Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Br J Nutr ; 116(8): 1315-1325, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27691998

RESUMEN

ß-Hydroxy-ß-methylbutyrate (HMB) is a popular ergogenic aid used by human athletes and as a supplement to sport horses, because of its ability to aid muscle recovery, improve performance and body composition. Recent findings suggest that HMB may stimulate satellite cells and affect expressions of genes regulating skeletal muscle cell growth. Despite the scientific data showing benefits of HMB supplementation in horses, no previous study has explained the mechanism of action of HMB in this species. The aim of this study was to reveal the molecular background of HMB action on equine skeletal muscle by investigating the transcriptomic profile changes induced by HMB in equine satellite cells in vitro. Upon isolation from the semitendinosus muscle, equine satellite cells were cultured until the 2nd day of differentiation. Differentiating cells were incubated with HMB for 24 h. Total cellular RNA was isolated, amplified, labelled and hybridised to microarray slides. Microarray data validation was performed with real-time quantitative PCR. HMB induced differential expressions of 361 genes. Functional analysis revealed that the main biological processes influenced by HMB in equine satellite cells were related to muscle organ development, protein metabolism, energy homoeostasis and lipid metabolism. In conclusion, this study demonstrated for the first time that HMB has the potential to influence equine satellite cells by controlling global gene expression. Genes and biological processes targeted by HMB in equine satellite cells may support HMB utility in improving growth and regeneration of equine skeletal muscle; however, the overall role of HMB in horses remains equivocal and requires further proteomic, biochemical and pharmacokinetic studies.


Asunto(s)
Suplementos Dietéticos , Regulación del Desarrollo de la Expresión Génica , Proteínas Musculares/metabolismo , Sustancias para Mejorar el Rendimiento/metabolismo , Células Satélite del Músculo Esquelético/metabolismo , Transcriptoma , Valeratos/metabolismo , Animales , Apoptosis , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Metabolismo Energético , Perfilación de la Expresión Génica , Ontología de Genes , Músculos Isquiosurales/citología , Músculos Isquiosurales/crecimiento & desarrollo , Músculos Isquiosurales/metabolismo , Caballos , Masculino , Desarrollo de Músculos , Proteínas Musculares/genética , ARN Mensajero/metabolismo , Células Satélite del Músculo Esquelético/citología
2.
Genes Nutr ; 13: 10, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29662554

RESUMEN

BACKGROUND: Skeletal muscle injury activates satellite cells to initiate processes of proliferation, differentiation, and hypertrophy in order to regenerate muscle fibers. The number of microRNAs and their target genes are engaged in satellite cell activation. ß-Hydroxy-ß-methylbutyrate (HMB) is known to prevent exercise-induced muscle damage. The purpose of this study was to evaluate the effect of HMB on miRNA and relevant target gene expression in differentiating equine satellite cells exposed to H2O2. We hypothesized that HMB may regulate satellite cell activity, proliferation, and differentiation, hence attenuate the pathological processes induced during an in vitro model of H2O2-related injury by changing the expression of miRNAs. METHODS: Equine satellite cells (ESC) were isolated from the samples of skeletal muscle collected from young horses. ESC were treated with HMB (24 h) and then exposed to H2O2 (1 h). For the microRNA and gene expression assessment microarrays, technique was used. Identified miRNAs and genes were validated using real-time qPCR. Cell viability, oxidative stress, and cell damage were measured using colorimetric method and flow cytometry. RESULTS: Analysis of miRNA and gene profile in differentiating ESC pre-incubated with HMB and then exposed to H2O2 revealed difference in the expression of 27 miRNAs and 4740 genes, of which 344 were potential target genes for identified miRNAs. Special attention was focused on differentially expressed miRNAs and their target genes involved in processes related to skeletal muscle injury. Western blot analysis showed protein protection in HMB-pre-treated group compared to control. The viability test confirmed that HMB enhanced cell survival after the hydrogen peroxide exposition. CONCLUSIONS: Our results suggest that ESC pre-incubated with HMB and exposed to H2O2 could affect expression on miRNA levels responsible for skeletal muscle development, cell proliferation and differentiation, and activation of tissue repair after injury. Enrichment analyses for targeted genes revealed that a large group of genes was associated with the regulation of signaling pathways crucial for muscle tissue development, protein metabolism, muscle injury, and regeneration, as well as with oxidative stress response.

3.
Nutrients ; 10(12)2018 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-30513813

RESUMEN

Gamma-oryzanol (GO) is a popular supplement for performance horses, dogs, and humans. Previous studies indicated that GO supplementation decreases creatine kinase activity and lactate level after exercise and may affect oxidative stress in Thoroughbred horses. GO may change genes expression in equine satellite cells (ESC). The purpose of this study was to evaluate the effect of GO on miRNA, gene expression, oxidative stress, and cell damage and viability in differentiating ESC pretreated with hydrogen peroxide (H2O2). ESCs were obtained from a young horse's skeletal muscle. ESCs were pre-incubated with GO (24 h) and then exposed to H2O2 for one hour. For the microRNA and gene expression assessment, the microarray technique was used. Identified miRNAs and genes were validated using real time-quantitative polymerase chain reaction. Several tests related to cell viability, cell damage, and oxidative stress were performed. The microarray analysis revealed differences in 17 miRNAs and 202 genes between GO-treated and control ESC. The tests related to apoptosis, cell viability, and oxidative stress showed that GO affects these processes to varying degrees. Our results suggest that GO can change miRNA and gene expression and may impact the processes involved in tissue repairing after an injury.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Perfilación de la Expresión Génica/veterinaria , Caballos , Peróxido de Hidrógeno/farmacología , Fenilpropionatos/farmacología , Células Satélite del Músculo Esquelético/fisiología , Animales , Apoptosis/efectos de los fármacos , Diferenciación Celular/genética , Proliferación Celular/genética , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Expresión Génica/efectos de los fármacos , Perfilación de la Expresión Génica/métodos , Masculino , MicroARNs/análisis , Estrés Oxidativo/efectos de los fármacos , ARN Mensajero/análisis , Células Satélite del Músculo Esquelético/efectos de los fármacos , Análisis de Matrices Tisulares/métodos , Análisis de Matrices Tisulares/veterinaria
4.
Genes Nutr ; 11: 5, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27482297

RESUMEN

BACKGROUND: Adult skeletal muscle myogenesis depends on the activation of satellite cells that have the potential to differentiate into new fibers. Gamma-oryzanol (GO), a commercially available nutriactive phytochemical, has gained global interest on account of its muscle-building and regenerating effects. Here, we investigated GO for its potential influence on myogenesis, using equine satellite cell culture model, since the horse is a unique animal, bred and exercised for competitive sport. To our knowledge, this is the first report where the global gene expression in cultured equine satellite cells has been described. METHODS: Equine satellite cells were isolated from semitendinosus muscle and cultured until the second day of differentiation. Differentiating cells were incubated with GO for the next 24 h. Subsequently, total RNA from GO-treated and control cells was isolated, amplified, labeled, and hybridized to two-color Horse Gene Expression Microarray slides. Quantitative PCR was used for the validation of microarray data. RESULTS: Our results revealed 58 genes with changed expression in GO-treated vs. control cells. Analysis of expression changes suggests that various processes are reinforced by GO in differentiating equine satellite cells, including inhibition of myoblast differentiation, increased proliferation and differentiation, stress response, and increased myogenic lineage commitment. CONCLUSIONS: The present study may confirm putative muscle-enhancing abilities of GO; however, the collective role of GO in skeletal myogenesis remains equivocal. The diversity of these changes is likely due to heterogenous growth rate of cells in primary culture. Genes identified in our study, modulated by the presence of GO, may become potential targets of future research investigating impact of this supplement in skeletal muscle on proteomic and biochemical level.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA