thai IBS patients in contrast to that of Norwegians may be due to differences in pathophysiology.


Asunto(s)
Cromogranina A/metabolismo , Colon/patología , Células Enteroendocrinas/metabolismo , Síndrome del Colon Irritable/etnología , Recto/patología , Adulto , Anciano , Estudios de Casos y Controles , Recuento de Células , Colonoscopía , Femenino , Humanos , Inmunohistoquímica , Síndrome del Colon Irritable/patología , Masculino , Persona de Mediana Edad , Noruega , Tailandia
16.
Fish Shellfish Immunol ; 64: 243-250, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28330806

RESUMEN

Immunohistochemical, immunofluorescence and ultrastructural studies were conducted on a sub-population of 20 wels catfish Silurus glanis from a tributary of the River Po (Northern Italy). Fish were examined for the presence of ecto- and endo-parasites; in the intestine of 5 fish, 11 specimens of cestode Glanitaenia osculata were noted and was the only helminth species encountered. The architecture of intestine and its cellular features were nearly identical in either the uninfected S. glanis or in those harboring G. osculata. Near the site of worm's attachment, mucous cells, several mast cells (MCs), few neutrophils and some endocrine cells (ECs) were found to co-occur within the intestinal epithelium. MCs and neutrophils were abundant also in the submucosa. Immunohistochemical staining revealed that enteric ECs were immunoreactive to met-enkephalin, galanin and serotonin anti-bodies. The numbers of ECs, mucous cells and MCs were significantly higher in infected wels catfish (Mann-Whitney U test, p < 0.05). Dual immunofluorescence staining with the biotinylated lectin Sambucus nigra Agglutinin and the rabbit polyclonal anti-met-enkephalin or anti-serotonin, with parallel transmission electron microscopy, showed that ECs often made intimate contact with the mucous cells and epithelial MCs. The presence of numerous MCs in intestinal epithelium shows S. glanis to be an interesting model fish to study processes underlying intestinal inflammation elicited by an enteric worm. Immune cells, ECs and mucous cells of the intestinal epithelium have been described at the ultrastructural level and their possible functions and interactions together will be discussed.


Asunto(s)
Bagres/parasitología , Cestodos/fisiología , Infecciones por Cestodos/veterinaria , Enfermedades de los Peces/inmunología , Mucosa Intestinal/parasitología , Mastocitos/parasitología , Sistemas Neurosecretores/parasitología , Animales , Infecciones por Cestodos/inmunología , Infecciones por Cestodos/parasitología , Enfermedades de los Peces/parasitología , Mucosa Intestinal/fisiopatología , Italia , Sistemas Neurosecretores/fisiopatología
17.
Exp Cell Res ; 330(1): 212-21, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25305500

RESUMEN

Histone deacetylase inhibitors (HDACi) were recently identified as having significant clinical potential in reversing ß-cell functional inhibition caused by inflammation, a shared precursor of Type 1 and Type 2 diabetes. However, HDACi are highly complex and little is known of their direct effect on important cell secretion pathways for blood glucose regulation. The aims of the present study were to investigate the effect of HDACi on insulin secretion from ß-cells, GLP-1 secretion from L-cells, and recombinant insulin secretion from engineered L-cells. The ß-cell line ßTC-tet, L-cell line GLUTag, or recombinant insulin-secreting L-cell lines were exposed to Trichostatin A for 24h. Effects on insulin or GLP-1 mRNA, intracellular protein content, processing efficiency, and secretion were measured by real-time PCR, ELISA, and radioimmunoassay. HDACi increased secretion per viable cell in a dose-dependent manner for all cell types. Effects on mRNA levels were variable, but enhanced intracellular polypeptide content and secretion were comparable among cell types. Enhanced recombinant insulin secretion was sustained for seven days in alginate microencapsulated L-cells. HDACi enhances ß- and L-cell secretion fluxes in a way that could significantly improve blood glucose regulation in diabetes patients and holds potential as a novel method for enhancing insulin-secreting non-ß or ß-cell grafts.


Asunto(s)
Células Enteroendocrinas/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Ácidos Hidroxámicos/farmacología , Células Secretoras de Insulina/efectos de los fármacos , Vías Secretoras , Animales , Línea Celular , Células Enteroendocrinas/metabolismo , Péptido 1 Similar al Glucagón/genética , Péptido 1 Similar al Glucagón/metabolismo , Insulina/genética , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Ratones , ARN Mensajero/genética , ARN Mensajero/metabolismo
18.
Adv Exp Med Biol ; 938: 11-24, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27586419

RESUMEN

Type 1 diabetes (T1D) patients who receive pancreatic islet transplant experience significant improvement in their quality-of-life. This comes primarily through improved control of blood sugar levels, restored awareness of hypoglycemia, and prevention of serious and potentially life-threatening diabetes-associated complications, such as kidney failure, heart and vascular disease, stroke, nerve damage, and blindness. Therefore, beta cell replacement through transplantation of isolated islets is an important option in the treatment of T1D. However, lasting success of this promising therapy depends on durable survival and efficacy of the transplanted islets, which are directly influenced by the islet isolation procedures. Thus, isolating pancreatic islets with consistent and reliable quality is critical in the clinical application of islet transplantation.Quality of isolated islets is important in pre-clinical studies as well, as efforts to advance and improve clinical outcomes of islet transplant therapy have relied heavily on animal models ranging from rodents, to pigs, to nonhuman primates. As a result, pancreatic islets have been isolated from these and other species and used in a variety of in vitro or in vivo applications for this and other research purposes. Protocols for islet isolation have been somewhat similar across species, especially, in mammals. However, given the increasing evidence about the distinct structural and functional features of human and mouse islets, using similar methods of islet isolation may contribute to inconsistencies in the islet quality, immunogenicity, and experimental outcomes. This may also contribute to the discrepancies commonly observed between pre-clinical findings and clinical outcomes. Therefore, it is prudent to consider the particular features of pancreatic islets from different species when optimizing islet isolation protocols.In this chapter, we explore the structural and functional features of pancreatic islets from mice, pigs, nonhuman primates, and humans because of their prevalent use in nonclinical, preclinical, and clinical applications.


Asunto(s)
Islotes Pancreáticos/fisiología , Animales , Humanos , Islotes Pancreáticos/irrigación sanguínea , Islotes Pancreáticos/citología , Islotes Pancreáticos/inervación , Comunicación Paracrina , Transducción de Señal
19.
Ann Pathol ; 36(1): 34-43, 2016 Jan.
Artículo en Francés | MEDLINE | ID: mdl-26776366

RESUMEN

In the recently published 2015 World Health Organization (WHO) classification of tumors of the lungs, all neuroendocrine tumors of the lungs are presented for the first time in one single chapter. In this classification, high-grade small cell lung cancer (SCLC) and large cell neuroendocrine carcinoma (LCNEC) are differentiated from intermediate grade atypical carcinoids (AC) and low-grade typical carcinoids as well as from preinvasive lesion diffuse neuroendocrine hyperplasia DIPNECH. In the 2004 WHO classification, SCLC and carcinoids each had a separate chapter and LCNEC was listed in the chapter on large cell carcinoma of the lungs. The new WHO classification also gives some recommendations for the diagnosis on small biopsies. This review describes morphological, immunohistochemical, and genomic characteristic of these tumors according to the new classification.


Asunto(s)
Neoplasias Pulmonares/clasificación , Tumores Neuroendocrinos/clasificación , Biomarcadores de Tumor , Tumor Carcinoide/química , Tumor Carcinoide/clasificación , Tumor Carcinoide/diagnóstico , Tumor Carcinoide/patología , Diferenciación Celular , Diagnóstico Diferencial , Genes Relacionados con las Neoplasias , Humanos , Hiperplasia , Neoplasias Pulmonares/química , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/patología , Células Neuroendocrinas/patología , Tumores Neuroendocrinos/química , Tumores Neuroendocrinos/diagnóstico , Tumores Neuroendocrinos/patología , Lesiones Precancerosas/química , Lesiones Precancerosas/diagnóstico , Lesiones Precancerosas/patología , Organización Mundial de la Salud
20.
J Biol Chem ; 289(43): 29892-911, 2014 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-25143383

RESUMEN

Identification of genes specifically expressed in stem/progenitor cells is an important issue in developmental and stem cell biology. Genome-wide gene expression analyses in liver cells performed in this study have revealed a strong expression of X-linked genes that include members of the brain-expressed X-linked (Bex) gene family in stem/progenitor cells. Bex family genes are expressed abundantly in the neural cells and have been suggested to play important roles in the development of nervous tissues. However, the physiological role of its individual members and the precise expression pattern outside the nervous system remain largely unknown. Here, we focused on Bex2 and examined its role and expression pattern by generating knock-in mice; the enhanced green fluorescence protein (EGFP) was inserted into the Bex2 locus. Bex2-deficient mice were viable and fertile under laboratory growth conditions showing no obvious phenotypic abnormalities. Through an immunohistochemical analysis and flow cytometry-based approach, we observed unique EGFP reporter expression patterns in endocrine and stem/progenitor cells of the liver, pyloric stomach, and hematopoietic system. Although Bex2 seems to play redundant roles in vivo, these results suggest the significance and potential applications of Bex2 in studies of endocrine and stem/progenitor cells.


Asunto(s)
Células Endocrinas/metabolismo , Marcación de Gen , Proteínas del Tejido Nervioso/metabolismo , Células Madre/metabolismo , Animales , Biomarcadores/metabolismo , Diferenciación Celular , Linaje de la Célula/genética , Proliferación Celular , Células Endocrinas/citología , Endodermo/citología , Femenino , Feto/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Sitios Genéticos , Proteínas Fluorescentes Verdes/metabolismo , Hematopoyesis/genética , Hígado/embriología , Hígado/metabolismo , Masculino , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Especificidad de Órganos , Fenotipo , Regiones Promotoras Genéticas/genética , Células Madre/citología , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA