Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
Más filtros

Intervalo de año de publicación
1.
Mol Biol Evol ; 41(1)2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38174583

RESUMEN

Bioluminescence in beetles has long fascinated biologists, with diverse applications in biotechnology. To date, however, our understanding of its evolutionary origin and functional variation mechanisms remains poor. To address these questions, we obtained high-quality reference genomes of luminous and nonluminous beetles in 6 Elateroidea families. We then reconstructed a robust phylogenetic relationship for all luminous families and related nonluminous families. Comparative genomic analyses and biochemical functional experiments suggested that gene evolution within Elateroidea played a crucial role in the origin of bioluminescence, with multiple parallel origins observed in the luminous beetle families. While most luciferase-like proteins exhibited a conserved nonluminous amino acid pattern (TLA346 to 348) in the luciferin-binding sites, luciferases in the different luminous beetle families showed divergent luminous patterns at these sites (TSA/CCA/CSA/LVA). Comparisons of the structural and enzymatic properties of ancestral, extant, and site-directed mutant luciferases further reinforced the important role of these sites in the trade-off between acyl-CoA synthetase and luciferase activities. Furthermore, the evolution of bioluminescent color demonstrated a tendency toward hypsochromic shifts and variations among the luminous families. Taken together, our results revealed multiple parallel origins of bioluminescence and functional divergence within the beetle bioluminescent system.


Asunto(s)
Escarabajos , Animales , Humanos , Escarabajos/genética , Filogenia , Secuencia de Aminoácidos , Luciferasas/genética , Luciferasas/química , Luciferasas/metabolismo , Sitios de Unión
2.
Int J Mol Sci ; 25(4)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38396751

RESUMEN

Chitin deacetylase (CDA) can catalyze the deacetylation of chitin to produce chitosan. In this study, we identified and characterized a chitin deacetylase gene from Euphausia superba (EsCDA-9k), and a soluble recombinant protein chitin deacetylase from Euphausia superba of molecular weight 45 kDa was cloned, expressed, and purified. The full-length cDNA sequence of EsCDA-9k was 1068 bp long and encoded 355 amino acid residues that contained the typical domain structure of carbohydrate esterase family 4. The predicted three-dimensional structure of EsCDA-9k showed a 67.32% homology with Penaeus monodon. Recombinant chitin deacetylase had the highest activity at 40 °C and pH 8.0 in Tris-HCl buffer. The enzyme activity was enhanced by metal ions Co2+, Fe3+, Ca2+, and Na+, while it was inhibited by Zn2+, Ba2+, Mg2+, and EDTA. Molecular simulation of EsCDA-9k was conducted based on sequence alignment and homology modeling. The EsCDA-9k F18G mutant showed a 1.6-fold higher activity than the wild-type enzyme. In summary, this is the first report of the cloning and heterologous expression of the chitin deacetylase gene in Euphausia superba. The characterization and function study of EsCDA-9k will serve as an important reference point for future application.


Asunto(s)
Euphausiacea , Animales , Clonación Molecular , Alineación de Secuencia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Amidohidrolasas/metabolismo , Quitina
3.
Prep Biochem Biotechnol ; 54(8): 1001-1016, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38445829

RESUMEN

With the industrialization and development of modern science, the application of enzymes as green and environmentally friendly biocatalysts in industry has been increased widely. Among them, lipase (EC. 3.1.1.3) is a very prominent biocatalyst, which has the ability to catalyze the hydrolysis and synthesis of ester compounds. Many lipases have been isolated from various sources, such as animals, plants and microorganisms, among which microbial lipase is the enzyme with the most diverse enzymatic properties and great industrial application potential. It therefore has promising applications in many industries, such as food and beverages, waste treatment, biofuels, leather, textiles, detergent formulations, ester synthesis, pharmaceuticals and medicine. Although many microbial lipases have been isolated and characterized, only some of them have been commercially exploited. In order to cope with the growing industrial demands and overcome these shortcomings to replace traditional chemical catalysts, the preparation of new lipases with thermal/acid-base stability, regioselectivity, organic solvent tolerance, high activity and yield, and reusability through excavation and modification has become a hot research topic.


Asunto(s)
Lipasa , Lipasa/aislamiento & purificación , Lipasa/química , Lipasa/metabolismo , Biocatálisis , Estabilidad de Enzimas , Bacterias/enzimología
4.
Prep Biochem Biotechnol ; 54(7): 918-931, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38156984

RESUMEN

In this study, the wild-type Bacillus cereus ATA179 was mutagenized by random UV mutagenesis to increase lipase production. The mutant with maximum lipolytic activity was named Bacillus cereus EV4. The mutant strain (10.6 U/mL at 24 h) produced 60% more enzyme than the wild strain (6.6 U/mL at 48 h). Nutritional factors on lipase production were investigated. Sucrose was the best carbon source, (NH4)2HPO4 was the best nitrogen source and CuSO4 was the best metal ion source. Mutant EV4 showed a 32% increase in lipase production in the modified medium. The optimum temperature and pH were found to be 60 °C and 7.0, respectively. CuSO4, CaCl2, LiSO4, KCl, BaCl2, and Tween 20 had an activating effect on the enzyme. Vmax and Km values were found to be 17.36 U/mL and 0.036 mM, respectively. The molecular weight was determined as 28.2 kDa. The activity of lipase was found to be stable up to 60 days at 20 °C, 75 days at 4 °C, and 90 days at -20 °C. The potential of lipase in the detergent industry was investigated. The enzyme was not affected by detergent additives but was effective in removing stains in fabrics contaminated with oily substances.


Asunto(s)
Bacillus cereus , Detergentes , Lipasa , Mutagénesis , Rayos Ultravioleta , Lipasa/genética , Lipasa/metabolismo , Bacillus cereus/genética , Bacillus cereus/enzimología , Bacillus cereus/efectos de la radiación , Detergentes/química , Detergentes/farmacología , Concentración de Iones de Hidrógeno , Temperatura , Estabilidad de Enzimas
5.
J Sci Food Agric ; 104(13): 8181-8189, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38847461

RESUMEN

BACKGROUND: Citrus products often suffer from delayed bitterness, which is generated from the conversion of non-bitter precursors (limonoate A-ring lactone, LARL) to limonin under the catalysis of limonin D-ring lactone hydrolase (LDLH). In this study, LDLH was isolated and purified from sweet orange seeds, and a rapid and accurate high-performance liquid chromatography method to quantify LARL was developed and applied to analyze the activity and enzymatic properties of purified LDLH. RESULTS: Purified LDLH (25.22 U mg-1) showed bands of 245 kDa and 17.5 kDa molecular weights in native polyacrylamide gel electrophoresis (PAGE) and sodium dodecyl sulfate PAGE analysis respectively. After a 24 h incubation under strongly acidic (pH 3) or strongly alkaline (pH 9) conditions, LDLH still retained approximately 100% activity. Moreover, LDLH activity was not impaired by thermal treatment at 50 °C for 120 min. Enzyme inhibition assays showed that LDLH was inactivated only after ethylenediaminetetraacetic acid treatment, and other enzyme inhibitors showed no significant effect on its activity. In addition, the LDLH activity of calcium ion (Ca2+) intervention was 108% of that in the blank group, and that of zinc ion (Zn2+) intervention was 71%. CONCLUSION: LDLH purified in this study was a multimer containing 17.5 kDa monomer with a wide pH tolerance range (pH 3-9) and excellent thermal stability. Moreover, LDLH might be a metallopeptidase, and its activity was stimulated by Ca2+ and significantly inhibited by Zn2+. These findings improve our understanding of LDLH and provide some important implications for reducing the bitterness in citrus products in the future. © 2024 Society of Chemical Industry.


Asunto(s)
Citrus sinensis , Estabilidad de Enzimas , Limoninas , Peso Molecular , Proteínas de Plantas , Semillas , Semillas/química , Citrus sinensis/química , Proteínas de Plantas/química , Proteínas de Plantas/aislamiento & purificación , Concentración de Iones de Hidrógeno , Limoninas/química , Limoninas/aislamiento & purificación , Hidrolasas/química , Hidrolasas/metabolismo , Hidrolasas/aislamiento & purificación , Lactonas/química , Lactonas/farmacología , Lactonas/aislamiento & purificación
6.
World J Microbiol Biotechnol ; 40(3): 84, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38294733

RESUMEN

Arabinoxylans (AXs) are hemicellulosic polysaccharides consisting of a linear backbone of ß-1,4-linked xylose residues branched by high content of α-L-arabinofuranosyl (Araf) residues along with other side-chain substituents, and are abundantly found in various agricultural crops especially cereals. The efficient bioconversion of AXs into monosaccharides, oligosaccharides and/or other chemicals depends on the synergism of main-chain enzymes and de-branching enzymes. Exo-α-L-arabinofuranosidases (ABFs) catalyze the hydrolysis of terminal non-reducing α-1,2-, α-1,3- or α-1,5- linked α-L-Araf residues from arabinose-substituted polysaccharides or oligosaccharides. ABFs are critically de-branching enzymes in bioconversion of agricultural biomass, and have received special attention due to their application potentials in biotechnological industries. In recent years, the researches on microbial ABFs have developed quickly in the aspects of the gene mining, properties of novel members, catalytic mechanisms, methodologies, and application technologies. In this review, we systematically summarize the latest advances in microbial ABFs, and discuss the future perspectives of the enzyme research.


Asunto(s)
Biotecnología , Glicósido Hidrolasas , Glicósido Hidrolasas/genética , Polisacáridos , Oligosacáridos
7.
Biochem Biophys Res Commun ; 682: 250-258, 2023 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-37826948

RESUMEN

Cathepsin D (CTSD) is an aspartic endopeptidase, however, we found that it was also capable of enzymatic digestion of nucleic acids (NAs). The purpose of this study was to investigate the basic properties of CTSD enzymatic activity on NAs, and explore the degradation mechanism. The results showed that NAs were efficiently digested between pH 3.0 and 5.0, and the optimum pH was 3.5. CTSD exhibited optimum activity at the temperature of 50°C. The degradation rate was improved with an increased CTSD concentration, and NAs were digested to an enzyme concentration of 0.001%, at which point, NAs were no longer digested. Ca2+ and Mg2+ at low concentrations of 5 mM promoted the digestion remarkably. As the protein substrate for CTSD, both Hb and BSA had no effect on DNA degradation, even when the molar ratio of protein:DNA was 104:1. Kinetic parameters of Km and kcat/Km value were (42 ± 1) µM and (1.62 ± 0.1) × 10-2 s-1mM-1 respectively, using real-time quantitative PCR (RT-PCR). Specially, pepstatin A which is the specific aspartic protease inhibitor exhibited inhibitory effect on NA digestion by CTSD as well, suggesting that the catalytic active site of CTSD for NAs might be the same as protein. A brief degradation mechanism is discussed. The present study may change the cognition of CTSD specificity for substrate and contribute greatly to enzymology of CTSD.


Asunto(s)
Catepsina D , Ácidos Nucleicos , Ácido Aspártico Endopeptidasas , Catepsina D/metabolismo , ADN/metabolismo , Humanos , Animales , Bovinos
8.
Planta ; 257(5): 85, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36944703

RESUMEN

MAIN CONCLUSION: PPO was purified from Cistanche deserticola, and its enzymatic characteristics were clarified. It was found that microwave treatment was an efficient way to inactivate PPO. Polyphenol oxidase (PPO) from Cistanche deserticola was obtained and purified through an acetone precipitation and anion exchange column, the enzymatic characteristics and inactivation kinetics of PPO were studied. The specific activity of PPO was 73135.15 ± 6625.7 U/mg after purification, the purification multiple was 48.91 ± 4.43 times, and the recovery was 30.96 ± 0.27%. The molecular weight of the PPO component is about 66 kDa by SDS-PAGE analysis. The optimum substrate of PPO was catechol (Vmax = 0.048 U/mL, Km = 21.70 mM) and the optimum temperature and pH were 30 °C and 7, respectively. When the temperature is above 50 °C, pH < 3 or pH > 10, the enzyme activity can be significantly inhibited. The first-order kinetic fitting shows that microwave inactivation has lesser k values, larger D values and shorter t1/2. It was found that microwave treatment is considered as an efficient and feasible way to inactive PPO by comparing the Z values and Ea values of the two thermal treatments.


Asunto(s)
Cistanche , Cistanche/metabolismo , Catecol Oxidasa/química , Catecol Oxidasa/metabolismo , Cinética , Temperatura , Peso Molecular , Concentración de Iones de Hidrógeno
9.
Appl Microbiol Biotechnol ; 107(22): 6845-6857, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37698609

RESUMEN

An alginate lyase gene aly644 encoding a member of polysaccharide lyase family 6 was obtained from a metagenome of Antarctic macroalgae-associated microbes. The gene was expressed heterologously in Escherichia coli, and the recombinant protein was purified using a Ni-NTA His Tag Kit. With sodium alginate as the substrate, recombinant Aly644 exhibited an optimum reaction temperature of 50°C and an optimum reaction pH of 7.0. The Vmax and Km values of Aly644 toward sodium alginate were 112.36 mg/mL·min and 16.75 mg/mL, respectively. Substrate specificity analysis showed that Aly644 was a bifunctional alginate lyase that hydrolyzed both polyguluronic acid and polymannuronic acid. The hydrolysis products of Aly644 with sodium alginate as the substrate were detected by thin-layer chromatography, and were mainly di- and trisaccharides. The oligosaccharides produced by degradation of sodium alginate by Aly644 inhibited the mycelial growth of the plant pathogens Phytophthora capsici and Fulvia fulva; the 50% maximal effective concentration (EC50) values were 297.45 and 452.89 mg/L, and the 90% maximal effective concentration (EC90) values were 1341.45 and 2693.83 mg/L, respectively. This highlights that Aly644 is a potential candidate enzyme for the industrial production of alginate oligosaccharides with low degree of polymerization. Enzyme-hydrolyzed alginate oligosaccharides could support the development of green agriculture as natural antimicrobial agents. KEY POINTS: • An alginate lyase was obtained from a metagenome of Antarctic macroalgae-associated microbes. • Aly644 is a bifunctional alginate lyase with excellent thermostability and pH stability. • The enzymatic hydrolysates of Aly644 directly inhibited Phytophthora capsici and Fulvia fulva.

10.
Mar Drugs ; 21(10)2023 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-37888463

RESUMEN

Dextranase, also known as glucanase, is a hydrolase enzyme that cleaves α-1,6 glycosidic bonds. In this study, a dextranase-producing strain was isolated from water samples of the Qingdao Sea and identified as Microbacterium sp. This strain was further evaluated for growth conditions, enzyme-producing conditions, enzymatic properties, and hydrolysates. Yeast extract and sodium chloride were found to be the most suitable carbon and nitrogen sources for strain growth, while sucrose and ammonium sodium were found to be suitable carbon and nitrogen sources for fermentation. The optimal pH was 7.5, with a culture temperature of 40 °C and a culture time of 48 h. Dextranase produced by strain XD05 showed good thermal stability at 40 °C by retaining more than 70% relative enzyme activity. The pH stability of the enzyme was better under a weak alkaline condition (pH 6.0-8.0). The addition of NH4+ increased dextranase activity, while Co2+ and Mn2+ had slight inhibitory effects on dextranase activity. In addition, high-performance liquid chromatography showed that dextran is mainly hydrolyzed to maltoheptanose, maltohexanose, maltopentose, and maltootriose. Moreover, it can form corn porous starch. Dextranase can be used in various fields, such as food, medicine, chemical industry, cosmetics, and agriculture.


Asunto(s)
Dextranasa , Microbacterium , Dextranasa/farmacología , Concentración de Iones de Hidrógeno , Almidón , Carbono , Nitrógeno
11.
Ecotoxicol Environ Saf ; 258: 114965, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37141682

RESUMEN

The massive accumulation of polyethylene (PE) in the natural environment has caused persecution to the ecological environment. At present, the mechanism of microbial degradation of PE remains unclear, and the related enzymes for degrading PE need to be further explored. In this study, a strain of Klebsiella pneumoniae Mk-1 which can effectively degrade PE was obtained from the soil. The degradation performance of the strains was evaluated by weight loss rate, SEM, ATR/FTIR, WCA, and GPC. The key gene of PE degradation in the strain was further searched, which may be the laccase-like multi-copper oxidase gene. Then, the laccase-like multi-copper oxidase gene (KpMco) was successfully expressed in E.coli and its laccase activity was verified, which reached 85.19 U/L. The optimum temperature and pH of the enzyme are 45 °C and 4.0, respectively; it shows good stability at 30-40 °C and pH 4.5-5.5; Mn2+ and Cu2+ can activate the enzyme effect. After the enzyme was applied to the degradation of PE film, it was found that the laccase-like multi-copper oxidase did have a certain degradation effect on PE film. This study provides new strain and enzyme gene resources for the biodegradation of PE, thereby promoting the process of PE biodegradation.


Asunto(s)
Polietileno , Suelo , Polietileno/metabolismo , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Lacasa/genética , Lacasa/metabolismo , Biodegradación Ambiental
12.
Pestic Biochem Physiol ; 192: 105381, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37105612

RESUMEN

The toxic effects of insecticides on predatory arthropods have closely related to their exposure routes. However, little is known about the effects of insecticide on reproductive parameters when the route of exposure occurs at a trophic level via prey intake. We therefore conducted current studies assessing whether Eocanthecona furcellata adults would be affected by feeding with λ-cyhalothrin-contaminated prey. Reproductive parameters, i.e. prolonged premating and preoviposition durations, reduced number of egg batches and egg amount, disturbed ovarian development, and suppressed expression of reproductive related genes were observed in E. furcellata females by feeding with treated prey. Moreover, reduced survival rate and altered carbohydrate metabolism parameters were detected in male bugs. Biochemical parameters, including MDA content, the activities of three antioxidant enzymes and three detoxification enzymes exhibited sex-specific responses after oral-exposure to λ-cyhalothrin in E. furcellata. The results indicate that the insecticide affects the fitness and leads to impairing reproductive potential via sex-specific modulation manner in predator insects. Taken together, our results provide a comprehensive assessment about detrimental impacts of λ-cyhalothrin-exposure on predators via prey intake, as well as a solid basis for further research to protect the predators from hazardous impacts of insecticides.


Asunto(s)
Insecticidas , Piretrinas , Animales , Femenino , Masculino , Insecticidas/toxicidad , Piretrinas/toxicidad , Nitrilos/toxicidad , Insectos
13.
J Sci Food Agric ; 103(7): 3468-3478, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36807149

RESUMEN

BACKGROUND: Bacillus velezensis SW5, with good enzyme production ability, was isolated and identified in our laboratory from fermented fish sauce. Its galactosidase has been expressed in Escherichia coli, which could hydrolyze lactose in milk. The present study aims to express a novel serine protease gene (SPr-SW5) of this strain by Bacillus subtilis WB800N, and applies the expressed enzyme in hydrolysis of anchovy to prepare antioxidant substances, aiming to alleviate the waste of low-value fish resources. RESULTS: SPr-SW5 with the open reading frame of 1353 bp encodes a serine protease (SPr-SW5) with 450 amino acids. The theoretical molecular weight and isoelectric point are 47.2 kDa and 5.22, respectively. The successful expression of SPr-SW5 in B. subtilis WB800N was confirmed by a skim milk plate test. Its optimal temperature and pH were 50 °C and 8.0, respectively. SPr-SW5 activity was increased by Ca2+ and Zn2+ , but inhibited by Fe3+ . Furthermore, SPr-SW5 was tolerant to 1% Tween-40 and Tween-80; however, its activity was strongly inhibited by 10 mm phenylmethylsulfonyl fluoride. Additionally, SPr-SW5 could be capable of hydrolyzing anchovy, the hydrolysate (AHP) at 10 g L-1 , with 2,2-diphenyl-1-picrylhydrazyl and hydroxyl (·OH) scavenging rates of 73.21% and 79.71%, displaying good antioxidant activity. CONCLUSION: The novel SPr-SW5 was successfully expressed in B. subtilis WB800N. It exhibited excellent temperature stability and good tolerance to several metal ions. In addition, the anchovy hydrolyzed by expressed SPr-SW5 has good antioxidant ability. Overall, this research lays a good foundation for SPr-SW5 with respect to exploration and application in the food industry as enzyme preparation. © 2023 Society of Chemical Industry.


Asunto(s)
Polisorbatos , Serina Proteasas , Animales , Serina Proteasas/química , Serina Proteasas/metabolismo , Hidrólisis , Antioxidantes , Serina Endopeptidasas , Temperatura , Concentración de Iones de Hidrógeno
14.
World J Microbiol Biotechnol ; 39(12): 344, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37843698

RESUMEN

Bifidobacterium is a major probiotic of intestinal gut flora and exerts many physiological activities, and it is widely applied in the fields of food and medicine. As an important part of Bifidobacterium, glycoside hydrolase plays a role in its physiological activity. With the continuous development and improvement of genetic engineering technology, research on this type of enzyme will play a crucial role in promoting the further development of Bifidobacterium in the field of probiotics. In this review, the preparation methods, enzymatic properties, and functions of glycoside hydrolase extracted from Bifidobacterium are described and summarized. The common method for preparing glycoside hydrolase derived from Bifidobacterium is heterologous expression in Escherichia coli BL21. The optimal pH range for these glycoside hydrolase enzymes is between 4.5 and 7.5; the optimal temperature is between 30 and 50 °C, which is close to the optimal growth condition of Bifidobacterium. Based on substrate specificity, these glycoside hydrolase could hydrolyze synthetic substrates and natural oligosaccharides, including a series of pNP artificial substrates, disaccharide, and trisaccharides, while they have little ability to hydrolyze polysaccharide substrates. This review will be expected to provide a basis for the development of Bifidobacterium as a probiotic element.


Asunto(s)
Bifidobacterium , Glicósido Hidrolasas , Bifidobacterium/genética , Glicósido Hidrolasas/metabolismo , Disacáridos , Oligosacáridos/química , Especificidad por Sustrato
15.
Zhongguo Zhong Yao Za Zhi ; 48(24): 6624-6634, 2023 Dec.
Artículo en Zh | MEDLINE | ID: mdl-38212022

RESUMEN

Carthami Flos, as a traditional blood-activating and stasis-resolving drug, possesses anti-tumor, anti-inflammatory, and immunomodulatory pharmacological activities. Flavonoid glycosides are the main bioactive components in Carthamus tinctorius. Glycosyltransferase deserves to be studied in depth as a downstream modification enzyme in the biosynthesis of active glycoside compounds. This study reported a flavonoid glycosyltransferase CtUGT49 from C. tinctorius based on the transcriptome data, followed by bioinformatic analysis and the investigation of enzymatic properties. The open reading frame(ORF) of the gene was 1 416 bp, encoding 471 amino acid residues with the molecular weight of about 52 kDa. Phylogenetic analysis showed that CtUGT49 belonged to the UGT73 family. According to in vitro enzymatic results, CtUGT49 could catalyze naringenin chalcone to the prunin and choerospondin, and catalyze phloretin to phlorizin and trilobatin, exhibiting good substrate versatility. After the recombinant protein CtUGT49 was obtained by hetero-logous expression and purification, the enzymatic properties of CtUGT49 catalyzing the formation of prunin from naringenin chalcone were investigated. The results showed that the optimal pH value for CtUGT49 catalysis was 7.0, the optimal temperature was 37 ℃, and the highest substrate conversion rate was achieved after 8 h of reaction. The results of enzymatic kinetic parameters showed that the K_m value was 209.90 µmol·L~(-1) and k_(cat) was 48.36 s~(-1) calculated with the method of Michaelis-Menten plot. The discovery of the novel glycosyltransferase CtUGT49 is important for enriching the library of glycosylation tool enzymes and provides a basis for analyzing the glycosylation process of flavonoid glycosides in C. tinctorius.


Asunto(s)
Carthamus tinctorius , Chalconas , Carthamus tinctorius/genética , Carthamus tinctorius/química , Filogenia , Flavonoides/análisis , Glicósidos/análisis , Glicosiltransferasas/genética , Antiinflamatorios
16.
Appl Microbiol Biotechnol ; 106(7): 2481-2491, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35344091

RESUMEN

Herein, two genes (LBA0625 and LBA1719) encoding UGPases (UDP-glucose pyrophosphorylase) in Lactobacillus acidophilus (L. acidophilus) were successfully transformed into Escherichia coli BL21 (DE3) to construct recombinant overexpressing strains (E-0625, E-1719) to investigate the biological characteristics of UGPase-0625 and UGPase-1719. The active sites, polysaccharide yield, and anti-freeze-drying stress of L. acidophilus ATCC4356 were also detected. UGPase-0625 and UGPase-1719 belong to the nucleotidyltransferase of stable hydrophilic proteins; contain 300 and 294 amino acids, respectively; and have 20 conserved active sites by prediction. Αlpha-helixes and random coils were the main secondary structures, which constituted the main skeleton of UGPases. The optimal mixture for the high catalytic activity of the two UGPases included 0.5 mM UDP-Glu (uridine diphosphate glucose) and Mg2+ at 37 °C, pH 10.0. By comparing the UGPase activities of the mutant strains with the original recombinant strains, A10, L130, and L263 were determined as the active sites of UGPase-0625 (P < 0.01) and A11, L130, and L263 were determined as the active sites of UGPase-1719 (P < 0.01). In addition, UGPase overexpression could increase the production of polysaccharides and the survival rates of recombinant bacteria after freeze-drying. This is the first study to determine the enzymatic properties, active sites, and structural simulation of UGPases from L. acidophilus, providing in-depth understanding of the biological characteristics of UGPases in lactic acid bacteria.Key points• We detected the biological characteristics of UGPases encoded by LBA0625 and LBA1719.• We identified UGPase-0625 and UGPase-1719 active sites.• UGPase overexpression elevates polysaccharide levels and post-freeze-drying survival.


Asunto(s)
Lactobacillus acidophilus , UTP-Glucosa-1-Fosfato Uridililtransferasa , Dominio Catalítico , Lactobacillus acidophilus/genética , Lactobacillus acidophilus/metabolismo , Estructura Secundaria de Proteína , UTP-Glucosa-1-Fosfato Uridililtransferasa/química , UTP-Glucosa-1-Fosfato Uridililtransferasa/genética , UTP-Glucosa-1-Fosfato Uridililtransferasa/metabolismo , Uridina Difosfato Glucosa/metabolismo
17.
Biotechnol Lett ; 44(1): 101-112, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35001212

RESUMEN

ß-hydroxybutyric acid is the most sensitive indicator in ketoacidosis detection, and accounts for nearly 78% of the ketone bodies. Diaphorase is commonly used to detect the ß-hydroxybutyric acid in clinical diagnosis. However, the extraction of diaphorase from animal myocardium is complex and low-yield, which is not convenient for large-scale production. In this study, a diaphorase from Geobacillus sp. Y4.1MC1 was efficiently heterologous expressed and purified in E. coli with a yield of 110 mg/L culture. The optimal temperature and pH of this recombinant diaphorase (rDIA) were 55 °C and 6.5, respectively. It was proved that rDIA was a dual acid- and thermo-stable enzyme, and which showed much more accurate detection of ß-hydroxybutyric acid than the commercial enzyme. Additionally, we also investigated the molecular interaction of rDIA with the substrate, and the conformation transition in different pH values by using homology modeling and molecular dynamics simulation. The results showed that 141-161 domain of rDIA played important role in the structure changes and conformations transmission at different pH values. Moreover, it was predicted that F105W, F105R, and M186R mutants were able to improve the binding affinity of rDIA, and A2Y, P35F, Q36D, N210L, F211Y mutants were benefit for the stability of rDIA.


Asunto(s)
Geobacillus , Clonación Molecular , Estabilidad de Enzimas , Escherichia coli/genética , Escherichia coli/metabolismo , Geobacillus/genética , Geobacillus/metabolismo , Concentración de Iones de Hidrógeno , Proteínas Recombinantes/metabolismo , Temperatura
18.
Mar Drugs ; 20(8)2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-36005523

RESUMEN

In order to discover a broad-specificity and high stability chitinase, a marine fungus, Aspergillus fumigatus df347, was identified in the sediments of mangrove wetlands in Qinzhou Bay, China. The chitinase gene (AfChi28) from A. fumigatus df347 was cloned and heterologously expressed in Escherichia coli, and the recombinant enzyme AfChi28 was purified and characterized. AfChi28 is an acido-halotolerant- and temperature-resistant bifunctional enzyme with both endo- and exo-cleavage functions. Its enzymatic products are mainly GlcNAc, (GlcNAc)2, (GlcNAc)3 and (GlcNAc)4. Na+, Mg2+, K+, Ca2+ and Tris at a concentration of 50 mM had a strong stimulatory effect on AfChi28. The crude enzyme and pure enzyme exhibited the highest specific activity of 0.737 mU/mg and 52.414 mU/mg towards colloidal chitin. The DxDxE motif at the end of strand ß5 and with Glu154 as the catalytic residue was verified by the AlphaFold2 prediction and sequence alignment of homologous proteins. Moreover, the results of molecular docking showed that molecular modeling of chitohexaose was shown to bind to AfChi28 in subsites -4 to +2 in the deep groove substrate-binding pocket. This study demonstrates that AfChi28 is a promising chitinase for the preparation of desirable chitin oligosaccharides, and provides a foundation for elucidating the catalytic mechanism of chitinases from marine fungi.


Asunto(s)
Quitinasas , Aspergillus fumigatus/genética , Quitina/química , Quitinasas/metabolismo , Escherichia coli/metabolismo , Hongos/metabolismo , Hidrólisis , Simulación del Acoplamiento Molecular , Especificidad por Sustrato
19.
Bioprocess Biosyst Eng ; 45(3): 541-551, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35066675

RESUMEN

This study aimed to improve the catalytic activity of aspartate kinase (AK), the first key rate-limiting enzyme in the aspartic acid metabolism pathway, by site-directed saturation mutagenesis, and to weaken the synergistic feedback inhibition of metabolites and analyze its mechanism using molecular dynamics simulation (MD). The key residual sites around the inhibitor lysine (Lys) were selected to construct the mutant strains. The mutant A380M with significantly increased enzyme activity was obtained through enzyme activity screening. Kinetic analysis showed that the Vmax value increased to 15.73 U/mg, which was 4.8 times higher than that of wild-type AK (WT AK) (3.28 U/mg). The Kn value decreased to 0.61 mM, which was significantly lower than that of the wild type (4.77 mM), indicating that the substrate affinity increased. The enzyme properties analysis showed that the optimum temperature of the mutant A380M increased from 26 °C to 35 °C, the optimum pH remained unchanged. The stability was determined at optimum temperature (35 °C) and optimum pH 8.0, and it decreased from 4.8 h to 2.7 h. The feedback inhibition was weakened, showing a significant activation with the highest relative enzyme activity of 123.29% (Water was used instead of inhibitor as blank control group, and the highest enzyme activity was defined as 100%). Molecular dynamics simulations showed that the distance between ATP and Asp was shortened after mutation. The binding force and interaction between AK and ATP and substrate Asp were enhanced. The distance between catalytic residues D193 and S192 and substrate Asp was shortened.


Asunto(s)
Aspartato Quinasa , Aspartato Quinasa/genética , Aspartato Quinasa/metabolismo , Ácido Aspártico , Cinética , Mutagénesis , Mutagénesis Sitio-Dirigida
20.
Molecules ; 27(14)2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35889370

RESUMEN

Expression and purification of ß-galactosidases derived from Bifidobacterium provide a new resource for efficient lactose hydrolysis and lactose intolerance alleviation. Here, we cloned and expressed two ß-galactosidases derived from Bifidobacterium. The optimal pH for BLGLB1 was 5.5, and the optimal temperature was 45 °C, at which the enzyme activity of BLGLB1 was higher than that of commercial enzyme E (300 ± 3.6 U/mg) under its optimal conditions, reaching 2200 ± 15 U/mg. The optimal pH and temperature for BPGLB1 were 6.0 and 45 °C, respectively, and the enzyme activity (0.58 ± 0.03 U/mg) under optimum conditions was significantly lower than that of BLGLB1. The structures of the two ß-galactosidase were similar, with all known key sites conserved. When o-nitrophenyl-ß-D-galactoside (oNPG) was used as an enzyme reaction substrate, the maximum reaction velocity (Vmax) for BLGLB1 and BPGLB1 was 3700 ± 100 U/mg and 1.1 ± 0.1 U/mg, respectively. The kinetic constant (Km) of BLGLB1 and BPGLB1 was 1.9 ± 0.1 and 1.3 ± 0.3 mmol/L, respectively. The respective catalytic constant (kcat) of BLGLB1 and BPGLB1 was 1700 ± 40 s-1 and 0.5 ± 0.02 s-1, respectively; the respective kcat/Km value of BLGLB1 and BPGLB1 was 870 L/(mmol∙s) and 0.36 L/(mmol∙s), respectively. The Km, kcat and Vmax values of BLGLB1 were superior to those of earlier reported ß-galactosidase derived from Bifidobacterium. Overall, BLGLB1 has potential application in the food industry.


Asunto(s)
Bifidobacterium longum , Bifidobacterium pseudocatenulatum , Bifidobacterium/genética , Bifidobacterium/metabolismo , Bifidobacterium longum/genética , Bifidobacterium pseudocatenulatum/metabolismo , Clonación Molecular , Concentración de Iones de Hidrógeno , Cinética , Lactosa/metabolismo , Temperatura , beta-Galactosidasa/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA