Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 804
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 186(12): 2593-2609.e18, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37209683

RESUMEN

Here, we describe an approach to correct the genetic defect in fragile X syndrome (FXS) via recruitment of endogenous repair mechanisms. A leading cause of autism spectrum disorders, FXS results from epigenetic silencing of FMR1 due to a congenital trinucleotide (CGG) repeat expansion. By investigating conditions favorable to FMR1 reactivation, we find MEK and BRAF inhibitors that induce a strong repeat contraction and full FMR1 reactivation in cellular models. We trace the mechanism to DNA demethylation and site-specific R-loops, which are necessary and sufficient for repeat contraction. A positive feedback cycle comprising demethylation, de novo FMR1 transcription, and R-loop formation results in the recruitment of endogenous DNA repair mechanisms that then drive excision of the long CGG repeat. Repeat contraction is specific to FMR1 and restores the production of FMRP protein. Our study therefore identifies a potential method of treating FXS in the future.


Asunto(s)
Síndrome del Cromosoma X Frágil , Expansión de Repetición de Trinucleótido , Humanos , Estructuras R-Loop , Metilación de ADN , Síndrome del Cromosoma X Frágil/genética , Epigénesis Genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo
2.
Cell ; 172(5): 979-992.e6, 2018 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-29456084

RESUMEN

Fragile X syndrome (FXS), the most common genetic form of intellectual disability in males, is caused by silencing of the FMR1 gene associated with hypermethylation of the CGG expansion mutation in the 5' UTR of FMR1 in FXS patients. Here, we applied recently developed DNA methylation editing tools to reverse this hypermethylation event. Targeted demethylation of the CGG expansion by dCas9-Tet1/single guide RNA (sgRNA) switched the heterochromatin status of the upstream FMR1 promoter to an active chromatin state, restoring a persistent expression of FMR1 in FXS iPSCs. Neurons derived from methylation-edited FXS iPSCs rescued the electrophysiological abnormalities and restored a wild-type phenotype upon the mutant neurons. FMR1 expression in edited neurons was maintained in vivo after engrafting into the mouse brain. Finally, demethylation of the CGG repeats in post-mitotic FXS neurons also reactivated FMR1. Our data establish that demethylation of the CGG expansion is sufficient for FMR1 reactivation, suggesting potential therapeutic strategies for FXS.


Asunto(s)
Metilación de ADN/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Edición Génica , Neuronas/patología , Animales , Proteína 9 Asociada a CRISPR/metabolismo , Epigénesis Genética , Células HEK293 , Heterocromatina/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Cinética , Masculino , Ratones , Neuronas/metabolismo , Fenotipo , Regiones Promotoras Genéticas , ARN Guía de Kinetoplastida/metabolismo , Expansión de Repetición de Trinucleótido/genética
3.
Proc Natl Acad Sci U S A ; 121(9): e2312757121, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38386709

RESUMEN

MECP2, CDKL5, and FMR1 are three X-linked neurodevelopmental genes associated with Rett, CDKL5-, and fragile-X syndrome, respectively. These syndromes are characterized by distinct constellations of severe cognitive and neurobehavioral anomalies, reflecting the broad but unique expression patterns of each of the genes in the brain. As these disorders are not thought to be neurodegenerative and may be reversible, a major goal has been to restore expression of the functional proteins in the patient's brain. Strategies have included gene therapy, gene editing, and selective Xi-reactivation methodologies. However, tissue penetration and overall delivery to various regions of the brain remain challenging for each strategy. Thus, gaining insights into how much restoration would be required and what regions/cell types in the brain must be targeted for meaningful physiological improvement would be valuable. As a step toward addressing these questions, here we perform a meta-analysis of single-cell transcriptomics data from the human brain across multiple developmental stages, in various brain regions, and in multiple donors. We observe a substantial degree of expression variability for MECP2, CDKL5, and FMR1 not only across cell types but also between donors. The wide range of expression may help define a therapeutic window, with the low end delineating a minimum level required to restore physiological function and the high end informing toxicology margin. Finally, the inter-cellular and inter-individual variability enable identification of co-varying genes and will facilitate future identification of biomarkers.


Asunto(s)
Encéfalo , Síndromes Epilépticos , Terapia Genética , Espasmos Infantiles , Humanos , Encéfalo/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Genes Ligados a X , Terapia Genética/métodos , Proteínas Serina-Treonina Quinasas/genética
4.
Proc Natl Acad Sci U S A ; 121(31): e2407546121, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39042682

RESUMEN

Fragile X syndrome (FXS) is the most common genetic cause of autism spectrum disorder engendered by transcriptional silencing of the fragile X messenger ribonucleoprotein 1 (FMR1) gene. Given the early onset of behavioral and molecular changes, it is imperative to know the optimal timing for therapeutic intervention. Case reports documented benefits of metformin treatment in FXS children between 2 and 14 y old. In this study, we administered metformin from birth to Fmr1-/y mice which corrected up-regulated mitogen-2 activated protein kinase/extracellular signal-regulated kinase and mammalian/mechanistic target of rapamycin complex 1 signaling pathways and specific synaptic mRNA-binding targets of FMRP. Metformin rescued increased number of calls in ultrasonic vocalization and repetitive behavior in Fmr1-/y mice. Our findings demonstrate that in mice, early-in-life metformin intervention is effective in treating FXS pathophysiology.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Síndrome del Cromosoma X Frágil , Metformina , Metformina/farmacología , Metformina/uso terapéutico , Síndrome del Cromosoma X Frágil/tratamiento farmacológico , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/fisiopatología , Síndrome del Cromosoma X Frágil/metabolismo , Animales , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Ratones , Masculino , Ratones Noqueados , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Modelos Animales de Enfermedad , Transducción de Señal/efectos de los fármacos
5.
Proc Natl Acad Sci U S A ; 120(27): e2302534120, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37364131

RESUMEN

Aberrant alternative splicing of mRNAs results in dysregulated gene expression in multiple neurological disorders. Here, we show that hundreds of mRNAs are incorrectly expressed and spliced in white blood cells and brain tissues of individuals with fragile X syndrome (FXS). Surprisingly, the FMR1 (Fragile X Messenger Ribonucleoprotein 1) gene is transcribed in >70% of the FXS tissues. In all FMR1-expressing FXS tissues, FMR1 RNA itself is mis-spliced in a CGG expansion-dependent manner to generate the little-known FMR1-217 RNA isoform, which is comprised of FMR1 exon 1 and a pseudo-exon in intron 1. FMR1-217 is also expressed in FXS premutation carrier-derived skin fibroblasts and brain tissues. We show that in cells aberrantly expressing mis-spliced FMR1, antisense oligonucleotide (ASO) treatment reduces FMR1-217, rescues full-length FMR1 RNA, and restores FMRP (Fragile X Messenger RibonucleoProtein) to normal levels. Notably, FMR1 gene reactivation in transcriptionally silent FXS cells using 5-aza-2'-deoxycytidine (5-AzadC), which prevents DNA methylation, increases FMR1-217 RNA levels but not FMRP. ASO treatment of cells prior to 5-AzadC application rescues full-length FMR1 expression and restores FMRP. These findings indicate that misregulated RNA-processing events in blood could serve as potent biomarkers for FXS and that in those individuals expressing FMR1-217, ASO treatment may offer a therapeutic approach to mitigate the disorder.


Asunto(s)
Síndrome del Cromosoma X Frágil , Humanos , Síndrome del Cromosoma X Frágil/tratamiento farmacológico , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Expansión de Repetición de Trinucleótido/genética , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/farmacología , Decitabina , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Oligonucleótidos , ARN
6.
Proc Natl Acad Sci U S A ; 120(23): e2300052120, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37252957

RESUMEN

Short trinucleotide expansions at the FMR1 locus are associated with the late-onset condition fragile X-associated tremor/ataxia syndrome (FXTAS), which shows very different clinical and pathological features from fragile X syndrome (associated with longer expansions), with no clear molecular explanation for these marked differences. One prevailing theory posits that the shorter, premutation expansion uniquely causes extreme neurotoxic increases in FMR1 mRNA (i.e., four to eightfold increases), but evidence to support this hypothesis is largely derived from analysis of peripheral blood. We applied single-nucleus RNA sequencing to postmortem frontal cortex and cerebellum from 7 individuals with premutation and matched controls (n = 6) to assess cell type-specific molecular neuropathology. We found only modest upregulation (~1.3-fold) of FMR1 in some glial populations associated with premutation expansions. In premutation cases, we also identified decreased astrocyte proportions in the cortex. Differential expression and gene ontology analysis demonstrated altered neuroregulatory roles of glia. Using network analyses, we identified cell type-specific and region-specific patterns of FMR1 protein target gene dysregulation unique to premutation cases, with notable network dysregulation in the cortical oligodendrocyte lineage. We used pseudotime trajectory analysis to determine how oligodendrocyte development was altered and identified differences in early gene expression in oligodendrocyte trajectories in premutation cases specifically, implicating early cortical glial developmental perturbations. These findings challenge dogma regarding extremely elevated FMR1 increases in FXTAS and implicate glial dysregulation as a critical facet of premutation pathophysiology, representing potential unique therapeutic targets directly derived from the human condition.


Asunto(s)
Síndrome del Cromosoma X Frágil , Humanos , Síndrome del Cromosoma X Frágil/patología , Temblor/genética , Expansión de Repetición de Trinucleótido , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Ataxia/genética , Ataxia/patología , Encéfalo/metabolismo , Astrocitos/metabolismo
7.
J Biol Chem ; 300(1): 105572, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38110032

RESUMEN

Mutations in, or deficiency of, fragile X messenger ribonucleoprotein (FMRP) is responsible for the Fragile X syndrome (FXS), the most common cause for inherited intellectual disability. FMRP is a nucleocytoplasmic protein, primarily characterized as a translation repressor with poorly understood nuclear function(s). We recently reported that FXS patient cells lacking FMRP sustain higher level of DNA double-strand breaks (DSBs) than normal cells, specifically at sequences prone to forming R-loops, a phenotype further exacerbated by DNA replication stress. Moreover, expression of FMRP, and not an FMRPI304N mutant known to cause FXS, reduced R-loop-associated DSBs. We subsequently reported that recombinant FMRP directly binds R-loops, primarily through the carboxyl terminal intrinsically disordered region. Here, we show that FMRP directly interacts with an RNA helicase, DHX9. This interaction, which is mediated by the amino terminal structured domain of FMRP, is reduced with FMRPI304N. We also show that FMRP inhibits DHX9 helicase activity on RNA:DNA hybrids and the inhibition is also dependent on the amino terminus. Furthermore, the FMRPI304N mutation causes both FMRP and DHX9 to persist on the chromatin in replication stress. These results suggest an antagonistic relationship between FMRP and DHX9 at the chromatin, where their proper interaction leads to dissociation of both proteins from the fully resolved R-loop. We propose that the absence or the loss of function of FMRP leads to persistent presence of DHX9 or both proteins, respectively, on the unresolved R-loop, ultimately leading to DSBs. Our study sheds new light on our understanding of the genome functions of FMRP.


Asunto(s)
ARN Helicasas DEAD-box , Replicación del ADN , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Proteínas de Neoplasias , Estrés Fisiológico , Humanos , Cromatina/genética , Cromatina/metabolismo , ARN Helicasas DEAD-box/metabolismo , ADN/biosíntesis , ADN/química , ADN/metabolismo , Roturas del ADN de Doble Cadena , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Mutación , Proteínas de Neoplasias/metabolismo , Hibridación de Ácido Nucleico , Estructuras R-Loop , ARN/química , ARN/metabolismo
8.
Annu Rev Pharmacol Toxicol ; 62: 365-381, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34499526

RESUMEN

Fragile X syndrome (FXS) is the most common form of inherited intellectual disability and the leading single-gene form of autism spectrum disorder, encompassing cognitive, behavioral, and physical forms of clinical involvement. FXS is caused by large expansions of a noncoding CGG repeat (>200 repeats) in the FMR1 gene, at which point the gene is generally silenced. Absence of FMR1 protein (FMRP), important for synaptic development and maintenance, gives rise to the neurodevelopmental disorder. There is, at present, no therapeutic approach that directly reverses the loss of FMRP; however, there is an increasing number of potential treatments that target the pathways dysregulated in FXS, including those that address the enhanced activity of the mGluR5 pathway and deficits in GABA pathways. Based on studies of targeted therapeutics to date, the prospects are good for one or more effective therapies for FXS in the near future.


Asunto(s)
Trastorno del Espectro Autista , Síndrome del Cromosoma X Frágil , Trastorno del Espectro Autista/tratamiento farmacológico , Trastorno del Espectro Autista/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/uso terapéutico , Síndrome del Cromosoma X Frágil/tratamiento farmacológico , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Humanos
9.
EMBO J ; 40(4): e104975, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33428246

RESUMEN

N6-methyladenosine (m6 A) regulates a variety of physiological processes through modulation of RNA metabolism. This modification is particularly enriched in the nervous system of several species, and its dysregulation has been associated with neurodevelopmental defects and neural dysfunctions. In Drosophila, loss of m6 A alters fly behavior, albeit the underlying molecular mechanism and the role of m6 A during nervous system development have remained elusive. Here we find that impairment of the m6 A pathway leads to axonal overgrowth and misguidance at larval neuromuscular junctions as well as in the adult mushroom bodies. We identify Ythdf as the main m6 A reader in the nervous system, being required to limit axonal growth. Mechanistically, we show that the m6 A reader Ythdf directly interacts with Fmr1, the fly homolog of Fragile X mental retardation RNA binding protein (FMRP), to inhibit the translation of key transcripts involved in axonal growth regulation. Altogether, this study demonstrates that the m6 A pathway controls development of the nervous system and modulates Fmr1 target transcript selection.


Asunto(s)
Adenosina/análogos & derivados , Axones/fisiología , Proteínas de Drosophila/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Neuronas/citología , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Adenosina/metabolismo , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Neuronas/fisiología , ARN Mensajero/genética , Proteínas de Unión al ARN/genética
10.
Proc Natl Acad Sci U S A ; 119(22): e2118124119, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35617426

RESUMEN

Fragile X­associated tremor/ataxia syndrome (FXTAS) is a debilitating late-onset neurodegenerative disease in premutation carriers of the expanded CGG repeat in FMR1 that presents with a spectrum of neurological manifestations, such as gait ataxia, intention tremor, and parkinsonism [P. J. Hagerman, R. J. Hagerman, Ann. N. Y. Acad. Sci. 1338, 58­70 (2015); S. Jacquemont et al., JAMA 291, 460­469 (2004)]. Here, we performed whole-genome sequencing (WGS) on male premutation carriers (CGG55­200) and prioritized candidate variants to screen for candidate genetic modifiers using a Drosophila model of FXTAS. We found 18 genes that genetically modulate CGG-associated neurotoxicity in Drosophila, such as Prosbeta5 (PSMB5), pAbp (PABPC1L), e(y)1 (TAF9), and CG14231 (OSGEPL1). Among them, knockdown of Prosbeta5 (PSMB5) suppressed CGG-associated neurodegeneration in the fly as well as in N2A cells. Interestingly, an expression quantitative trait locus variant in PSMB5, PSMB5rs11543947-A, was found to be associated with decreased expression of PSMB5 and delayed onset of FXTAS in human FMR1 premutation carriers. Finally, we demonstrate evidence that PSMB5 knockdown results in suppression of CGG neurotoxicity via both the RAN translation and RNA-mediated toxicity mechanisms, thereby presenting a therapeutic strategy for FXTAS.


Asunto(s)
Ataxia , Síndrome del Cromosoma X Frágil , Complejo de la Endopetidasa Proteasomal , Temblor , Animales , Ataxia/genética , Modelos Animales de Enfermedad , Drosophila melanogaster , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Humanos , Masculino , Complejo de la Endopetidasa Proteasomal/genética , Temblor/genética
11.
Proc Natl Acad Sci U S A ; 119(15): e2109448119, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35394871

RESUMEN

Genetic studies of hippocampal granule neuron development have been used to elucidate cellular functions of Pten and Fmr1. While mutations in each gene cause neurodevelopmental disorders such as autism and fragile X syndrome, how Pten and Fmr1 function alone or together during normal development is not known. Moreover, Pten mRNA is bound by the fragile X mental retardation protein (FMRP) RNA binding protein, but how this physical interaction impinges on phosphatase and tensin homolog protein (PTEN) expression is not known. To understand the interaction of PTEN and FMRP, we investigated the dentate gyrus granule neuron development in Pten and Fmr1 knockout (KO) mice. Interestingly, heterozygosity of Pten restored Fmr1 KO cellular phenotypes, including dendritic arborization, and spine density, while PTEN protein expression was significantly increased in Fmr1 KO animals. However, complete deletion of both Pten and Fmr1 resulted in a dramatic increase in dendritic length, spine density, and spine length. In addition, overexpression of PTEN in Fmr1 KO Pten heterozygous background reduced dendritic length, arborization, spine density, and spine length including pS6 levels. Our findings suggest that PTEN levels are negatively regulated by FMRP, and some Fmr1 KO phenotypes are caused by dysregulation of PTEN protein. These observations provide evidence for the genetic interaction of PTEN and FMRP and a possible mechanistic basis for the pathogenesis of Fmr1-related fragile X neurodevelopmental disorders.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Síndrome del Cromosoma X Frágil , Fosfohidrolasa PTEN , Animales , Giro Dentado/citología , Giro Dentado/crecimiento & desarrollo , Modelos Animales de Enfermedad , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Heterocigoto , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neurogénesis/genética , Neuronas/metabolismo , Neuronas/patología , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo
12.
J Neurosci ; 43(48): 8172-8188, 2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-37816596

RESUMEN

Attention deficit is one of the most prominent and disabling symptoms in Fragile X syndrome (FXS). Hypersensitivity to sensory stimuli contributes to attention difficulties by overwhelming and/or distracting affected individuals, which disrupts activities of daily living at home and learning at school. We find that auditory or visual distractors selectively impair visual discrimination performance in humans and mice with FXS but not in typically developing controls. In both species, males and females were examined. Vasoactive intestinal polypeptide (VIP) neurons were significantly modulated by incorrect responses in the poststimulus period during early distractor trials in WT mice, consistent with their known role as error signals. Strikingly, however, VIP cells from Fmr1 -/- mice showed little modulation in error trials, and this correlated with their poor performance on the distractor task. Thus, VIP interneurons and their reduced modulatory influence on pyramidal cells could be a potential therapeutic target for attentional difficulties in FXS.SIGNIFICANCE STATEMENT Sensory hypersensitivity, impulsivity, and persistent inattention are among the most consistent clinical features of FXS, all of which impede daily functioning and create barriers to learning. However, the neural mechanisms underlying sensory over-reactivity remain elusive. To overcome a significant challenge in translational FXS research we demonstrate a compelling alignment of sensory over-reactivity in both humans with FXS and Fmr1 -/- mice (the principal animal model of FXS) using a novel analogous distractor task. Two-photon microscopy in mice revealed that lack of modulation by VIP cells contributes to susceptibility to distractors. Implementing research efforts we describe here can help identify dysfunctional neural mechanisms associated not only with sensory issues but broader impairments, including those in learning and cognition.


Asunto(s)
Síndrome del Cromosoma X Frágil , Péptido Intestinal Vasoactivo , Humanos , Masculino , Femenino , Animales , Ratones , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Actividades Cotidianas , Interneuronas , Ratones Noqueados , Modelos Animales de Enfermedad
13.
J Neurochem ; 168(9): 3019-3033, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38978454

RESUMEN

The presynapse performs an essential role in brain communication via the activity-dependent release of neurotransmitters. However, the sequence of events through which a presynapse acquires functionality is relatively poorly understood, which is surprising, since mutations in genes essential for its operation are heavily implicated in neurodevelopmental disorders. We addressed this gap in knowledge by determining the developmental trajectory of synaptic vesicle (SV) recycling pathways in primary cultures of rat hippocampal neurons. Exploiting a series of optical and morphological assays, we revealed that the majority of nerve terminals displayed activity-dependent calcium influx from 3 days in vitro (DIV), immediately followed by functional evoked exocytosis and endocytosis, although the number of responsive nerve terminals continued to increase until the second week in vitro. However, the most intriguing discovery was that activity-dependent bulk endocytosis (ADBE) was only observed from DIV 14 onwards. Importantly, optimal ADBE recruitment was delayed until DIV 21 in Fmr1 knockout neurons, which model Fragile X Syndrome (FXS). This implicates the delayed recruitment of ADBE as a potential contributing factor in the development of circuit dysfunction in FXS, and potentially other neurodevelopmental disorders.


Asunto(s)
Endocitosis , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Hipocampo , Neuronas , Animales , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Endocitosis/fisiología , Neuronas/metabolismo , Ratas , Hipocampo/metabolismo , Células Cultivadas , Vesículas Sinápticas/metabolismo , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/patología , Ratas Sprague-Dawley
14.
J Cell Sci ; 135(9)2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35319067

RESUMEN

Stress response pathways protect the lung from the damaging effects of environmental toxicants. Here we investigate the role of the fragile X mental retardation protein (FMRP), a multifunctional protein implicated in stress responses, in the lung. We report that FMRP is expressed in murine and human lungs, in the airways and more broadly. Analysis of airway stress responses in mice and in a murine cell line ex vivo, using the well-established naphthalene injury model, reveals that FMRP-deficient cells exhibit increased expression of markers of oxidative and genotoxic stress and increased cell death. Further inquiry shows that FMRP-deficient cells fail to actuate the integrated stress response pathway (ISR) and upregulate the transcription factor ATF4. Knockdown of ATF4 expression phenocopies the loss of FMRP. We extend our analysis of the role of FMRP to human bronchial BEAS-2B cells, using a 9,10-phenanthrenequinone air pollutant model, to find that FMRP-deficient BEAS-2B cells also fail to actuate the ISR and exhibit greater susceptibility. Taken together, our data suggest that FMRP has a conserved role in protecting the airways by facilitating the ISR. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Xenobióticos , Animales , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Regulación de la Expresión Génica , Humanos , Pulmón/metabolismo , Ratones , Factores de Transcripción/metabolismo
15.
Reprod Biol Endocrinol ; 22(1): 71, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38907244

RESUMEN

BACKGROUND: Premutations in the Fragile X Messenger Ribonucleoprotein 1 (FMR1) gene, defined as between 55 and 200 CGGs, have been implicated in fragile X-associated primary ovarian insufficiency (FXPOI). Only 20% of female premutation carriers develop early ovulatory dysfunction, the reason for this incomplete penetrance is unknown. This study validated the mathematical model in premutation alleles, after assigning each allele a score representing allelic complexity. Subsequently, allelic scores were used to investigate the impact of allele complexity on age at amenorrhea for 58 premutation cases (116 alleles) previously published. METHODS: The allelic score was determined using a formula previously described by our group. The impact of each allelic score on age at amenorrhea was analyzed using Pearson's test and a contour plot generated to visualize the effect. RESULTS: Correlation of allelic score revealed two distinct complexity behaviors in premutation alleles. No significant correlation was observed between the allelic score of premutation alleles and age at amenorrhea. The same lack of significant correlation was observed regarding normal-sized alleles, despite a nearly significant trend. CONCLUSIONS: Our results suggest that the use of allelic scores combination have the potential to explain female infertility, namely the development of FXPOI, or ovarian dysfunction, despite the lack of correlation with age at amenorrhea. Such a finding is of great clinical significance for early identification of females at risk of ovulatory dysfunction, enhancement of fertility preservation techniques, and increasing the probability for a successful pregnancy in females with premutations. Additional investigation is necessary to validate this hypothesis.


Asunto(s)
Alelos , Amenorrea , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Insuficiencia Ovárica Primaria , Humanos , Femenino , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Amenorrea/genética , Insuficiencia Ovárica Primaria/genética , Adulto , Heterocigoto , Mutación , Síndrome del Cromosoma X Frágil/genética , Factores de Edad , Adulto Joven , Adolescente
16.
Exp Eye Res ; 246: 110015, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39089568

RESUMEN

Fragile X Syndrome (FXS), the most common inherited form of human intellectual disability, is a monogenic neurodevelopmental disorder caused by a loss-of-function mutation of the FMR1 gene. FMR1 is encoding the Fragile X Messenger Ribonucleo Protein (FMRP) an RNA-binding protein that regulates the translation of synaptic proteins. The absence of FMRP expression has many important consequences on synaptic plasticity and function, leading to the FXS clinical phenotype. Over the last decade, a visual neurosensorial phenotype had been described in the FXS patients as well as in the murine model (Fmr1-/ymice), characterized by retinal deficits associated to retinal perception alterations. However, although the transcriptomic profile in the absence of FMRP has been studied in the cerebral part of the central nervous system (CNS), there are no actual data for the retina which is an extension of the CNS. Herein, we investigate the transcriptomic profile of mRNA from whole retinas of Fmr1-/ymice. Interestingly, we found a specific signature of Fmrp absence on retinal mRNA expression with few common genes compared to other brain studies. Gene Ontology on these retinal specific genes demonstrated an enrichment in retinal development genes as well as in synaptic genes. These alterations could be linked to the reported retinal phenotype of the FXS condition. In conclusion, we describe for the first time, retinal-specific transcriptomic changes in the absence of FMRP.


Asunto(s)
Modelos Animales de Enfermedad , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Síndrome del Cromosoma X Frágil , Retina , Transcriptoma , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Animales , Ratones , Retina/metabolismo , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratones Endogámicos C57BL , Perfilación de la Expresión Génica , Ratones Noqueados , Regulación de la Expresión Génica/fisiología , Masculino
17.
Mov Disord ; 39(3): 519-525, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38124331

RESUMEN

BACKGROUND: Men with fragile X-associated tremor/ataxia syndrome (FXTAS) often develop executive dysfunction, characterized by disinhibition, frontal dyscontrol of movement, and working memory and attention changes. Although cross-sectional studies have suggested that earlier executive function changes may precede FXTAS, the lack of longitudinal studies has made it difficult to address this hypothesis. OBJECTIVE: To determine whether executive function deterioration experienced by premutation carriers (PC) in daily life precedes and predicts FXTAS. METHODS: This study included 66 FMR1 PC ranging from 40 to 78 years (mean, 59.5) and 31 well-matched healthy controls (HC) ages 40 to 75 (mean, 57.7) at baseline. Eighty-four participants returned for 2 to 5 follow up visits over a duration of 1 to 9 years (mean, 4.6); 28 of the PC developed FXTAS. The Behavior Rating Inventory of Executive Function-Adult Version (BRIEF-A) was completed by participants and their spouses/partners at each visit. RESULTS: Longitudinal mixed model regression analyses showed a greater decline with age in PC compared to HC on the Metacognition Index (MI; self-initiation, working memory, organization, task monitoring). Conversion to FXTAS was associated with worsening MI and Behavioral Regulation Index (BRI; inhibition, flexibility, emotion modulation). For spouse/partner report, FXTAS conversion was associated with worsening MI. Finally, increased self-report executive function problems at baseline significantly predicted later development of FXTAS. CONCLUSIONS: Executive function changes experienced by male PC represent a prodrome of the later movement disorder. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Síndrome del Cromosoma X Frágil , Trastornos del Movimiento , Adulto , Humanos , Masculino , Función Ejecutiva/fisiología , Temblor , Estudios Longitudinales , Estudios Transversales , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/complicaciones , Ataxia , Trastornos del Movimiento/complicaciones
18.
Hum Genomics ; 17(1): 60, 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37420260

RESUMEN

This review discusses the discovery, epidemiology, pathophysiology, genetic etiology, molecular diagnosis, and medication-based management of fragile X syndrome (FXS). It also highlights the syndrome's variable expressivity and common comorbid and overlapping conditions. FXS is an X-linked dominant disorder associated with a wide spectrum of clinical features, including but not limited to intellectual disability, autism spectrum disorder, language deficits, macroorchidism, seizures, and anxiety. Its prevalence in the general population is approximately 1 in 5000-7000 men and 1 in 4000-6000 women worldwide. FXS is associated with the fragile X messenger ribonucleoprotein 1 (FMR1) gene located at locus Xq27.3 and encodes the fragile X messenger ribonucleoprotein (FMRP). Most individuals with FXS have an FMR1 allele with > 200 CGG repeats (full mutation) and hypermethylation of the CpG island proximal to the repeats, which silences the gene's promoter. Some individuals have mosaicism in the size of the CGG repeats or in hypermethylation of the CpG island, both produce some FMRP and give rise to milder cognitive and behavioral deficits than in non-mosaic individuals with FXS. As in several monogenic disorders, modifier genes influence the penetrance of FMR1 mutations and FXS's variable expressivity by regulating the pathophysiological mechanisms related to the syndrome's behavioral features. Although there is no cure for FXS, prenatal molecular diagnostic testing is recommended to facilitate early diagnosis. Pharmacologic agents can reduce some behavioral features of FXS, and researchers are investigating whether gene editing can be used to demethylate the FMR1 promoter region to improve patient outcomes. Moreover, clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 and developed nuclease defective Cas9 (dCas9) strategies have promised options of genome editing in gain-of-function mutations to rewrite new genetic information into a specified DNA site, are also being studied.


Asunto(s)
Trastorno del Espectro Autista , Síndrome del Cromosoma X Frágil , Masculino , Humanos , Femenino , Síndrome del Cromosoma X Frágil/tratamiento farmacológico , Síndrome del Cromosoma X Frágil/epidemiología , Síndrome del Cromosoma X Frágil/genética , Trastorno del Espectro Autista/genética , Metilación de ADN/genética , Mosaicismo , Variación Biológica Poblacional , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo
19.
Am J Med Genet A ; 194(4): e63479, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37987117

RESUMEN

FMR1 premutation female carriers are at risk of developing premature/primary ovarian insufficiency (POI) with an incomplete penetrance. In this study, we determined the CGG repeat size among 1095 women with diminished ovarian reserve (DOR) / POI and characterized the CGG/AGG substructure in 44 women carrying an abnormal FMR1 repeat expansion number, compared to a group of 25 pregnant women carrying an abnormal FMR1 CGG repeat size. Allelic complexity scores of the FMR1 gene were calculated and compared between the two groups. In the DOR/POI cohort, 2.1% of women presented with an intermediate repeat size and 1.9% with a premutation. Our results suggest that the risk of POI is highest in the mid-range of CGG repeats. We observed that the allelic score is significantly higher in POI women compared to the pregnant women group (p-value = 0.02). We suggest that a high allelic score due to more than 2 AGG interspersions in the context of an intermediate number of repetitions could favor POI. Larger studies are still needed to evaluate the relevance of this new tool for the determination of the individual risk of developing POI in women with abnormal number of CGG repeats.


Asunto(s)
Síndrome del Cromosoma X Frágil , Insuficiencia Ovárica Primaria , Embarazo , Femenino , Humanos , Alelos , Insuficiencia Ovárica Primaria/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Variación Biológica Poblacional , Síndrome del Cromosoma X Frágil/genética , Expansión de Repetición de Trinucleótido/genética
20.
Am J Med Genet A ; 194(5): e63523, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38164622

RESUMEN

The FMR1 5' regulation gene region harbors a CGG trinucleotide repeat expansion (CGG-TRE) that causes Fragile X syndrome (FXS) when it expands to more than 200 repetitions. Ricaurte is a small village in southwestern Colombia, with an FXS prevalence of 1 in 38 men and 1 in 100 women (~100 times higher than the worldwide reported prevalence), defining Ricaurte as the largest FXS cluster in the world. In the present study, using next-generation sequencing of whole exome capture, we genotype 55 individuals from Ricaurte (49 with either full mutation or with premutation), four individuals from neighboring villages (with either the full mutation or with the premutation), and one unaffected woman, native of Ricaurte, who did not belong to any of the affected families. With advanced clustering and haplotype reconstruction, we modeled a common haplotype of 33 SNPs spanning 83,567,899 bp and harboring the FMR1 gene. This reconstructed haplotype was found in all the men from Ricaurte who carried the expansion, demonstrating that the genetic conglomerate of FXS in this population is due to a founder effect. The definition of this founder effect and its population outlining will allow a better prediction, follow-up, precise and personalized characterization of epidemiological parameters, better knowledge of the disease's natural history, and confident improvement of the clinical attention, life quality, and health interventions for this community.


Asunto(s)
Síndrome del Cromosoma X Frágil , Masculino , Humanos , Femenino , Síndrome del Cromosoma X Frágil/epidemiología , Síndrome del Cromosoma X Frágil/genética , Efecto Fundador , Epidemiología Molecular , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Expansión de Repetición de Trinucleótido , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA