RESUMEN
Neuregulin1 (Nrg1) signaling is critical for neuronal development and function from fate specification to synaptic plasticity. Type III Nrg1 is a synaptic protein which engages in bidirectional signaling with its receptor ErbB4. Forward signaling engages ErbB4 phosphorylation, whereas back signaling engages two known mechanisms: (1) local axonal PI3K-AKT signaling and (2) cleavage by γ-secretase resulting in cytosolic release of the intracellular domain (ICD), which can traffic to the nucleus (Bao et al., 2003; Hancock et al., 2008). To dissect the contribution of these alternate signaling strategies to neuronal development, we generated a transgenic mouse with a missense mutation (V321L) in the Nrg1 transmembrane domain that disrupts nuclear back signaling with minimal effects on forward signaling or local back signaling and was previously found to be associated with psychosis (Walss-Bass et al., 2006). We combined RNA sequencing, retroviral fate mapping of neural stem cells, behavioral analyses, and various network analyses of transcriptomic data to investigate the effect of disrupting Nrg1 nuclear back signaling in the dentate gyrus (DG) of male and female mice. The V321L mutation impairs nuclear translocation of the Nrg1 ICD and alters gene expression in the DG. V321L mice show reduced stem cell proliferation, altered cell cycle dynamics, fate specification defects, and dendritic dysmorphogenesis. Orthologs of known schizophrenia (SCZ)-susceptibility genes were dysregulated in the V321L DG. These genes coordinated a larger network with other dysregulated genes. Weighted gene correlation network analysis and protein interaction network analyses revealed striking similarity between DG transcriptomes of V321L mouse and humans with SCZ.
Asunto(s)
Giro Dentado , Redes Reguladoras de Genes , Neurregulina-1 , Neurogénesis , Esquizofrenia , Transducción de Señal , Animales , Femenino , Masculino , Ratones , Núcleo Celular/metabolismo , Giro Dentado/metabolismo , Redes Reguladoras de Genes/genética , Predisposición Genética a la Enfermedad/genética , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación Missense , Células-Madre Neurales/metabolismo , Neurregulina-1/genética , Neurregulina-1/metabolismo , Neurogénesis/fisiología , Neurogénesis/genética , Esquizofrenia/genética , Esquizofrenia/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiologíaRESUMEN
BACKGROUND: Neuregulin-1 (NRG1) is implicated in both cancer and neurologic diseases such as amyotrophic lateral sclerosis (ALS); however, to date, there has been little cross-field discussion between neurology and oncology in regard to these genes and their functions. MAIN BODY: Approximately 0.15-0.5% of cancers harbor NRG1 fusions that upregulate NRG1 activity and hence that of the cognate ERBB3/ERBB4 (HER3/HER4) receptors; abrogating this activity with small molecule inhibitors/antibodies shows preliminary tissue-agnostic anti-cancer activity. Notably, ERBB/HER pharmacologic suppression is devoid of neurologic toxicity. Even so, in ALS, attenuated ERBB4/HER4 receptor activity (due to loss-of-function germline mutations or other mechanisms in sporadic disease) is implicated; indeed, ERBB4/HER4 is designated ALS19. Further, secreted-type NRG1 isoforms may be upregulated (perhaps via a feedback loop) and could contribute to ALS pathogenesis through aberrant glial cell stimulation via enhanced activity of other (e.g., ERBB1-3/HER1-3) receptors and downstream pathways. Hence, pan-ERBB inhibitors, already in use for cancer, may be agents worthy of testing in ALS. CONCLUSION: Common signaling cascades between cancer and ALS may represent novel therapeutic targets for both diseases.
Asunto(s)
Esclerosis Amiotrófica Lateral , Neoplasias , Neurregulina-1 , Receptor ErbB-4 , Humanos , Esclerosis Amiotrófica Lateral/genética , Neoplasias/genética , Neurregulina-1/genética , Neurregulina-1/metabolismo , Receptor ErbB-4/genética , Receptor ErbB-4/metabolismo , Transducción de SeñalRESUMEN
BACKGROUND: Expression of the KITENIN/ErbB4 oncogenic complex is associated with metastasis of colorectal cancer to distant organs and lymph nodes and is linked with poor prognosis and poor survival. METHODS: Here, we used in vitro and in silico methods to test the ability of chrysophanol, a molecule of natural origin, to suppress the progression of colorectal cancer by targeting the KITENIN/ErbB4 complex. RESULTS: Chrysophanol binds to ErbB4, disrupting the ErbB4/KITENIN complex and causing autophagic degradation of KITENIN. We demonstrated that chrysophanol binds to ErbB4 according to a molecular docking model. Chrysophanol reversed KITENIN-mediated effects on cell motility, aerobic glycolysis, and expression of downstream effector genes. Moreover, under conditions of KITENIN overexpression, chrysophanol suppressed the production of onco-metabolites. CONCLUSION: Chrysophanol suppresses oncogenic activities by targeting the KITENIN/ErbB4 complex.
RESUMEN
Exercise can promote adult neurogenesis and improve symptoms associated with schizophrenia and other mental disorders via parvalbumin (PV)-positive GABAergic interneurons in the dentate gyrus ErbB4 is the receptor of neurotrophic factor neuregulin 1, expressed mostly in PV-positive interneurons. Whether ErbB4 in PV-positive neurons mediates the beneficial effect of exercise and adult neurogenesis on mental disorder needs to be further investigation. Here, we first conducted a four-week study on the effects of AG1478, an ErbB4 inhibitor, on memory and neurogenesis. AG1478 significantly impaired the performance in several memory tasks, including the T-maze, Morris water maze, and contextual fear conditioning, downregulated the expression of total ErbB4 (T-ErbB4) and the ratio of phosphate-ErbB4 (p-ErbB4) to T-ErbB4, and associated with neurogenesis impairment. Interestingly, AG1478 also appeared to decrease intracellular calcium levels in PV neurons, which could be reversed by exercise. These results suggest exercise may regulate adult neurogenesis and PV neuron activity through ErbB4 signaling. Overall, these findings provide further evidence of the importance of exercise for neurogenesis and suggest that targeting ErbB4 may be a promising strategy for improving memory and other cognitive functions in individuals with mental disorders.
Asunto(s)
Actividad Motora , Neurogénesis , Parvalbúminas , Tirfostinos , Adulto , Humanos , Neuronas , QuinazolinasRESUMEN
BACKGROUND: Patients with Alzheimer's disease (AD) are often co-morbid with unprovoked seizures, making clinical diagnosis and management difficult. Although it has an important role in both AD and epilepsy, abnormal γ-aminobutyric acid (GABA)ergic transmission is recognized only as a compensative change for glutamatergic damage. Neuregulin 1 (NRG1)-ErbB4 signaling can promote GABA release and suppress epileptogenesis, but its effects on cognition in AD are still controversial. METHODS: Four-month-old APPswe/PS1dE9 mice (APP mice) were used as animal models in the early stage of AD in this study. Acute/chronic chemical-kindling epilepsy models were established with pentylenetetrazol. Electroencephalogram and Racine scores were performed to assess seizures. Behavioral tests were used to assess cognition and emotion. Electrophysiology, western blot and immunofluorescence were performed to detect the alterations in synapses, GABAergic system components and NRG1-ErbB4 signaling. Furthermore, NRG1 was administrated intracerebroventricularly into APP mice and then its antiepileptic and cognitive effects were evaluated. RESULTS: APP mice had increased susceptibility to epilepsy and resulting hippocampal synaptic damage and cognitive impairment. Electrophysiological analysis revealed decreased GABAergic transmission in the hippocampus. This abnormal GABAergic transmission involved a reduction in the number of parvalbumin interneurons (PV+ Ins) and decreased levels of GABA synthesis and transport. We also found impaired NRG1-ErbB4 signaling which mediated by PV+ Ins loss. And NRG1 administration could effectively reduce seizures and improve cognition in four-month-old APP mice. CONCLUSION: Our results indicated that abnormal GABAergic transmission mediated hippocampal hyperexcitability, further excitation/inhibition imbalance, and promoted epileptogenesis in the early stage of AD. Appropriate NRG1 administration could down-regulate seizure susceptibility and rescue cognitive function. Our study provided a potential direction for intervening in the co-morbidity of AD and epilepsy.
Asunto(s)
Enfermedad de Alzheimer , Epilepsia , Humanos , Ratones , Animales , Lactante , Receptor ErbB-4/metabolismo , Enfermedad de Alzheimer/complicaciones , Hipocampo/metabolismo , Ácido gamma-Aminobutírico , Convulsiones , Neurregulina-1/metabolismoRESUMEN
AIM: To show that electroacupuncture stimulation (ES) remodels sympathetic innervation in brown adipose tissue (BAT) via the bone morphogenic protein 8B (BMP8B)-neuregulin 4 (NRG4)-ErbB4 axis, with somatotopic dependence. MATERIALS AND METHODS: We established a high-fat diet (HFD) model with C57BL/6J mice to measure the thermogenesis and metabolism of BAT. In addition, the sympathetic nerve activity (SNA) was measured with the electrophysiological technique, and the immunostaining of c-Fos was used to detect the central nervous system sources of sympathetic outflows. Finally, the key role of the BMP8B-NRG4-ErbB4 axis was verified by peripheral specific antagonism of ErbB4. RESULTS: ES at the forelimb and abdomen regions significantly up-regulate SNA, whereas ES at the hindlimb region has a limited regulatory effect on SNA but still partially restores HFD-induced BAT dysfunction. Mechanistically, ES at the forelimb and abdomen regions driving catecholaminergic signals in brown adipocytes depends on neural activities projected from the ventromedial nucleus of the hypothalamus (VMH) to the spinal cord intermediolateral column (IML). Notably, the peripheral suppression of ErbB4 in BAT inhibits the thermogenesis and metabolic function of BAT, as well as significantly hindering the SNA activation and metabolic benefits induced by ES. CONCLUSION: These results suggest that ES appears to be an effective approach for remodeling sympathetic innervation in BAT, which is closely related to neuronal activity in the VMH and the NRG4-ErbB4 signaling pathway.
Asunto(s)
Tejido Adiposo Pardo , Dieta Alta en Grasa , Electroacupuntura , Ratones Endogámicos C57BL , Receptor ErbB-4 , Transducción de Señal , Sistema Nervioso Simpático , Termogénesis , Animales , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Pardo/inervación , Electroacupuntura/métodos , Ratones , Transducción de Señal/fisiología , Receptor ErbB-4/metabolismo , Masculino , Sistema Nervioso Simpático/fisiología , Termogénesis/fisiología , Dieta Alta en Grasa/efectos adversos , Neurregulinas/metabolismo , Obesidad/terapia , Obesidad/metabolismo , Obesidad/fisiopatologíaRESUMEN
BACKGROUND: We aimed to investigate the effect and potential mechanism of enhancing Neuregulin1 (NRG1)/v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 4 (ErbB4) expression on the differentiation of induced pluripotent stem cells (iPSCs) into cardiomyocytes. METHODS: We utilized CRISPR-CAS9 technology to knock in ErbB4 and obtained a single-cell clone IPSN-AAVS1-CMV-ErbB4 (iPSCs-ErbB4). Subsequently, we induced the differentiation of iPSCs into cardiomyocytes and quantified the number of beating embryoid bodies. Furthermore, quantitative real-time PCR assessed the expression of cardiomyocyte markers, including ANP (atrial natriuretic peptide), Nkx2.5 (NK2 transcription factor related locus 5), and GATA4 (GATA binding protein 4). On the 14th day of differentiation, we observed the α-MHC (α-myosin heavy chain)-positive area using immunofluorescent staining and conducted western blotting to detect the expression of cTnT (cardiac troponin) protein and PI3K/Akt signaling pathway-related proteins. Additionally, we intervened the iPSCs-ErbB4 + NRG1 group with the PI3K/Akt inhibitor LY294002 and observed alterations in the expression of cardiomyocyte differentiation-related genes. RESULTS: The number of beating embryoid bodies increased after promoting the expression of NRG1/ErbB4 compared to the iPSCs control group. Cardiomyocyte markers ANP, Nkx2.5, and GATA4 significantly increased on day 14 of differentiation, and the positive area of α-MHC was three times that of the iPSCs control group. Moreover, there was a marked increase in cTnT protein expression. However, there was no significant difference in cardiomyocyte differentiation between the iPSCs-ErbB4 group and the iPSCs control group. Akt phosphorylation was significantly increased in the iPSCs-ErbB4 + NRG1 group. LY294002 significantly reversed the enhancing effect of NRG1/ErbB4 overexpression on Akt phosphorylation as well as the increase in α-MHC and cTnT expression. CONCLUSIONS: In conclusion, promoting the expression of NRG1/ErbB4 induced the differentiation of iPSC into cardiomyocytes, possibly through modulation of the PI3K/Akt signaling pathway.
Asunto(s)
Diferenciación Celular , Factor de Transcripción GATA4 , Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Neurregulina-1 , Proteínas Proto-Oncogénicas c-akt , Receptor ErbB-4 , Transducción de Señal , Humanos , Factor Natriurético Atrial/metabolismo , Línea Celular , Factor de Transcripción GATA4/metabolismo , Factor de Transcripción GATA4/genética , Proteína Homeótica Nkx-2.5/metabolismo , Proteína Homeótica Nkx-2.5/genética , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/metabolismo , Neurregulina-1/metabolismo , Neurregulina-1/genética , Fosfatidilinositol 3-Quinasa/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor ErbB-4/metabolismo , Receptor ErbB-4/genética , Troponina T/metabolismo , Troponina T/genéticaRESUMEN
Heart failure with preserved ejection fraction (HFpEF) is closely associated with metabolic derangement. Sodium glucose cotransporter-2 inhibitors (SGLT2i) and glucagon-like peptide-1 receptor agonists (GLP-1RA) exert anti-HFpEF effects, but the underlying mechanisms remain unclear. In this study, we explored the anti-HFpEF effects of empagliflozin and liraglutide and the underlying molecular mechanisms in a mouse model of HFpEF. This model was established by high-fat diet (HFD) feeding plus Nω-nitro-L-arginine methyl ester (L-NAME) treatment. The mice were treated with empagliflozin (20 mg·kg-1·d-1, i.g.) or liraglutide (0.3 mg·kg-1·d-1, i.p.) or their combination for 4 weeks. At the end of the experimental protocol, cardiac function was measured using ultrasound, then mice were euthanized and heart, liver, and kidney tissues were collected. Nuclei were isolated from frozen mouse ventricular tissue for single-nucleus RNA-sequencing (snRNA-seq). We showed that administration of empagliflozin or liraglutide alone or in combination significantly improved diastolic function, ameliorated cardiomyocyte hypertrophy and cardiac fibrosis, as well as exercise tolerance but no synergism was observed in the combination group. Furthermore, empagliflozin and/or liraglutide lowered body weight, improved glucose metabolism, lowered blood pressure, and improved liver and kidney function. After the withdrawal of empagliflozin or liraglutide for 1 week, these beneficial effects tended to diminish. The snRNA-seq analysis revealed a subcluster of myocytes, in which Erbb4 expression was down-regulated under HFpEF conditions, and restored by empagliflozin or liraglutide. Pseudo-time trajectory analysis and cell-to-cell communication studies confirmed that the Erbb4 pathway was a prominent pathway essential for both drug actions. In the HFpEF mouse model, both empagliflozin and liraglutide reversed Erbb4 down-regulation. In rat h9c2 cells, we showed that palmitic acid- or high glucose-induced changes in PKCα and/or ERK1/2 phosphorylation at least in part through Erbb4. Collectively, the single-cell atlas reveals the anti-HFpEF mechanism of empagliflozin and liraglutide, suggesting that Erbb4 pathway represents a new therapeutic target for HFpEF. Effects and mechanisms of action of empagliflozin and liraglutide in HFpEF mice. HFpEF was induced with a high-fat diet and L-NAME for 15 weeks, and treatment with empagliflozin and liraglutide improved the HFpEF phenotype. Single nucleus RNA sequencing (snRNA-seq) was used to reveal the underlying mechanism of action of empagliflozin and liraglutide.
Asunto(s)
Compuestos de Bencidrilo , Glucósidos , Insuficiencia Cardíaca , Liraglutida , Ratones Endogámicos C57BL , Transducción de Señal , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Animales , Compuestos de Bencidrilo/farmacología , Compuestos de Bencidrilo/uso terapéutico , Glucósidos/farmacología , Glucósidos/uso terapéutico , Liraglutida/farmacología , Liraglutida/uso terapéutico , Transducción de Señal/efectos de los fármacos , Masculino , Ratones , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/metabolismo , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Dieta Alta en Grasa , Volumen Sistólico/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Modelos Animales de EnfermedadRESUMEN
Olfactory dysfunction is increasingly recognized as an early indicator of Alzheimer's disease (AD). Aberrations in GABAergic function and the excitatory/inhibitory (E/I) balance within the olfactory bulb (OB) have been implicated in olfactory impairment during the initial stages of AD. While the neuregulin 1 (NRG1)/ErbB4 signaling pathway is known to regulate GABAergic transmission in the brain and is associated with various neuropsychiatric disorders, its specific role in early AD-related olfactory impairment remains incompletely understood. This study demonstrated that olfactory dysfunction preceded cognitive decline in young adult APP/PS1 mice and was characterized by reduced levels of NRG1 and ErbB4 in the OB. Further investigation revealed that deletion of ErbB4 in parvalbumin interneurons reduced GABAergic transmission and increased hyperexcitability in mitral and tufted cells (M/Ts) in the OB, thereby accelerating olfactory dysfunction in young adult APP/PS1 mice. Additionally, ErbB4 deficiency was associated with increased accumulation of Aß and BACE1-mediated cleavage of APP, along with enhanced CDK5 signaling in the OB. NRG1 infusion into the OB was found to enhance GABAergic transmission in M/Ts and alleviate olfactory dysfunction in young adult APP/PS1 mice. These findings underscore the critical role of NRG1/ErbB4 signaling in regulating GABAergic transmission and E/I balance within the OB, contributing to olfactory impairment in young adult APP/PS1 mice, and provide novel insights for early intervention strategies in AD. This work has shown that ErbB4 deficiency increased the burden of Aß, impaired GABAergic transmission, and disrupted the E/I balance of mitral and tufted cells (M/Ts) in the OB, ultimately resulting in olfactory dysfunction in young adult APP/PS1 mice. NRG1 could enhance GABAergic transmission, rescue E/I imbalance in M/Ts, and alleviate olfactory dysfunction in young adult APP/PS1 mice. OB: olfactory bulb, E/I: excitation/inhibition, Pr: probability of release, PV: parvalbumin interneurons, Aß: ß-amyloid, GABA: gamma-aminobutyric acid.
RESUMEN
Hypoplastic left heart syndrome (HLHS) is a severe congenital cardiovascular malformation characterized by hypoplasia of the left ventricle, aorta, and other structures on the left side of the heart. The pathologic definition includes atresia or stenosis of both the aortic and mitral valves. Despite considerable progress in clinical and surgical management of HLHS, mortality and morbidity remain concerns. One barrier to progress in HLHS management is poor understanding of its cause. Several lines of evidence point to genetic origins of HLHS. First, some HLHS cases have been associated with cytogenetic abnormalities (e.g., Turner syndrome). Second, studies of family clustering of HLHS and related cardiovascular malformations have determined HLHS is heritable. Third, genomic regions that encode genes influencing the inheritance of HLHS have been identified. Taken together, these diverse studies provide strong evidence for genetic origins of HLHS and related cardiac phenotypes. However, using simple Mendelian inheritance models, identification of single genetic variants that "cause" HLHS has remained elusive, and in most cases, the genetic cause remains unknown. These results suggest that HLHS inheritance is complex rather than simple. The implication of this conclusion is that researchers must move beyond the expectation that a single disease-causing variant can be found. Utilization of complex models to analyze high-throughput genetic data requires careful consideration of study design.
Asunto(s)
Síndrome del Corazón Izquierdo Hipoplásico , Humanos , Predisposición Genética a la Enfermedad/genética , Síndrome del Corazón Izquierdo Hipoplásico/genética , FenotipoRESUMEN
Circular RNAs (circRNAs) play critical roles in the recurrence and progression of non-small-cell lung cancer (NSCLC). This study aimed to investigate the function and underlying mechanism of a novel circRNA (circRPPH1) in NSCLC. Localization of circRPPH1 was determined via FISH assay, while cell proliferation was assessed via CCK8 and colony formation assay. Cell migration and invasion were studied using transwell assay, while binding sites between miR-326 and circRPPH1 or ERBB4 were verified by luciferase reporter, RIP, and RNA pull-down assays. Moreover, xenograft assay was performed to verify the in vivo roles of circRPPH1. Results indicated that circRPPH1 was highly expressed in NSCLC tissues and cells, where circRPPH1 levels were predictive of poor prognosis. The malignant behavior of NSCLC cells was exacerbated by overexpressing circRPPH1, while opposite effects were observed when it was knocked down. Direct interaction between miR-326 and circRPPH1 or ERBB4 was confirmed in NSCLC cells, while rescue experiment results showed that circRPPH1 exerted an oncogenic role via miR-326-ERBB4 signal axis. Moreover, in vitro, growth of NSCLC cells was significantly attenuated following circRPPH1 depletion. The study concluded that circRPPH1 was involved in promoting NSCLC progression via the miR-326/ERBB4 axis, which provided a novel potential target for the diagnosis or treatment of NSCLC.
RESUMEN
Sharp wave ripples (SW-Rs) in the hippocampus are synchronized bursts of hippocampal pyramidal neurons (PyNs), critical for spatial working memory. However, the molecular underpinnings of SW-Rs remain poorly understood. We show that SW-Rs in hippocampal slices from both male and female mice were suppressed by neuregulin 1 (NRG1), an epidermal growth factor whose expression is enhanced by neuronal activity. Pharmacological inhibition of ErbB4, a receptor tyrosine kinase for NRG1, increases SW-R occurrence rate in hippocampal slices. These results suggest an important role of NRG1-ErbB4 signaling in regulating SW-Rs. To further test this notion, we characterized SW-Rs in freely moving male mice, chemical genetic mutant mice, where ErbB4 can be specifically inhibited by the bulky inhibitor 1NMPP1. Remarkably, SW-R occurrence was increased by 1NMPP1. We found that 1NMPP1 increased the firing rate of PyN neurons, yet disrupted PyN neuron dynamics during SW-R events. Furthermore, 1NMPP1 increased SW-R occurrence during both nonrapid eye movement (NREM) sleep states and wake states with a greater impact on SW-Rs during wake states. In accord, spatial working memory was attenuated in male mice. Together these results indicate that dynamic activity of ErbB4 kinase is critical to SW-Rs and spatial working memory. This study reveals a novel regulatory mechanism of SW-Rs and a novel function of the NRG1-ErbB4 signaling.SIGNIFICANCE STATEMENT Sharp wave ripples (SW-Rs) are a hippocampal event, important for memory functioning. Yet the molecular pathways that regulate SW-Rs remain unclear. Neuregulin 1 (NRG1), previously known to be increased in pyramidal neuron's (PyNs) in an activity dependent manner, signals to its receptor, ErbB4 kinase, that is in important regulator of GABAergic transmission and long-term potentiation in the hippocampus. Our findings demonstrate that SW-Rs are regulated by this signaling pathway in a dynamic manner. Not only so, we show that this signaling pathway is dynamically needed for spatial working memory. These data suggest a molecular signaling pathway, NRG1-ErbB4, that regulates an important network event of the hippocampus, SW-Rs, that underlies memory functioning.
Asunto(s)
Ondas Encefálicas/fisiología , Hipocampo/metabolismo , Neurregulina-1/metabolismo , Neuronas/metabolismo , Receptor ErbB-4/metabolismo , Potenciales de Acción/fisiología , Animales , Femenino , Masculino , Memoria a Corto Plazo/fisiología , Ratones , Memoria Espacial/fisiologíaRESUMEN
The effects of MgSO4 as an anti-inflammatory agent in pregnant women have been investigated in the last few years. Infections can cause an inflammatory reaction involving the placenta membranes and amniotic cavity. They may have short-term effects on the mother and her fetuses, like preterm birth, cerebral palsy, and developmental delay. Despite the alleged advantages of MgSO4 as a neuroprotective agent in the preterm brain, the long-term molecular and behavioral function of MgSO4 has not been fully elucidated. Here, we investigated the long-term effect of antenatal MgSO4 , during late gestation, on offspring's behavior focusing on cognitive function, motor activity, and social cognition in adolescence and adulthood, and explored its influence on brain gene expression (e.g., ErbB signaling, pro-inflammatory, and dopaminergic markers) in adulthood. A significant abnormal exploratory behavior of offspring of MgSO4 -treated dams was found compared to the control group in both adolescence and adulthood. Furthermore, we found that adult females exposed to MgSO4 under inflammation displayed working and recognition memory impairment. A reduction in IL-6 expression was detected in the prefrontal cortex, and hippocampus specimens derived from LPS-Mg-treated group. In contrast, an imbalanced expression of dopamine 1 and 2 receptors was detected only in prefrontal cortex specimens. Besides, we found that MgSO4 ameliorated the overexpression of the Nrg1 and Erbb4 receptors induced by LPS in the hippocampus. Thus, MgSO4 treatment for preventing brain injuries can adversely affect offspring cognition behavior later in life, depending on the sex and age of the offspring.
Asunto(s)
Sulfato de Magnesio , Nacimiento Prematuro , Recién Nacido , Animales , Embarazo , Femenino , Humanos , Sulfato de Magnesio/farmacología , Sulfato de Magnesio/metabolismo , Roedores , Lipopolisacáridos/farmacología , Encéfalo/metabolismo , Inflamación/metabolismoRESUMEN
Polycystic Ovary Syndrome (PCOS) is a complex genetic disorder in reproductive-aged women which is associated with comorbidities of reproductive, metabolic, cardiovascular, endocrine, and psychological nature. PCOS is the most common cause of anovulatory infertility. Pathogenesis of PCOS involves strong interaction between environmental and genetic factors. Many Single-Nucleotide Polymorphisms (SNPs) have been associated with PCOS in different populations. Currently, very limited association studies of PCOS and infertility have been done on Pakistani population. The variants DENND1A rs9696009 and ERBB4 rs2178575 are significantly associated with PCOS in Chinese and European populations. These candidate genes regulate the production of androgen hormone, Anti-Mullerian Hormone (AMH), and luteinizing hormone. All these hormones are involved pathogenesis of PCOS and infertility. The aim of the study is to find an association of DENND1A rs9696009 and ERBB4 rs2178575 variants with PCOS in infertile Pakistani females. In this case-control study, 300 infertile females were recruited. The cases (n = 160) were infertile female diagnosed with PCOS (Rotterdam Criteria), and controls (n = 140) were infertile women with no evidence of PCOS. The genomic DNA was isolated, and genotyping was done by PCR-Restriction fragment length polymorphism and further validated by DNA Sanger Sequencing. The Chi-Square analysis showed rs2178575 (ERBB4) was significantly associated with infertility (χ2 = 10.282, p = 0.005852) while rs9696009 (DENND1A) did not show any significant association (χ2 = 3.10, p = 0.212036). Furthermore, multinomial logistic regression analysis was performed and revealed that rs2178575 (ERBB4) heterozygous genotypes (GA) and mutant genotypes (AA) decrease the risk of infertility by 0.541 times (OR = 0.541, 95% CI = 0.314-0.930, p = 0.026) and 0.416 times (OR = 0.416, 95% CI = 0.228-0.757, p = 0.004), respectively, compared to wild-type genotype (GG). The ERBB4 variant is significantly associated with PCOS infertile women and genetically indicated that ERBB4 (rs2178575) decreases the risk of infertility in females having PCOS.
RESUMEN
OBJECTIVE: Our previous study found that ErbB4 gene expression was changed after oxygen-glucose deprivation/reperfusion (OGD/R). However, the exact role and mechanism of ErbB4 in brain ischemia are largely unknown. In this study, we explored the protective effects of ErbB4 and its possible mechanism after OGD/R. METHODS: Cerebral ischemia/reperfusion (I/R) injury model was established in vitro and in vivo. Cell viability, apoptosis, and ROS production were measured by MTT, TUNEL, and fluorescent probe 2', 7'-dichlorofluorescein diacetate (DCFH-DA). Infarct size was evaluated by TTC. We performed bioinformatics analyses to screen for novel key genes involved in ErbB4 changes. RNA-Seq was used to transcriptome analysis. RNA and protein expression were detected by quantitative RTâPCR and western bloting. RESULTS: The expression of 80-kDa ErbB4 decreased after cerebral I/R injury in vitro and in vivo. Co-expression network analysis revealed that ErbB4 expression was correlated with the changes in Adrb1, Adrb2, Ldlr, and Dab2. Quantitative RTâPCR revealed that the mRNA expression levels of Adrb1, Adrb2, and Dab2 were upregulated, and that of Ldlr was decreased after OGD/R. Activation of ErbB4 expression by neuregulin 1 (NRG1) significantly promoted cell survival, attenuated hippocampal apoptosis, and decreased ROS production after OGD/R. Furthermore, the elimination of ErbB4 using a specific siRNA reversed these beneficial effects. CONCLUSION: Our data revealed the neuroprotective effects of ErbB4 against OGD/R injury, and the action could be related to changes in the ErbB4 membrane-associated fragment and the expression of Adrb1, Adrb2, Ldlr, and Dab2.
RESUMEN
ErbB4 is a member of the ErbB receptor tyrosine kinase family. It has both pro- and anti-oncogenic activities in tumors. Vasculogenic mimicry (VM), a phenomenon in which cancer cells form capillary-like structures without endothelial cells, has been recognized to be a cause of malignant phenotypes in some solid tumors. Here, we used an in vitro VM formation assay, and demonstrated that ErbB4 negatively regulated VM formation in human breast cancer cells. By using CRISPR/Cas9-mediated gene knockout, we verified that the depletion of endogenous ErbB4 improved the VM formation capability. Although treatment with neuregulin 1 (NRG1), a ligand of ErbB4, induced the phosphorylation of ErbB4 and promoted VM formation in a dose-dependent manner, it did not induce such activities in kinase-dead K751M ErbB4-overexpressing cells. Moreover, we examined the effect of the missense mutation E872K of ErbB4, which has been reported in multiple tumors, on VM formation, and found that the mutation enhanced the basal phosphorylation level and ErbB4-mediated VM formation in the absence of NRG1 stimulation. Whereas NRG1 stimulated VM formation, excessive activation of ErbB4 induced a negative effect. In E872K ErbB4-overexpressing cells, but not in wild-type ErbB4-overexpressing cells, the number of VM tubes was significantly decreased by low-dose treatment with the ErbB inhibitor afatinib. Taken together, our findings demonstrated the significance of ErbB4-mediated VM formation, and suggested the possibility of ErbB4 mutations as effective targets in breast cancer.
Asunto(s)
Neoplasias de la Mama/metabolismo , Neovascularización Patológica/metabolismo , Receptor ErbB-4/metabolismo , Afatinib/farmacología , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Humanos , Mutación , Neovascularización Patológica/genética , Neovascularización Patológica/patología , Neurregulina-1/genética , Neurregulina-1/metabolismo , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Receptor ErbB-4/genéticaRESUMEN
Hippocampal GABAergic interneurons are crucial for cortical network function and have been implicated in psychiatric disorders. We show here that Neuregulin 3 (Nrg3), a relatively little investigated low-affinity ligand, is a functionally dominant interaction partner of ErbB4 in parvalbumin-positive (PV) interneurons. Nrg3 and ErbB4 are located pre- and postsynaptically, respectively, in excitatory synapses on PV interneurons in vivo Additionally, we show that ablation of Nrg3 results in a similar phenotype as the one described for ErbB4 ablation, including reduced excitatory synapse numbers on PV interneurons, altered short-term plasticity, and disinhibition of the hippocampal network. In culture, presynaptic Nrg3 increases excitatory synapse numbers on ErbB4+ interneurons and affects short-term plasticity. Nrg3 mutant neurons are poor donors of presynaptic terminals in the presence of competing neurons that produce recombinant Nrg3, and this bias requires postsynaptic ErbB4 but not ErbB4 kinase activity. Furthermore, when presented by non-neuronal cells, Nrg3 induces postsynaptic membrane specialization. Our data indicate that Nrg3 provides adhesive cues that facilitate excitatory neurons to synapse onto ErbB4+ interneurons.
Asunto(s)
Hipocampo/metabolismo , Interneuronas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Red Nerviosa/metabolismo , Plasticidad Neuronal , Sinapsis/metabolismo , Animales , Hipocampo/citología , Interneuronas/citología , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Ratones Transgénicos , Red Nerviosa/citología , Neurregulinas , Receptor ErbB-4/genética , Receptor ErbB-4/metabolismo , Sinapsis/genéticaRESUMEN
BACKGROUND: ErbB/PI3K signaling is widely recognized as a critical modulator of malignancy and miRNAs have been found to play a crucial role in the regulation of this pathway. OBJECTIVE: This study aimed to identify novel miRNAs related to the ErbBs loci and investigate the functional effects of these miRNAs on ErbB/PI3K signaling in cancer progression. MATERIALS AND METHODS: Bioinformatics tools and RNA-seq data were used to discover novel miRNAs in breast and colon cancer cells. Gene expression levels were determined using RT-qPCR. Western blotting and dual-luciferase assays were used to identify the regulatory mechanism between ErbB4-miR1/2 and related genes. The effects of ErbB4-miR1/2 on cell proliferation, viability, ROS production, and migration were assessed by PI-flow cytometry, colony formation, MTT, ROS, scratch, and transwell assays in SKBR3 and SW480 cells. RESULTS: MicroRNA prediction tools, RNA-seq data, RT-qPCR, and sequencing results identified ErbB4-miR1 and ErbB4-miR2 (ErbB4-miR1/2) as novel miRNAs encoded by ErbB4 gene. ErbB4-miR1/2 were downregulated in breast and colon tumor tissues and also in different cancerous cells. RT-qPCR and dual-luciferase assays revealed that ErbB2 and ErbB3 genes are regulated by ErbB4-miR1/2. Consistently, a decrease in the p-AKT/AKT protein ratio verified the suppressive effect of ErbB4-miR1/2 on ErbB/PI3K activity. Furthermore, ErbB4-miR1/2 overexpression suppressed cell proliferation, viability, and migration, and increased ROS production. CONCLUSIONS: ErbB4-miR1/2 are novel tumor suppressor miRNAs which attenuate ErbB/PI3K signaling in breast and colon cancer cells.
Asunto(s)
Neoplasias del Colon , MicroARNs , Humanos , MicroARNs/genética , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt , Especies Reactivas de Oxígeno , Receptor ErbB-4/genética , Neoplasias del Colon/genéticaRESUMEN
Canine glioma is a common brain tumor with poor prognosis despite surgery and/or radiation therapy. Therefore, newer and more effective treatment modalities are needed. Neuregulin 3 (NRG3) has known to be a ligand of ERBB4. This study aimed to investigate the usefulness of the NRG3/ERBB4 signaling cascade as a novel therapeutic target in canine glioma. We found out that microRNA (miR)-190a was downregulated in canine brain tumor tissues, including glioma and meningioma. miR-190a directly targeted NRG3 and inhibited the growth of canine glioma cells. The level of p-Akt, which is a downstream target of ERBB4 signaling, was decreased by transfection with miR-190a. NRG3 silencing also suppressed cell growth and decreased the levels of p-Akt and p-ERK1/2, and NRG3 overexpression exhibited opposed effects in canine glioma J3T-1 cells. The mRNA level of erbb4 was significantly upregulated in glioma tissues compared with that in normal brain tissues and meningioma tissues. Furthermore, compared with gefitinib and lapatinib, afatinib exerted a greater inhibitory effect on the growth of canine glioma cells. In conclusion, NRG3/ERBB4 signaling is negatively regulated by miR-190a and contributes to the growth of canine glioma cells, indicating that it may be a promising therapeutic target in canine glioma.
Asunto(s)
Neoplasias Encefálicas/veterinaria , Enfermedades de los Perros/patología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioma/veterinaria , MicroARNs/genética , Neurregulinas/metabolismo , Receptor ErbB-4/metabolismo , Afatinib/administración & dosificación , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Enfermedades de los Perros/tratamiento farmacológico , Enfermedades de los Perros/metabolismo , Perros , Glioma/tratamiento farmacológico , Glioma/metabolismo , Glioma/patología , Neurregulinas/antagonistas & inhibidores , Neurregulinas/genética , Receptor ErbB-4/antagonistas & inhibidores , Receptor ErbB-4/genética , Temozolomida/administración & dosificaciónRESUMEN
BACKGROUND: MicroRNAs (MiRNAs) are known to participate in preadipocyte differentiation, but the manner in which miR-146a-5p participates in this process remains unclear. This study was performed to examine the participation of miR-146a-5p in 3T3-L1 cell differentiation. MATERIAL AND METHODS: miR-146a-5p expression was upregulated and down-regulated to examine effects on 3T3-L1 cell differentiation. Bioinformatics analysis was performed to predict its target genes, and the signaling pathway it regulates was identified by qRT-PCR and Western blotting. The expression of miR-146a-5p in epididymal adipose tissue from obese mice and in an obese mouse adipose cell model was examined by qRT-PCR. RESULTS: 3T3-L1 cells differentiated into mature adipocytes successfully, as verified by increased areas of intracellular lipid droplets and elevated expression of mature adipocyte markers, and these cells had elevated miR-146a-5p expression. The intracellular lipid droplet and triglyceride contents and the expression of mature adipocyte markers were significantly increased in miR-146a-5p-overexpressing 3T3-L1 cells and markedly decreased in miR-146a-5p-inhibited 3T3-L1 cells. ErbB4 was a predicted target gene of miR-146a-5p. In miR-146a-5p-overexpressing 3T3-L1 cells, ErbB4 expression and ERK1/2 phosphorylation were decreased and the expression of PPAR-γ was increased; the opposite was observed in miR-146a-5p-inhibited 3T3-L1 cells. In addition, miR-146a-5p expression was significantly increased in the mouse epididymal adipose tissue and adipose cell model. CONCLUSIONS: Upregulated miR-146a-5p expression was related to 3T3-L1 cell differentiation. MiR-146a-5p promoted 3T3-L1 cell differentiation by targeting ErbB4 and via the ERK1/2/PPAR-γ signaling pathway.