Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.577
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(23): 5054-5067.e16, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37949058

RESUMEN

Fatty acids (FAs) play a central metabolic role in living cells as constituents of membranes, cellular energy reserves, and second messenger precursors. A 2.6 MDa FA synthase (FAS), where the enzymatic reactions and structures are known, is responsible for FA biosynthesis in yeast. Essential in the yeast FAS catalytic cycle is the acyl carrier protein (ACP) that actively shuttles substrates, biosynthetic intermediates, and products from one active site to another. We resolve the S. cerevisiae FAS structure at 1.9 Å, elucidating cofactors and water networks involved in their recognition. Structural snapshots of ACP domains bound to various enzymatic domains allow the reconstruction of a full yeast FA biosynthesis cycle. The structural information suggests that each FAS functional unit could accommodate exogenous proteins to incorporate various enzymatic activities, and we show proof-of-concept experiments where ectopic proteins are used to modulate FAS product profiles.


Asunto(s)
Proteína Transportadora de Acilo , Ácidos Grasos , Saccharomyces cerevisiae , Proteína Transportadora de Acilo/química , Dominio Catalítico , Ácidos Grasos/biosíntesis , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Cell ; 180(6): 1130-1143.e20, 2020 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-32160528

RESUMEN

Fatty acid synthases (FASs) are central to metabolism but are also of biotechnological interest for the production of fine chemicals and biofuels from renewable resources. During fatty acid synthesis, the growing fatty acid chain is thought to be shuttled by the dynamic acyl carrier protein domain to several enzyme active sites. Here, we report the discovery of a γ subunit of the 2.6 megadalton α6-ß6S. cerevisiae FAS, which is shown by high-resolution structures to stabilize a rotated FAS conformation and rearrange ACP domains from equatorial to axial positions. The γ subunit spans the length of the FAS inner cavity, impeding reductase activities of FAS, regulating NADPH turnover by kinetic hysteresis at the ketoreductase, and suppressing off-pathway reactions at the enoylreductase. The γ subunit delineates the functional compartment within FAS. As a scaffold, it may be exploited to incorporate natural and designed enzymatic activities that are not present in natural FAS.


Asunto(s)
Ácido Graso Sintasas/química , Ácido Graso Sintasas/metabolismo , Proteína Transportadora de Acilo/química , Proteína Transportadora de Acilo/metabolismo , Aciltransferasas/metabolismo , Sitios de Unión , Dominio Catalítico , Microscopía por Crioelectrón/métodos , Cristalografía por Rayos X/métodos , Ácidos Grasos/biosíntesis , Ácidos Grasos/química , Modelos Moleculares , Subunidades de Proteína/química , Subunidades de Proteína/aislamiento & purificación , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Relación Estructura-Actividad
3.
Immunity ; 56(10): 2373-2387.e8, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37714151

RESUMEN

Immunoglobulin A (IgA) maintains commensal communities in the intestine while preventing dysbiosis. IgA generated against intestinal microbes assures the simultaneous binding to multiple, diverse commensal-derived antigens. However, the exact mechanisms by which B cells mount broadly reactive IgA to the gut microbiome remains elusive. Here, we have shown that IgA B cell receptor (BCR) is required for B cell fitness during the germinal center (GC) reaction in Peyer's patches (PPs) and for generation of gut-homing plasma cells (PCs). We demonstrate that IgA BCR drove heightened intracellular signaling in mouse and human B cells, and as a consequence, IgA+ B cells received stronger positive selection cues. Mechanistically, IgA BCR signaling offset Fas-mediated death, possibly rescuing low-affinity B cells to promote a broad humoral response to commensals. Our findings reveal an additional mechanism linking BCR signaling, B cell fate, and antibody production location, which have implications for how intestinal antigen recognition shapes humoral immunity.


Asunto(s)
Linfocitos B , Ganglios Linfáticos Agregados , Ratones , Humanos , Animales , Antígenos/metabolismo , Receptores de Antígenos de Linfocitos B/metabolismo , Inmunoglobulina A , Mucosa Intestinal
4.
Immunity ; 54(4): 648-659.e8, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33667383

RESUMEN

Loss of lymphocytes, particularly T cell apoptosis, is a central pathological event after severe tissue injury that is associated with increased susceptibility for life-threatening infections. The precise immunological mechanisms leading to T cell death after acute injury are largely unknown. Here, we identified a monocyte-T cell interaction driving bystander cell death of T cells in ischemic stroke and burn injury. Specifically, we found that stroke induced a FasL-expressing monocyte population, which led to extrinsic T cell apoptosis. This phenomenon was driven by AIM2 inflammasome-dependent interleukin-1ß (IL-1ß) secretion after sensing cell-free DNA. Pharmacological inhibition of this pathway improved T cell survival and reduced post-stroke bacterial infections. As such, this study describes inflammasome-dependent monocyte activation as a previously unstudied cause of T cell death after injury and challenges the current paradigms of post-injury lymphopenia.


Asunto(s)
Coinfección/inmunología , Proteínas de Unión al ADN/inmunología , Tolerancia Inmunológica/inmunología , Inflamasomas/inmunología , Transducción de Señal/inmunología , Animales , Apoptosis/inmunología , Infecciones Bacterianas/inmunología , Quemaduras/inmunología , Quemaduras/microbiología , Coinfección/microbiología , Humanos , Interleucina-1beta/inmunología , Ratones , Ratones Endogámicos C57BL , Monocitos/inmunología , Accidente Cerebrovascular/inmunología , Accidente Cerebrovascular/microbiología , Linfocitos T/inmunología
5.
Immunity ; 48(3): 556-569.e7, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29562202

RESUMEN

The death receptor Fas removes activated lymphocytes through apoptosis. Previous transcriptional profiling predicted that Fas positively regulates interleukin-17 (IL-17)-producing T helper 17 (Th17) cells. Here, we demonstrate that Fas promoted the generation and stability of Th17 cells and prevented their differentiation into Th1 cells. Mice with T-cell- and Th17-cell-specific deletion of Fas were protected from induced autoimmunity, and Th17 cell differentiation and stability were impaired. Fas-deficient Th17 cells instead developed a Th1-cell-like transcriptional profile, which a new algorithm predicted to depend on STAT1. Experimentally, Fas indeed bound and sequestered STAT1, and Fas deficiency enhanced IL-6-induced STAT1 activation and nuclear translocation, whereas deficiency of STAT1 reversed the transcriptional changes induced by Fas deficiency. Thus, our computational and experimental approach identified Fas as a regulator of the Th17-to-Th1 cell balance by controlling the availability of opposing STAT1 and STAT3 to have a direct impact on autoimmunity.


Asunto(s)
Diferenciación Celular/inmunología , Factor de Transcripción STAT1/metabolismo , Células TH1/inmunología , Células TH1/metabolismo , Células Th17/inmunología , Células Th17/metabolismo , Receptor fas/metabolismo , Animales , Apoptosis/inmunología , Biomarcadores , Caspasas/metabolismo , Perfilación de la Expresión Génica , Técnicas de Inactivación de Genes , Activación de Linfocitos , Ratones , Fenotipo , Fosforilación , Unión Proteica , Transporte de Proteínas , Factor de Transcripción STAT3/metabolismo , Células Th17/citología , Transcriptoma , Receptor fas/genética
6.
Plant J ; 118(6): 1922-1936, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38493352

RESUMEN

Deficiency in chromatin assembly factor-1 (CAF-1) in plants through dysfunction of its components, FASCIATA1 and 2 (FAS1, FAS2), leads to the specific and progressive loss of rDNA and telomere repeats in plants. This loss is attributed to defective repair mechanisms for the increased DNA breaks encountered during replication, a consequence of impaired replication-dependent chromatin assembly. In this study, we explore the role of KU70 in these processes. Our findings reveal that, although the rDNA copy number is reduced in ku70 mutants when compared with wild-type plants, it is not markedly affected by diverse KU70 status in fas1 mutants. This is consistent with our previous characterisation of rDNA loss in fas mutants as a consequence part of the single-strand annealing pathway of homology-dependent repair. In stark contrast to rDNA, KU70 dysfunction fully suppresses the loss of telomeres in fas1 plants and converts telomeres to their elongated and heterogeneous state typical for ku70 plants. We conclude that the alternative telomere lengthening pathway, known to be activated in the absence of KU70, overrides progressive telomere loss due to CAF-1 dysfunction.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Factor 1 de Ensamblaje de la Cromatina , Proteínas de Unión al ADN , Homeostasis del Telómero , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factor 1 de Ensamblaje de la Cromatina/metabolismo , Factor 1 de Ensamblaje de la Cromatina/genética , ADN Ribosómico/genética , ADN Ribosómico/metabolismo , Mutación , Telómero/metabolismo , Telómero/genética , Cromosomas de las Plantas/metabolismo
7.
Eur J Immunol ; : e2350943, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39233527

RESUMEN

Macrophage infiltration and accumulation in the atherosclerotic lesion are associated with plaque progression and instability. Depletion of macrophages from the lesion might provide valuable insights into plaque stabilization processes. Therefore, we assessed the effects of systemic and local macrophage depletion on atherogenesis. To deplete monocytes/macrophages we used atherosclerosis-susceptible Apoe- /- mice, bearing a MaFIA (macrophage-Fas-induced-apoptosis) suicide construct under control of the Csf1r (CD115) promotor, where selective apoptosis of Csf1r-expressing cells was induced in a controlled manner, by administration of a drug, AP20187. Systemic induction of apoptosis resulted in a decrease in lesion macrophages and smooth-muscle cells. Plaque size and necrotic core size remained unaffected. Two weeks after the systemic depletion of macrophages, we observed a replenishment of the myeloid compartment. Myelopoiesis was modulated resulting in an expansion of CSF1Rlo myeloid cells in the circulation and a shift from Ly6chi monocytes toward Ly6cint and Ly6clo populations in the spleen. Local apoptosis induction led to a decrease in plaque burden and macrophage content with marginal effects on the circulating myeloid cells. Local, but not systemic depletion of Csf1r+ myeloid cells resulted in decreased plaque burden. Systemic depletion led to CSF1Rlo-monocyte expansion in blood, possibly explaining the lack of effects on plaque development.

8.
FASEB J ; 38(19): e70074, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39340228

RESUMEN

Diabetes osteoporosis (DOP) is a chronic metabolic bone disease. This study aimed to identify potential biomarkers of DOP and explore their underlying mechanisms through bioinformatics methods and experimental verification. Bioinformatics methods were used to identify differentially expressed genes (DEGs) for DOP based on GEO data and the GeneCards database. GO and KEGG enrichment analyses were used to search the key pathways. The STRING website was used to construct a protein-protein interaction (PPI) network and identify key genes. Then, 50 mg/mL glucose was used to interveneosteoblasts (OBs).CCK-8 and Alizarin Red staining were used to investigate the proliferation and differentiation changes in OBs. Flowcytometry was used to investigate apoptosis. The membrane protein chip, WB, and RT-PCR were used to verify the expression of key targets or pathways about DOP. Forty-two common genes were screened between DOP-related targets and DEGs. GO and KEGG enrichment analysis showed that DOP was mainly associated with cytokine-cytokine receptor interactions, and apoptosis. PPI network analysis showed that TNF, IL1A, IL6, IL1B, IL2RA, Fas ligand (FASLG), and Fas cell surface death receptor (FAS) were key up-regulated genes in the occurrence of DOP. The experiment results show that 50 mg/mL glucose significantly inhibited OBs proliferation but presented an increase in apoptosis. Membrane protein chip, WB, and RT-PCR-verified a significantly active in the expression of TNF/FASLG/FAS pathway. High glucose activated the TNF-α/FAS/FASLG pathway and induced the inflammatory microenvironment and apoptosis, then impaired osteogenic differentiation of OBs. These may be an important mechanism for the occurrence and development of DOP.


Asunto(s)
Apoptosis , Biología Computacional , Inflamación , Osteoporosis , Mapas de Interacción de Proteínas , Osteoporosis/genética , Osteoporosis/patología , Osteoporosis/metabolismo , Biología Computacional/métodos , Inflamación/metabolismo , Inflamación/genética , Humanos , Osteoblastos/metabolismo , Animales , Diferenciación Celular , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Proliferación Celular , Complicaciones de la Diabetes/genética , Complicaciones de la Diabetes/metabolismo
9.
J Allergy Clin Immunol ; 153(1): 297-308.e12, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37979702

RESUMEN

BACKGROUND: Elevated TCRαß+CD4-CD8- double-negative T cells (DNT) and serum biomarkers help identify FAS mutant patients with autoimmune lymphoproliferative syndrome (ALPS). However, in some patients with clinical features and biomarkers consistent with ALPS, germline or somatic FAS mutations cannot be identified on standard exon sequencing (ALPS-undetermined: ALPS-U). OBJECTIVE: We sought to explore whether complex genetic alterations in the FAS gene escaping standard sequencing or mutations in other FAS pathway-related genes could explain these cases. METHODS: Genetic analysis included whole FAS gene sequencing, copy number variation analysis, and sequencing of FAS cDNA and other FAS pathway-related genes. It was guided by FAS expression analysis on CD57+DNT, which can predict somatic loss of heterozygosity (sLOH). RESULTS: Nine of 16 patients with ALPS-U lacked FAS expression on CD57+DNT predicting heterozygous "loss-of-expression" FAS mutations plus acquired somatic second hits in the FAS gene, enriched in DNT. Indeed, 7 of 9 analyzed patients carried deep intronic mutations or large deletions in the FAS gene combined with sLOH detectable in DNT; 1 patient showed a FAS exon duplication. Three patients had reduced FAS expression, and 2 of them harbored mutations in the FAS promoter, which reduced FAS expression in reporter assays. Three of the 4 ALPS-U patients with normal FAS expression carried heterozygous FADD mutations with sLOH. CONCLUSION: A combination of serum biomarkers and DNT phenotyping is an accurate means to identify patients with ALPS who are missed by routine exome sequencing.


Asunto(s)
Síndrome Linfoproliferativo Autoinmune , Receptor fas , Humanos , Síndrome Linfoproliferativo Autoinmune/diagnóstico , Síndrome Linfoproliferativo Autoinmune/genética , Biomarcadores , Variaciones en el Número de Copia de ADN , Secuenciación del Exoma , Receptor fas/genética , Proteína de Dominio de Muerte Asociada a Fas/genética , Mutación
10.
Dev Biol ; 493: 89-102, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36368523

RESUMEN

Ethanol is a known vertebrate teratogen that causes craniofacial defects as a component of fetal alcohol syndrome (FAS). Our results show that sea urchin embryos treated with ethanol similarly show broad skeletal patterning defects, potentially analogous to the defects associated with FAS. The sea urchin larval skeleton is a simple patterning system that involves only two cell types: the primary mesenchymal cells (PMCs) that secrete the calcium carbonate skeleton and the ectodermal cells that provide migratory, positional, and differentiation cues for the PMCs. Perturbations in RA biosynthesis and Hh signaling pathways are thought to be causal for the FAS phenotype in vertebrates. Surprisingly, our results indicate that these pathways are not functionally relevant for the teratogenic effects of ethanol in developing sea urchins. We found that developmental morphology as well as the expression of some ectodermal and PMC genes was delayed by ethanol exposure. Temporal transcriptome analysis revealed significant impacts of ethanol on signaling and metabolic gene expression, and a disruption in the timing of GRN gene expression that includes both delayed and precocious gene expression throughout the specification network. We conclude that the skeletal patterning perturbations in ethanol-treated embryos likely arise from a loss of temporal synchrony within and between the instructive and responsive tissues.


Asunto(s)
Etanol , Células Madre Mesenquimatosas , Animales , Etanol/toxicidad , Regulación del Desarrollo de la Expresión Génica , Erizos de Mar , Ectodermo , Células Madre Mesenquimatosas/metabolismo , Embrión no Mamífero/metabolismo
11.
J Biol Chem ; 299(11): 105270, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37734558

RESUMEN

Synthetic cytokine receptors can modulate cellular functions based on an artificial ligand to avoid off-target and/or unspecific effects. However, ligands that can modulate receptor activity so far have not been used clinically because of unknown toxicity and immunity against the ligands. Here, we developed a fully synthetic cytokine/cytokine receptor pair based on the antigen-binding domain of the respiratory syncytial virus-approved mAb Palivizumab as a synthetic cytokine and a set of anti-idiotype nanobodies (AIPVHH) as synthetic receptors. Importantly, Palivizumab is neither cross-reactive with human proteins nor immunogenic. For the synthetic receptors, AIPVHH were fused to the activating interleukin-6 cytokine receptor gp130 and the apoptosis-inducing receptor Fas. We found that the synthetic cytokine receptor AIPVHHgp130 was efficiently activated by dimeric Palivizumab single-chain variable fragments. In summary, we created an in vitro nonimmunogenic full-synthetic cytokine/cytokine receptor pair as a proof of concept for future in vivo therapeutic strategies utilizing nonphysiological targets during immunotherapy.


Asunto(s)
Receptores Artificiales , Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Humanos , Palivizumab/farmacología , Palivizumab/uso terapéutico , Receptores Artificiales/metabolismo , Receptores Artificiales/uso terapéutico , Receptores de Citocinas , Citocinas , Infecciones por Virus Sincitial Respiratorio/tratamiento farmacológico , Ligandos , Antivirales/farmacología , Antivirales/uso terapéutico
12.
J Biol Chem ; 299(8): 104989, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37392849

RESUMEN

Synthetic biology has emerged as a useful technology for studying cytokine signal transduction. Recently, we described fully synthetic cytokine receptors to phenocopy trimeric receptors such as the death receptor Fas/CD95. Using a nanobody as an extracellular-binding domain for mCherry fused to the natural receptor's transmembrane and intracellular domain, trimeric mCherry ligands were able to induce cell death. Among the 17,889 single nucleotide variants in the SNP database for Fas, 337 represent missense mutations that functionally remained largely uncharacterized. Here, we developed a workflow for the Fas synthetic cytokine receptor system to functionally characterize missense SNPs within the transmembrane and intracellular domain of Fas. To validate our system, we selected five functionally assigned loss-of-function (LOF) polymorphisms and included 15 additional unassigned SNPs. Moreover, based on structural data, 15 gain-of-function or LOF candidate mutations were additionally selected. All 35 nucleotide variants were functionally investigated through cellular proliferation, apoptosis and caspases 3 and 7 cleavage assays. Collectively, our results showed that 30 variants resulted in partial or complete LOF, while five lead to a gain-of-function. In conclusion, we demonstrated that synthetic cytokine receptors are a suitable tool for functional SNPs/mutations characterization in a structured workflow.


Asunto(s)
Mutación con Pérdida de Función , Receptores Artificiales , Receptor fas , Apoptosis , Receptor fas/química , Receptor fas/genética , Polimorfismo de Nucleótido Simple , Dominios Proteicos
13.
Proteins ; 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39219154

RESUMEN

Inhibition of CD95/Fas activation is currently under clinical investigation as a therapy for glioblastoma multiforme and preclinical studies suggest that disruption of the CD95-CD95L interaction could also be a strategy to treat inflammatory and neurodegenerative disorders. Besides neutralizing anti-CD95L/FasL antibodies, mainly CD95ed-Fc, a dimeric Fc fusion protein of the extracellular domain of CD95 (CD95ed), is used to prevent CD95 activation. In view of the fact that full CD95 activation requires CD95L-induced CD95 trimerization and clustering of the resulting liganded CD95 trimers, we investigated whether fusion proteins of the extracellular domain of CD95 with a higher valency than CD95ed-Fc have an improved CD95L-neutralization capacity. We evaluated an IgG1(N297A)-based tetravalent CD95ed fusion protein which was obtained by replacing the variable domains of IgG1(N297A) with CD95ed (CD95ed-IgG1(N297A)) and a hexavalent variant obtained by fusion of CD95ed with a TNC-Fc(DANA) scaffold (CD95ed-TNC-Fc(DANA)) promoting hexamerization. The established N297A and DANA mutations were used to minimize FcγR binding of the constructs under maintenance of neonatal Fc receptor (FcRn) binding. Size exclusion high-performance liquid chromatography indicated effective assembly of CD95ed-IgG1(N297A). More important, CD95ed-IgG1(N297A) was much more efficient than CD95ed-Fc in protecting cells from cell death induction by human and murine CD95L. Surprisingly, despite its hexavalent structure, CD95ed-TNC-Fc(DANA) displayed an at best minor improvement of the capacity to neutralize CD95L suggesting that besides valency, other factors, such as spatial organization and agility of the CD95ed domains, play also a role in neutralization of CD95L trimers by CD95ed fusion proteins. More studies are now required to evaluate the superior CD95L-neutralizing capacity of CD95ed-IgG1(N297A) in vivo.

14.
Curr Issues Mol Biol ; 46(8): 8945-8957, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39194745

RESUMEN

Natural killer cells (NK cells) exert cytotoxicity towards target cells in several ways, including the expression of apoptosis-mediating ligands (TRAIL, FasL). In addition, NK cells themselves may be susceptible to apoptosis due to the expression of TRAIL receptors. These receptors include TRAIL-R1 (DR4), TRAIL-R2 (DR5), capable of inducing apoptosis, and TRAIL-R3 (DcR1), TRAIL-R4 (DcR2), the so-called "decoy receptors", which lack an intracellular domain initiating activation of caspases. Of particular interest is the interaction of uterine NK cells with cells of fetal origin, trophoblasts, which are potential targets for natural killer cells to carry out cytotoxicity. The aim of this work was to evaluate the expression of proapoptotic receptors and their ligands as well as CD107a expression by NK cells in a model of interaction with trophoblast cells. To evaluate NK cells, we used cells of the NK-92 line; cells of the JEG-3 line were used as target cells. The cytokines IL-1ß, IL-15, IL-18, TNFα, IL-10, TGFß and conditioned media (CM) of the first and third trimester chorionic villi explants were used as inducers. We established that cytokines changed the expression of apoptotic receptors by NK cells: in the presence of TNFα, the amount and intensity of Fas expression increased, while in the presence of TGFß, the amount and intensity of expression of the DR5 receptor decreased. Soluble chorionic villi factors alter the expression of TRAIL and FasL by NK-92 cells, which can reflect the suppression of the TRAIL-dependent mechanism of apoptosis in the first trimester and stimulating the Fas-dependent mechanism in the third trimester. In the presence of trophoblast cells, the expression of TRAIL and DcR1 by NK cells was reduced compared to intact cells, indicating an inhibitory effect of trophoblast cells on NK cell cytotoxicity. In the presence of chorionic villi CM and trophoblast cells, a reduced number of NK-92 cells expressing DR4 and DR5 was found. Therefore, soluble factors secreted by chorionic villi cells regulate the resistance of NK cells to death by binding TRAIL, likely maintaining their activity at a certain level in case of contact with trophoblast cells.

15.
Apoptosis ; 29(1-2): 1-2, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37794219

RESUMEN

Fas and Fas ligand (FasL)-induced cell death is critical for the appropriate regulation of immune responses, especially those mediated by T cells. In this letter, several studies are discussed that reinforce the importance of FasL intracellular signaling for CD4 + T cell death, which might involve PSTPIP phosphatase and/or MAPKs.


Asunto(s)
Apoptosis , Receptor fas , Proteína Ligando Fas/genética , Transducción de Señal , Muerte Celular
16.
Clin Immunol ; 258: 109874, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38113962

RESUMEN

Sle1 and Faslpr are two lupus susceptibility loci that lead to manifestations of systemic lupus erythematosus. To evaluate the dosage effects of Faslpr in determining cellular and serological phenotypes associated with lupus, we developed a new C57BL/6 (B6) congenic lupus strain, B6.Sle1/Sle1.Faslpr/+ (Sle1homo.lprhet) and compared it with B6.Faslpr/lpr (lprhomo), B6.Sle1/Sle1 (Sle1homo), and B6.Sle1/Sle1.Faslpr/lpr (Sle1homo.lprhomo) strains. Whereas Sle1homo.lprhomo mice exhibited profound lymphoproliferation and early mortality, Sle1homo.lprhet mice had a lifespan comparable to B6 mice, with no evidence of splenomegaly or lymphadenopathy. Compared to B6 monogenic lupus strains, Sle1homo.lprhet mice exhibited significantly elevated serum ANA antibodies and increased proteinuria. Additionally, Sle1homo.lprhet T cells had an increased propensity to differentiate into Th1 cells. Gene dose effects of Faslpr were noted in upregulating serum IL-1⍺, IL-2, and IL-27. Taken together, Sle1homo.lprhet strain is a new C57BL/6-based model of lupus, ideal for genetic studies, autoantibody repertoire investigation, and for exploring Th1 effector cell skewing without early-age lymphoproliferative autoimmunity.


Asunto(s)
Lupus Eritematoso Sistémico , Ratones , Animales , Ratones Endogámicos C57BL , Lupus Eritematoso Sistémico/genética , Autoinmunidad , Diferenciación Celular , Dosificación de Gen , Ratones Endogámicos MRL lpr
17.
J Clin Immunol ; 44(7): 166, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39060684

RESUMEN

Autoimmune lymphoproliferative syndrome (ALPS) is a rare genetic disorder featuring chronic lymphadenopathy, splenomegaly, cytopenias, and increased lymphoma risk. Differentiating ALPS from immunodeficiencies with overlapping symptoms is challenging. This study evaluated the performance and the diagnostic yield of a 15-gene NGS panel for ALPS at Cincinnati Children's Hospital Medical Center. Samples from 802 patients submitted for ALPS NGS panel were studied between May 2014 and January 2023. A total of 62 patients (7.7%) had a definite diagnosis: 52/62 cases (84%) showed 37 unique pathogenic/likely pathogenic germline FAS variants supporting ALPS diagnosis (6.5%, 52/802). The ALPS diagnostic yield increased to 30% in patients who additionally fulfilled abnormal ALPS immunology findings criteria. 17/37 (46%) diagnostic FAS variants were novel variants reported for the first time in ALPS. 10/802 cases (1.2%) showed diagnostic findings in five genes (ADA2, CTLA4, KRAS, MAGT1, NRAS) which are related to autoimmune lymphoproliferative immunodeficiency (ALPID). Family studies enabled the reclassification of variants of unknown significance (VUS) and also the identification of at-risk family members of FAS-positive patients, which helped in the follow-up diagnosis and treatment. Alongside family studies, complete clinical phenotypes and abnormal ALPS immunology and Fas-mediated apoptosis results helped clarify uncertain genetic findings. This study describes the largest cohort of genetic testing for suspected ALPS in North America and highlights the effectiveness of the ALPS NGS panel in distinguishing ALPS from non-ALPS immunodeficiencies. More comprehensive assessment from exome or genome sequencing could be considered for undefined ALPS-U patients or non-ALPS immunodeficiencies after weighing cost, completeness, and timeliness of different genetic testing options.


Asunto(s)
Síndrome Linfoproliferativo Autoinmune , Pruebas Genéticas , Humanos , Síndrome Linfoproliferativo Autoinmune/diagnóstico , Síndrome Linfoproliferativo Autoinmune/genética , Pruebas Genéticas/métodos , Femenino , Masculino , Niño , Preescolar , Lactante , Adolescente , Receptor fas/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Predisposición Genética a la Enfermedad , Hospitales Pediátricos , Mutación/genética
18.
BMC Plant Biol ; 24(1): 794, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39169281

RESUMEN

BACKGROUND: The theory of Condition Dependent Sex predicts that - everything else being equal - less fit individuals would outcross at higher rates compared with fitter ones. Here we used the mixed mating plant Lamium amplexicaule, capable of producing both self-pollinating closed flowers (CL), alongside open flowers (CH) that allow cross pollination to test it. We investigated the effects of abiotic stress - salt solution irrigation - on the flowering patterns of plants and their offspring. We monitored several flowering and vegetative parameters, including the number and distribution of flowers, CH fraction, and plant size. RESULTS: We found that stressed plants show an increased tendency for self-pollination and a deficit in floral and vegetative development. However, when parentally primed, stressed plants show a milder response. Un-stressed offspring of stressed parents show reversed responses and exhibit an increased tendency to outcross, and improve floral and vegetative development. CONCLUSIONS: In summary, we found that stress affects the reproduction strategy in the plants that experienced the stress and in subsequent offspring through F2 generation. Our results provide experimental evidence supporting a transgenerational extension to the theories of fitness associate sex and dispersal, where an individual's tendency for sex and dispersal may depend on the stress experienced by its parents.


Asunto(s)
Flores , Polinización , Reproducción , Flores/fisiología , Flores/crecimiento & desarrollo , Lamiales/fisiología , Lamiales/crecimiento & desarrollo , Estrés Fisiológico
19.
Clin Exp Immunol ; 217(1): 45-56, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38247555

RESUMEN

Crohn's disease (CD) is a chronic relapsing inflammatory disorder in which defective apoptosis of mucosal T cells is postulated to produce sustained inflammation and reactive oxygen species accumulation. Whether CD T cells are intrinsically resistant to apoptosis or whether this resistance is acquired at the intestinal site needs to be clarified, as the cellular mechanisms modulate the impaired apoptosis in these cells. Here, we analysed peripheral blood T cells from patients naïve to specific CD treatment at the onset and from healthy controls. Non-activated freshly purified lymphocytes were cultured and submitted to in vitro protocols for activation (CD3/CD28 antibodies) and apoptosis (Fas antibody). Cells were analysed by flow cytometry. Caspases (3, 8, and 9) and catalase activity were measured; protein levels of bax, Bcl-2, and NF-kB were detected by western blotting, and cytokines by Luminex-based assays. The results showed that CD4 T cells from CD patients are less prone to apoptosis before they can migrate to the intestinal mucosa. Caspase-9, FasR, sIL-2Rα, IL-17A, IFNγ, IL-6, TNF-α, and IL-10 were shown to be significantly different in CD but not for the rest of the analysed biological elements. Catalase activity was significantly reduced in CD T cells, which was confirmed in ex vivo experiments in which catalase inhibition in T cells from healthy controls triggered apoptosis inhibition in a dose-dependent manner. In conclusion, apoptosis inhibition of CD T cells is a feature of these cells before they can migrate to the intestinal mucosa. Noteworthy, the impaired apoptosis of T cells can be directly influenced by catalase inhibition.


Asunto(s)
Apoptosis , Catalasa , Enfermedad de Crohn , Humanos , Enfermedad de Crohn/inmunología , Enfermedad de Crohn/patología , Catalasa/metabolismo , Adulto , Femenino , Masculino , Citocinas/metabolismo , Persona de Mediana Edad , Mucosa Intestinal/inmunología , Mucosa Intestinal/patología , Células Cultivadas , Linfocitos T CD4-Positivos/inmunología , Activación de Linfocitos/inmunología , Adulto Joven , Linfocitos T/inmunología , Caspasas/metabolismo
20.
Cardiovasc Diabetol ; 23(1): 153, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702769

RESUMEN

BACKGROUND: Type 2 Diabetes Mellitus (T2DM) presents a significant healthcare challenge, with considerable economic ramifications. While blood glucose management and long-term metabolic target setting for home care and outpatient treatment follow established procedures, the approach for short-term targets during hospitalization varies due to a lack of clinical consensus. Our study aims to elucidate the impact of pre-hospitalization and intra-hospitalization glycemic indexes on in-hospital survival rates in individuals with T2DM, addressing this notable gap in the current literature. METHODS: In this pilot study involving 120 hospitalized diabetic patients, we used advanced machine learning and classical statistical methods to identify variables for predicting hospitalization outcomes. We first developed a 30-day mortality risk classifier leveraging AdaBoost-FAS, a state-of-the-art ensemble machine learning method for tabular data. We then analyzed the feature relevance to identify the key predictive variables among the glycemic and routine clinical variables the model bases its predictions on. Next, we conducted detailed statistical analyses to shed light on the relationship between such variables and mortality risk. Finally, based on such analyses, we introduced a novel index, the ratio of intra-hospital glycemic variability to pre-hospitalization glycemic mean, to better characterize and stratify the diabetic population. RESULTS: Our findings underscore the importance of personalized approaches to glycemic management during hospitalization. The introduced index, alongside advanced predictive modeling, provides valuable insights for optimizing patient care. In particular, together with in-hospital glycemic variability, it is able to discriminate between patients with higher and lower mortality rates, highlighting the importance of tightly controlling not only pre-hospital but also in-hospital glycemic levels. CONCLUSIONS: Despite the pilot nature and modest sample size, this study marks the beginning of exploration into personalized glycemic control for hospitalized patients with T2DM. Pre-hospital blood glucose levels and related variables derived from it can serve as biomarkers for all-cause mortality during hospitalization.


Asunto(s)
Biomarcadores , Glucemia , Diabetes Mellitus Tipo 2 , Mortalidad Hospitalaria , Aprendizaje Automático , Valor Predictivo de las Pruebas , Humanos , Proyectos Piloto , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/mortalidad , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/diagnóstico , Biomarcadores/sangre , Masculino , Anciano , Femenino , Persona de Mediana Edad , Medición de Riesgo , Factores de Riesgo , Factores de Tiempo , Causas de Muerte , Pronóstico , Control Glucémico/mortalidad , Hospitalización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA